1
|
Chen ZQ, Tang TT, Tang RN, Zhang Y, Zhang YL, Yang HB, Song J, Yang Q, Qin SF, Chen F, Zhang YX, Wang YJ, Wang B, Lv LL, Liu BC. A comprehensive evaluation of stability and safety for HEK293F-derived extracellular vesicles as promising drug delivery vehicles. J Control Release 2025; 382:113673. [PMID: 40169120 DOI: 10.1016/j.jconrel.2025.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
HEK293F-derived extracellular vesicles (HEK293F-EVs) have great potential as next-generation drug delivery vehicles. A comprehensive understanding of their batch stability and in vivo safety is prerequisite for clinical translation. HEK293F-EVs were purified using ultracentrifugation combined with size exclusion chromatography, and their physicochemical properties, such as morphology, size distribution, and biomarkers, were thoroughly characterized. Raman spectroscopy and multi-omics analyses were employed to elaborate their molecular composition. Blood kinetics and biodistribution were assessed via IVIS spectrum imaging. Additionally, long-term in vivo safety was evaluated following multiple-dose administration through hematology, serum biochemistry, cytokine/chemokine profiling, and histopathology. HEK293F-EVs exhibited stable yields, purity, physicochemical properties (morphology, size, zeta potential, and marker proteins), and chemical composition across different cell passages (P10, P20, P30), with no significant variations. Content profiling, including protein, miRNA, metabolite, and lipid, confirmed consistent molecular stability across five production batches. GO, Reactome, and KEGG analyses revealed minimal enrichment in pathways related to acute immune response or cytotoxicity. Blood kinetics studies indicated rapid clearance of HEK293F-EVs from circulation, though slightly slower than PEG-Liposomes. Organ biodistribution was comparable between HEK293F-EVs and PEG-Liposomes, with HEK293F-EVs potentially having longer retention times. Importantly, HEK293F-EVs exhibited a favorable preclinical long-term safety profile, showing low immunogenicity and fewer tissue lesions compared to PEG-Liposomes. Our study demonstrates that HEK293F-EVs maintain stable physicochemical characteristics and compositions across batches and possess a superior safety profile, suggesting their significant potential as a safe and reliable drug delivery platform for clinical applications.
Collapse
Affiliation(s)
- Zhi-Qing Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yue Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong-Bin Yang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Jing Song
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qin Yang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Suo-Fu Qin
- Shenzhen Kexing Pharmaceutical Co., Ltd., Shenzhen, China
| | - Feng Chen
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yu-Xia Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yu-Jia Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|
2
|
Khalid A, Tomljenovic-Hanic S. Emerging Fluorescent Nanoparticles for Non-Invasive Bioimaging. Molecules 2024; 29:5594. [PMID: 39683753 DOI: 10.3390/molecules29235594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Fluorescence-based techniques have great potential in the field of bioimaging and could bring tremendous progress in microbiology and biomedicine. The most essential element in these techniques is fluorescent nanomaterials. The use of fluorescent nanoparticles as contrast agents for bioimaging is a large topic to cover. The purpose of this mini-review is to give the reader an overview of biocompatible and biodegradable fluorescent nanoparticles that are emerging nanomaterials for use in fluorescent bioimaging. In addition to the biocompatibility of these nanomaterials, biodegradability is considered a necessity for short-term sustainable bioimaging. Firstly, the main requirements for bioimaging are raised, and a few existing fluorescent nanoprobes are discussed. Secondly, a few inert biocompatible fluorescent nanomaterials for long-term bioimaging that have been, to some extent, demonstrated as fluorescent probes are reviewed. Finally, a few biocompatible and biodegradable nanomaterials for short-term bioimaging that are evolving for bioimaging applications are discussed. Together, these advancements signal a transformative leap toward sustainability and functionality in biomedical imaging.
Collapse
Affiliation(s)
- Asma Khalid
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | | |
Collapse
|
3
|
Hancock AM, Swainsbury DJK, Meredith SA, Morigaki K, Hunter CN, Adams PG. Enhancing the spectral range of plant and bacterial light-harvesting pigment-protein complexes with various synthetic chromophores incorporated into lipid vesicles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 237:112585. [PMID: 36334507 DOI: 10.1016/j.jphotobiol.2022.112585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The Light-Harvesting (LH) pigment-protein complexes found in photosynthetic organisms have the role of absorbing solar energy with high efficiency and transferring it to reaction centre complexes. LH complexes contain a suite of pigments that each absorb light at specific wavelengths, however, the natural combinations of pigments within any one protein complex do not cover the full range of solar radiation. Here, we provide an in-depth comparison of the relative effectiveness of five different organic "dye" molecules (Texas Red, ATTO, Cy7, DiI, DiR) for enhancing the absorption range of two different LH membrane protein complexes (the major LHCII from plants and LH2 from purple phototrophic bacteria). Proteoliposomes were self-assembled from defined mixtures of lipids, proteins and dye molecules and their optical properties were quantified by absorption and fluorescence spectroscopy. Both lipid-linked dyes and alternative lipophilic dyes were found to be effective excitation energy donors to LH protein complexes, without the need for direct chemical or generic modification of the proteins. The Förster theory parameters (e.g., spectral overlap) were compared between each donor-acceptor combination and found to be good predictors of an effective dye-protein combination. At the highest dye-to-protein ratios tested (over 20:1), the effective absorption strength integrated over the full spectral range was increased to ∼180% of its natural level for both LH complexes. Lipophilic dyes could be inserted into pre-formed membranes although their effectiveness was found to depend upon favourable physicochemical interactions. Finally, we demonstrated that these dyes can also be effective at increasing the spectral range of surface-supported models of photosynthetic membranes, using fluorescence microscopy. The results of this work provide insight into the utility of self-assembled lipid membranes and the great flexibility of LH complexes for interacting with different dyes.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J K Swainsbury
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
4
|
Chinigò G, Gonzalez-Paredes A, Gilardino A, Barbero N, Barolo C, Gasco P, Fiorio Pla A, Visentin S. Polymethine dyes-loaded solid lipid nanoparticles (SLN) as promising photosensitizers for biomedical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120909. [PMID: 35093822 DOI: 10.1016/j.saa.2022.120909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Polymethine dyes (PMD) have proved to be excellent candidates in the biomedical field for potential applications in both diagnostic and therapeutic. However, PMD application in biomedicine is hindered by their poor solubility and stability in physiological conditions. Therefore, the incorporation of these dyes in nanosystems could be important to prevent the formation of dye aggregates in aqueous environment and to protect their photophysical characteristics. In the present work, two PMD based on the benzoindolenine ring (bromine benzo-cyanine-C4 and bromine benzo-squaraine-C4) were incorporated into Solid Lipid Nanoparticles (SLN) to solubilize and stabilize them in aqueous solutions. Obtained SLN showed a high incorporation efficiency for both PMD (≈90%) and not only preserved their spectroscopic properties in the NIR region even under physiological conditions but also improved them. Viability assays showed good biocompatibility of both empty and loaded nanocarriers while the cellular uptake and intracellular localization showed the effective internalization in MCF-7 cells, with a partial mitochondrial localization for CY-SLN. Moreover, in vitro phototoxicity assay showed that cyanine loaded-SLN (CY-SLN) is more photoactive than the free dye.
Collapse
Affiliation(s)
- Giorgia Chinigò
- University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy.
| | | | - Alessandra Gilardino
- University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Nadia Barbero
- University of Torino, Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, Via Quarello 15a, 10135 Turin, Italy
| | - Claudia Barolo
- University of Torino, Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, Via Quarello 15a, 10135 Turin, Italy; ICxT Interdepartmental Centre, Lungo Dora Siena 100, 10153 Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Via Livorno 60, 10144 Turin, Italy
| | - Alessandra Fiorio Pla
- University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Sonja Visentin
- University of Torino, Department of Molecular Biotechnology and Health Science, via Quarello 15a, 10135 Turin, Italy
| |
Collapse
|
5
|
Hartwig O, Loretz B, Nougarede A, Jary D, Sulpice E, Gidrol X, Navarro F, Lehr CM. Leaky gut model of the human intestinal mucosa for testing siRNA-based nanomedicine targeting JAK1. J Control Release 2022; 345:646-660. [PMID: 35339579 PMCID: PMC9168449 DOI: 10.1016/j.jconrel.2022.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Complex in vitro models of human immune cells and intestinal mucosa may have a translation-assisting role in the assessment of anti-inflammatory compounds. Chronic inflammation of the gastrointestinal tract is a hallmark of inflammatory bowel diseases (IBD). In both IBD entities, Crohn's disease and ulcerative colitis, impaired immune cell activation and dysfunctional epithelial barrier are the common pathophysiology. Current therapeutic approaches are targeting single immune modulator molecules to stop disease progression and reduce adverse effects. Such molecular targets can be difficult to assess in experimental animal models of colitis, due to the disease complexity and species differences. Previously, a co-culture model based on human epithelial cells and monocytes arranged in a physiological microenvironment was used to mimic inflamed mucosa for toxicological and permeability studies. The leaky gut model described here, a co-culture of Caco-2, THP-1 and MUTZ-3 cells, was used to mimic IBD-related pathophysiology and for combined investigations of permeability and target engagement of two Janus kinase (JAK) inhibitors, tofacitinib (TOFA) and a JAK1-targeting siRNA nanomedicine. The co-culture just before reaching confluency of the epithelium was used to mimic the compromised intestinal barrier. Delivery efficacy and target engagement against JAK1 was quantified via downstream analysis of STAT1 protein phosphorylation after IFN-γ stimulation. Compared to a tight barrier, the leaky gut model showed 92 ± 5% confluence, a barrier function below 200 Ω*cm2, and enhanced immune response to bacteria-derived lipopolysaccharides. By confocal microscopy we observed an increased accumulation of siJAK1-nanoparticles within the sub-confluent regions leading to uptake into immune cells near the epithelium. A concentration-dependent downregulation of JAK/STAT pathway was observed for siJAK1-nanoparticles (10 ± 12% to 16 ± 12%), whereas TOFA inhibition was 86 ± 2%, compared to untreated cells. By mimicking the status of severely damaged epithelium, like in IBD, the leaky gut model holds promise as a human in vitro system to evaluate the efficacy of anti-inflammatory drugs and nanomedicines.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.
| | - Adrien Nougarede
- University Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, Minatec Campus, F-38054 Grenoble, France
| | - Dorothée Jary
- University Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, Minatec Campus, F-38054 Grenoble, France
| | - Eric Sulpice
- University Grenoble Alpes, CEA, INSERM, IRIG, Biomics, F-38000 Grenoble, France
| | - Xavier Gidrol
- University Grenoble Alpes, CEA, INSERM, IRIG, Biomics, F-38000 Grenoble, France
| | - Fabrice Navarro
- University Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, Minatec Campus, F-38054 Grenoble, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Eder KM, Marzi A, Barroso Á, Ketelhut S, Kemper B, Schnekenburger J. Label-Free Digital Holographic Microscopy for In Vitro Cytotoxic Effect Quantification of Organic Nanoparticles. Cells 2022; 11:cells11040644. [PMID: 35203295 PMCID: PMC8870653 DOI: 10.3390/cells11040644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cytotoxicity quantification of nanoparticles is commonly performed by biochemical assays to evaluate their biocompatibility and safety. We explored quantitative phase imaging (QPI) with digital holographic microscopy (DHM) as a time-resolved in vitro assay to quantify effects caused by three different types of organic nanoparticles in development for medical use. Label-free proliferation quantification of native cell populations facilitates cytotoxicity testing in biomedical nanotechnology. Therefore, DHM quantitative phase images from measurements on nanomaterial and control agent incubated cells were acquired over 24 h, from which the temporal course of the cellular dry mass was calculated within the observed field of view. The impact of LipImage™ 815 lipidots® nanoparticles, as well as empty and cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles on the dry mass development of four different cell lines (RAW 264.7, NIH-3T3, NRK-52E, and RLE-6TN), was observed vs. digitonin as cytotoxicity control and cells in culture medium. The acquired QPI data were compared to a colorimetric cell viability assay (WST-8) to explore the use of the DHM assay with standard biochemical analysis methods downstream. Our results show that QPI with DHM is highly suitable to identify harmful or low-toxic nanomaterials. The presented DHM assay can be implemented with commercial microscopes. The capability for imaging of native cells and the compatibility with common 96-well plates allows high-throughput systems and future embedding into existing experimental routines for in vitro cytotoxicity assessment.
Collapse
|
7
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|
8
|
Gauthier L, Chevallet M, Bulteau F, Thépaut M, Delangle P, Fieschi F, Vivès C, Texier I, Deniaud A, Gateau C. Lectin recognition and hepatocyte endocytosis of GalNAc-decorated nanostructured lipid carriers. J Drug Target 2020; 29:99-107. [PMID: 32936032 DOI: 10.1080/1061186x.2020.1806286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver is the main organ for metabolism but is also subject to various pathologies, from viral, genetic, cancer or metabolic origin. There is thus a crucial need to develop efficient liver-targeted drug delivery strategies. Asialoglycoprotein receptor (ASGPR) is a C-type lectin expressed in the hepatocyte plasma membrane that efficiently endocytoses glycoproteins exposing galactose (Gal) or N-acetylgalactosamine (GalNAc). Its targeting has been successfully used to drive the uptake of small molecules decorated with three or four GalNAc, thanks to an optimisation of their spatial arrangement. Herein, we assessed the biological properties of highly stable nanostructured lipid carriers (NLC) made of FDA-approved ingredients and formulated with increasing amounts of GalNAc. Cellular studies showed that a high density of GalNAc was required to favour hepatocyte internalisation via the ASGPR pathway. Interaction studies using surface plasmon resonance and the macrophage galactose-lectin as GalNAc-recognising lectin confirmed the need of high GalNAc density for specific recognition of these NLC. This work is the first step for the development of efficient nanocarriers for prolonged liver delivery of active compounds.
Collapse
Affiliation(s)
- Laura Gauthier
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France, IRIG-SyMMES, University Grenoble Alpes, Grenoble, France.,CEA, LETI-DTBS, Univ. Grenoble Alpes, Grenoble, France
| | - Mireille Chevallet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - Laboratoire de Chimie et Biologie des Métaux, Grenoble, France, CEA, IRIG-Laboratoire de Chimie et Biologie des Métaux, University Grenoble Alpes, Grenoble, France
| | - Francois Bulteau
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - Institut de Biologie Structurale, Grenoble, France, IRIG-Institut de Biologie Structurale, University Grenoble Alpes, Grenoble, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - Institut de Biologie Structurale, Grenoble, France, IRIG-Institut de Biologie Structurale, University Grenoble Alpes, Grenoble, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France, IRIG-SyMMES, University Grenoble Alpes, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - Institut de Biologie Structurale, Grenoble, France, IRIG-Institut de Biologie Structurale, University Grenoble Alpes, Grenoble, France
| | - Corinne Vivès
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - Institut de Biologie Structurale, Grenoble, France, IRIG-Institut de Biologie Structurale, University Grenoble Alpes, Grenoble, France
| | | | - Aurélien Deniaud
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - Laboratoire de Chimie et Biologie des Métaux, Grenoble, France, CEA, IRIG-Laboratoire de Chimie et Biologie des Métaux, University Grenoble Alpes, Grenoble, France
| | - Christelle Gateau
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France, IRIG-SyMMES, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
9
|
Dailey AL, Greer MD, Sodia TZ, Jewell MP, Kalin TA, Cash KJ. LipiSensors: Exploiting Lipid Nanoemulsions to Fabricate Ionophore-Based Nanosensors. BIOSENSORS-BASEL 2020; 10:bios10090120. [PMID: 32927619 PMCID: PMC7557773 DOI: 10.3390/bios10090120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Ionophore-based nanosensors (IBNS) are tools that enable quantification of analytes in complex chemical and biological systems. IBNS methodology is adopted from that of bulk optodes where an ion exchange event is converted to a change in optical output. While valuable, an important aspect for application is the ability to intentionally tune their size with simple approaches, and ensure that they contain compounds safe for application. Lipidots are a platform of size tunable lipid nanoemulsions with a hydrophobic lipid core typically used for imaging and drug delivery. Here, we present LipiSensors as size tunable IBNS by exploiting the Lipidot model as a hydrophobic structural support for the sensing moieties that are traditionally encased in plasticized PVC nanoparticles. The LipiSensors we demonstrate here are sensitive and selective for calcium, reversible, and have a lifetime of approximately one week. By changing the calcium sensing components inside the hydrophobic core of the LipiSensors to those sensitive for oxygen, they are also able to be used as ratiometric O2 sensitive nanosensors via a quenching-based mechanism. LipiSensors provide a versatile, general platform nanosensing with the ability to directly tune the size of the sensors while including biocompatible materials as the structural support by merging sensing approaches with the Lipidot platform.
Collapse
Affiliation(s)
- Alexandra L. Dailey
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Meredith D. Greer
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Tyler Z. Sodia
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO 80401, USA.;
| | - Megan P. Jewell
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Tabitha A. Kalin
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Kevin J. Cash
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO 80401, USA.;
- Correspondence: ; Tel.: +1-303-273-3631
| |
Collapse
|
10
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
11
|
Varache M, Ciancone M, Couffin AC. Optimization of a Solid-Phase Extraction Procedure for the Analysis of Drug-Loaded Lipid Nanoparticles and its Application to the Determination of Leakage and Release Profiles. J Pharm Sci 2020; 109:2527-2535. [PMID: 32428534 DOI: 10.1016/j.xphs.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022]
Abstract
To understand and predict the efficacy and toxicity of nanoparticle-based drugs in vivo, the free and entrapped forms of the drug have to be determined using suitable characterization methods. Herein, a solid-phase extraction (SPE) method combined with high-performance liquid chromatography (HPLC) measurements were used to separately quantify free and entrapped cyclosporine A (CsA) in 50 and 120 nm-sized lipid nanoparticles (NPs). Combined with colloidal stability measurements, HPLC quantification of the free and entrapped drug, separated using SPE, was used to monitor the stability of the nanotherapeutics under storage or physiological conditions. The SPE method was proven not to alter the core-shell template of the lipid nanocarriers. Method validation demonstrated suitable linearity, repeatability, accuracy, and specificity to quantify the free, entrapped, and total drug. Under storage conditions, the %free and %entrapped CsA remained constant over 9 weeks for both NPs. Under physiological conditions, the release profile was similar for both buffers/mediums used, indicating a biphasic mode of release. The validated SPE method was proven to be suitable for the determination of a wide range of free versus entrapped compounds.
Collapse
Affiliation(s)
- Mathieu Varache
- CEA-LETI, Microtechnologies for Healthcare and Biology Division, Grenoble, France; Université Grenoble Alpes, Grenoble, France.
| | - Mathieu Ciancone
- CEA-LETI, Microtechnologies for Healthcare and Biology Division, Grenoble, France; Université Grenoble Alpes, Grenoble, France
| | - Anne-Claude Couffin
- CEA-LETI, Microtechnologies for Healthcare and Biology Division, Grenoble, France; Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
12
|
Prévot G, Bsaibess T, Daniel J, Genevois C, Clermont G, Sasaki I, Marais S, Couillaud F, Crauste-Manciet S, Blanchard-Desce M. Multimodal optical contrast agents as new tools for monitoring and tuning nanoemulsion internalisation into cancer cells. From live cell imaging to in vivo imaging of tumours. NANOSCALE ADVANCES 2020; 2:1590-1602. [PMID: 36132308 PMCID: PMC9416932 DOI: 10.1039/c9na00710e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/19/2020] [Indexed: 05/28/2023]
Abstract
Tailor-made NIR emitting dyes were designed as multimodal optical probes. These asymmetric amphiphilic compounds show combined intense absorption in the visible region, NIR fluorescence emission, high two-photon absorption in the NIR (with the maximum located around 1000 nm) as well as large Stokes' shift values and second-harmonic generation ability. Thanks to their structure, high loading into nanoemulsions (NEs) could be achieved leading to very high one- and two-photon brightness. These dyes were demonstrated to act as multimodal contrast agents able to generate different optical modalities of interest for bioimaging. Indeed, the uptake and carrier behaviour of the dye-loaded NEs into cancer cells could be monitored by simultaneous two-photon fluorescence and second-harmonic generation optical imaging. Multimodal imaging provided deep insight into the mechanism and kinetics of dye internalisation. Quite interestingly, the nature of the dyes was also found to influence both the kinetics of endocytosis and the internalisation pathways in glioblastoma cancer cells. By modulating the charge distribution within the dyes, the NEs can be tuned to escape lysosomes and enter the mitochondria. Moreover, surface functionalization with PEG macromolecules was realized to yield stealth NIRF-NEs which could be used for in vivo NIRF imaging of subcutaneous tumours in mice.
Collapse
Affiliation(s)
- Geoffrey Prévot
- Univ. Bordeaux, ARNA Laboratory, Team ChemBioPharm, U1212 INSERM - UMR 5320 CNRS 146 Rue Léo Saignat 33076 Bordeaux Cedex France
| | - Talia Bsaibess
- Univ. Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255) 33405 Talence France
| | - Jonathan Daniel
- Univ. Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255) 33405 Talence France
| | - Coralie Genevois
- Univ. Bordeaux, Molecular Imaging and Innovative Therapies (IMOTION), EA7435 Bordeaux 33000 France
| | - Guillaume Clermont
- Univ. Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255) 33405 Talence France
| | - Isabelle Sasaki
- Univ. Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255) 33405 Talence France
| | - Sebastien Marais
- Bordeaux Imaging Center, UMS 3420 CNRS - Univ. Bordeaux, US4 Inserm 33000 Bordeaux France
| | - Franck Couillaud
- Univ. Bordeaux, Molecular Imaging and Innovative Therapies (IMOTION), EA7435 Bordeaux 33000 France
| | - Sylvie Crauste-Manciet
- Univ. Bordeaux, ARNA Laboratory, Team ChemBioPharm, U1212 INSERM - UMR 5320 CNRS 146 Rue Léo Saignat 33076 Bordeaux Cedex France
- Pharmaceutical Technology Department, Bordeaux University Hospital Bordeaux France
| | | |
Collapse
|
13
|
Vigne J, Cabella C, Dézsi L, Rustique E, Couffin AC, Aid R, Anizan N, Chauvierre C, Letourneur D, Le Guludec D, Rouzet F, Hyafil F, Mészáros T, Fülöp T, Szebeni J, Cordaro A, Oliva P, Mourier V, Texier I. Nanostructured lipid carriers accumulate in atherosclerotic plaques of ApoE -/- mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102157. [PMID: 31982616 DOI: 10.1016/j.nano.2020.102157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/04/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
Nanostructured lipid carriers (NLC) might represent an interesting approach for the identification and targeting of rupture-prone atherosclerotic plaques. In this study, we evaluated the biodistribution, targeting ability and safety of 64Cu-fonctionalized NLC in atherosclerotic mice. 64Cu-chelating-NLC (51.8±3.1 nm diameter) with low dispersity index (0.066±0.016) were produced by high pressure homogenization at tens-of-grams scale. 24 h after injection of 64Cu-chelated particles in ApoE-/- mice, focal regions of the aorta showed accumulation of particles on autoradiography that colocalized with Oil Red O lipid mapping. Signal intensity was significantly greater in aortas isolated from ApoE-/- mice compared to wild type (WT) control (8.95 [7.58, 10.16]×108 vs 4.59 [3.11, 5.03]×108 QL/mm2, P < 0.05). Moreover, NLC seemed safe in relevant biocompatibility studies. NLC could constitute an interesting platform with high clinical translation potential for targeted delivery and imaging purposes in atherosclerosis.
Collapse
Affiliation(s)
- Jonathan Vigne
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - László Dézsi
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | - Rachida Aid
- Université de Paris, UMS34 FRIM, Paris, France
| | | | | | | | - Dominique Le Guludec
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - François Rouzet
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Fabien Hyafil
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Tamás Fülöp
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Alessia Cordaro
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - Paolo Oliva
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | | | | |
Collapse
|
14
|
Baraket A, Alcaraz JP, Gondran C, Costa G, Nonglaton G, Gaillard F, Cinquin P, Cosnier ML, Martin DK. Long duration stabilization of porous silicon membranes in physiological media: Application for implantable reactors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110359. [PMID: 31923938 DOI: 10.1016/j.msec.2019.110359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
The natural biodegradabilty of porous silicon (pSi) in physiological media limits its wider usage for implantable systems. We report the stabilization of porous silicon (pSi) membranes by chemical surface oxidation using RCA1 and RCA2 protocols, which was followed by a PEGylation process using a silane-PEG. These surface modifications stabilized the pSi to allow a long period of immersion in PBS, while leaving the pSi surface sufficiently hydrophilic for good filtration and diffusion of several biomolecules of different sizes without any blockage of the pSi structure. The pore sizes of the pSi membranes were between 5 and 20 nm, with the membrane thickness around 70 μm. The diffusion coefficient for fluorescein through the membrane was 2 × 10-10 cm2 s-1, and for glucose was 2.2 × 10-9 cm2 s-1. The pSi membrane maintained that level of glucose diffusion for one month of immersion in PBS. After 2 months immersion in PBS the pSi membrane continued to operate, but with a reduced glucose diffusion coefficient. The chemical stabilization of pSi membranes provided almost 1 week stable and functional biomolecule transport in blood plasma and opens the possibility for its short-term implantation as a diffusion membrane in biocompatible systems.
Collapse
Affiliation(s)
- Abdoullatif Baraket
- ISA, Institut des Sciences Analytiques, Département LSA, 5, rue de la Doua, 69100, Villeurbanne, France
| | - Jean-Pierre Alcaraz
- Université Grenoble Alpes / CNRS / TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France, Faculté de Médecine, 38706, La Tronche cedex, France
| | - Chantal Gondran
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F 38000, Grenoble, France
| | - Guillaume Costa
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Guillaume Nonglaton
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Frédéric Gaillard
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Philippe Cinquin
- Université Grenoble Alpes / CNRS / TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France, Faculté de Médecine, 38706, La Tronche cedex, France
| | - Marie-Line Cosnier
- CEA LETI Grenoble - DRT/DTBS, 17 avenue des martyrs, 38054, Grenoble cedex 9, France
| | - Donald K Martin
- Université Grenoble Alpes / CNRS / TIMC-IMAG UMR 5525 (SyNaBi), Grenoble, France, Faculté de Médecine, 38706, La Tronche cedex, France.
| |
Collapse
|
15
|
van Beurden F, van Willigen DM, Vojnovic B, van Oosterom MN, Brouwer OR, van der Poel HG, Kobayashi H, van Leeuwen FW, Buckle T. Multi-Wavelength Fluorescence in Image-Guided Surgery, Clinical Feasibility and Future Perspectives. Mol Imaging 2020; 19:1536012120962333. [PMID: 33125289 PMCID: PMC7607779 DOI: 10.1177/1536012120962333] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
With the rise of fluorescence-guided surgery, it has become evident that different types of fluorescence signals can provide value in the surgical setting. Hereby a different range of targets have been pursued in a great variety of surgical indications. One of the future challenges lies in combining complementary fluorescent readouts during one and the same surgical procedure, so-called multi-wavelength fluorescence guidance. In this review we summarize the current clinical state-of-the-art in multi-wavelength fluorescence guidance, basic technical concepts, possible future extensions of existing clinical indications and impact that the technology can bring to clinical care.
Collapse
Affiliation(s)
- Florian van Beurden
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Danny M. van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Borivoj Vojnovic
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Oscar R. Brouwer
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Henk G. van der Poel
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fijs W.B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Orsi Academy, Melle, Belgium
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Verteporfin-Loaded Lipid Nanoparticles Improve Ovarian Cancer Photodynamic Therapy In Vitro and In Vivo. Cancers (Basel) 2019; 11:cancers11111760. [PMID: 31717427 PMCID: PMC6896159 DOI: 10.3390/cancers11111760] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced ovarian cancer is the most lethal gynecological cancer, with a high rate of chemoresistance and relapse. Photodynamic therapy offers new prospects for ovarian cancer treatment, but current photosensitizers lack tumor specificity, resulting in low efficacy and significant side-effects. In the present work, the clinically approved photosensitizer verteporfin was encapsulated within nanostructured lipid carriers (NLC) for targeted photodynamic therapy of ovarian cancer. Cellular uptake and phototoxicity of free verteporfin and NLC-verteporfin were studied in vitro in human ovarian cancer cell lines cultured in 2D and 3D-spheroids, and biodistribution and photodynamic therapy were evaluated in vivo in mice. Both molecules were internalized in ovarian cancer cells and strongly inhibited tumor cells viability when exposed to laser light only. In vivo biodistribution and pharmacokinetic studies evidenced a long circulation time of NLC associated with efficient tumor uptake. Administration of 2 mg.kg-1 free verteporfin induced severe phototoxic adverse effects leading to the death of 5 out of 8 mice. In contrast, laser light exposure of tumors after intravenous administration of NLC-verteporfin (8 mg.kg-1) significantly inhibited tumor growth without visible toxicity. NLC-verteporfin thus led to efficient verteporfin vectorization to the tumor site and protection from side-effects, providing promising therapeutic prospects for photodynamic therapy of cancer.
Collapse
|
17
|
Ferrauto G, Carniato F, Di Gregorio E, Botta M, Tei L. Photoacoustic ratiometric assessment of mitoxantrone release from theranostic ICG-conjugated mesoporous silica nanoparticles. NANOSCALE 2019; 11:18031-18036. [PMID: 31570915 DOI: 10.1039/c9nr06524e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A theranostic nanosystem based on indocyanine green (ICG) covalently conjugated to mesoporous silica nanoparticles (MSNs) loaded with the anticancer drug mitoxantrone (MTX) is proposed as an innovative photoacoustic probe. Taking advantage of the characteristic PA signal displayed by both ICG and MTX, a PA-ratiometric approach was applied to assess the drug release profile from the MSNs. After complete in vitro characterization of the nanoprobe, a proof-of-concept study has been carried out in tumour-bearing mice to evaluate in vivo its effectiveness for cancer imaging and chemotherapeutic agent delivery.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
18
|
Biodistribution of Nanostructured Lipid Carriers in Mice Atherosclerotic Model. Molecules 2019; 24:molecules24193499. [PMID: 31561608 PMCID: PMC6803849 DOI: 10.3390/molecules24193499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is a major cardiovascular disease worldwide, that could benefit from innovative nanomedicine imaging tools and treatments. In this perspective, we here studied, by fluorescence imaging in ApoE-/- mice, the biodistribution of non-functionalized and RXP470.1-targeted nanostructured lipid carriers (NLC) loaded with DiD dye. RXP470.1 specifically binds to MMP12, a metalloprotease that is over-expressed by macrophages residing in atherosclerotic plaques. Physico-chemical characterizations showed that RXP-NLC (about 105 RXP470.1 moieties/particle) displayed similar features as non-functionalized NLC in terms of particle diameter (about 60-65 nm), surface charge (about −5 — −10 mV), and colloidal stability. In vitro inhibition assays demonstrated that RXP-NLC conserved a selectivity and affinity profile, which favored MMP-12. In vivo data indicated that NLC and RXP-NLC presented prolonged blood circulation and accumulation in atherosclerotic lesions in a few hours. Twenty-four hours after injection, particle uptake in atherosclerotic plaques of the brachiocephalic artery was similar for both nanoparticles, as assessed by ex vivo imaging. This suggests that the RXP470.1 coating did not significantly induce an active targeting of the nanoparticles within the plaques. Overall, NLCs appeared to be very promising nanovectors to efficiently and specifically deliver imaging agents or drugs in atherosclerotic lesions, opening avenues for new nanomedicine strategies for cardiovascular diseases.
Collapse
|
19
|
Biswas A, Shukla A, Maiti P. Biomaterials for Interfacing Cell Imaging and Drug Delivery: An Overview. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12285-12305. [PMID: 31125238 DOI: 10.1021/acs.langmuir.9b00419] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This feature article provides an overview of different kinds of futuristic biomaterials which have the potential to be used for fluorescent imaging and drug delivery, often simultaneously. The synthesis route or preparation process, fluorescence property, release profile, biocompatibility, bioimaging, and mechanistic approaches are vividly discussed. These include bioimaging with fluorescently doped quantum dots, mesoporous silica, noble metals, metal clusters, hydrophilic/hydrophobic polymers, semiconducting polymer dots, carbon/graphene dots, dendrimers, fluorescent proteins, and other nanobiomaterials. Another section discusses the controlled and targeted drug, gene, or biologically active material delivery using various vehicles such as micelles, 2D nanomaterials, organic nanoparticles, polymeric nanohybrids, and chemically modified polymers. In the last section, we discuss biomaterials, which can deliver biologically active molecules, and imaging the cell/tissue.
Collapse
Affiliation(s)
- Arpan Biswas
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| | - Aparna Shukla
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| | - Pralay Maiti
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| |
Collapse
|
20
|
Development and validation of a novel UPLC-ELSD method for the assessment of lipid composition of nanomedicine formulation. Int J Pharm 2019; 566:11-23. [PMID: 31112794 DOI: 10.1016/j.ijpharm.2019.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023]
Abstract
Lipid nanocarriers incorporating glycerides, polyethylene glycol (PEG)-stearates and phospholipids have attracted great attention for in vivo diagnostic, in vivo imaging, activated or non-activated targeted drug delivery. For quality control purposes, the development of appropriate methods for the quantification of their lipid components is needed. In the present study, we developed an analytical method for lipid quantification in formulated nanoparticles. PEG-stearates and glycerides were analyzed in a single run by RP-UPLC-ELSD using a two-step gradient elution program, while the analysis of phospholipids was accomplished by HILIC-UPLC-ELSD after isolation using an SPE silica column. Using both isolated compounds and commercial lipid standards, calibration curves were produced using second-order polynomials to attain the quantitative evaluation of each lipid excipient. Relative standard deviation of all analytes was between 0.9% and 5.3% for intra-day precision and recovery ranged from 83.5% to 112.2%. The presented method was successfully implemented to study the manufacturing process and stability of the formulated lipid excipients during long-term storage and accelerated conditions. The formulation lipid yield was determined and found equal to 82.5%.
Collapse
|
21
|
Laghezza Masci V, Taddei A, Courant T, Tezgel O, Navarro F, Giorgi F, Mariolle D, Fausto A, Texier I. Characterization of Collagen/Lipid Nanoparticle–Curcumin Cryostructurates for Wound Healing Applications. Macromol Biosci 2019; 19:e1800446. [DOI: 10.1002/mabi.201800446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Valentina Laghezza Masci
- Department for Innovation in BiologicalAgrifood and Forestry SystemsTuscia University Largo dell'Universita 01100 Viterbo Italy
| | - Anna‐Rita Taddei
- Section of Electron MicroscopyTuscia University Largo dell'Universita 01100 Viterbo Italy
| | - Thomas Courant
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Ozgül Tezgel
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Fabrice Navarro
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Franco Giorgi
- University of Pisa Lungarno Antonio Pacinotti, 43 56126 Pisa Italy
| | - Denis Mariolle
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Anna‐Maria Fausto
- Department for Innovation in BiologicalAgrifood and Forestry SystemsTuscia University Largo dell'Universita 01100 Viterbo Italy
| | - Isabelle Texier
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| |
Collapse
|
22
|
Caputo F, Arnould A, Bacia M, Ling WL, Rustique E, Texier I, Mello AP, Couffin AC. Measuring Particle Size Distribution by Asymmetric Flow Field Flow Fractionation: A Powerful Method for the Preclinical Characterization of Lipid-Based Nanoparticles. Mol Pharm 2019; 16:756-767. [PMID: 30604620 PMCID: PMC6377179 DOI: 10.1021/acs.molpharmaceut.8b01033] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Particle size distribution and stability are key attributes for the evaluation of the safety and efficacy profile of medical nanoparticles (Med-NPs). Measuring particle average size and particle size distribution is a challenging task which requires the combination of orthogonal high-resolution sizing techniques, especially in complex biological media. Unfortunately, despite its limitations, due to its accessibility, low cost, and easy handling, batch mode dynamic light scattering (DLS) is still very often used as the only approach to measure particle size distribution in the nanomedicine field. In this work the use of asymmetric flow field flow fractionation coupled to multiangle light scattering and dynamic light scattering detectors (AF4-MALS-DLS) was evaluated as an alternative to batch mode DLS to measure the physical properties of lipid-based nanoparticles. A robust standard operating procedure (SOPs) developed by the Nanomedicine Characterization Laboratory (EUNCL) was presented and tested to assess size stability, batch to batch consistency, and the behavior of the lipid-based nanoparticles in plasma. Orthogonal sizing techniques, such as transmission electron microscopy (TEM) and particle tracking analysis (PTA) measurements, were performed to support the results. While batch mode DLS could be applied as a fast and simple method to provide a preliminary insight into the integrity and polydispersity of samples, it was unsuitable to resolve small modifications of the particle size distribution. The introduction of nanoparticle sorting by field-flow fractionation coupled to online DLS and MALS allowed assessment of batch to batch variability and changes in the size of the lipid nanoparticles induced by the interaction with serum proteins, which are critical for quality control and regulatory aspects. In conclusion, if a robust SOP is followed, AF4-MALS-DLS is a powerful method for the preclinical characterization of lipid-based nanoparticles.
Collapse
Affiliation(s)
- Fanny Caputo
- Univ. Grenoble Alpes, CEA , LETI , F-38000 Grenoble , France
| | | | - Maria Bacia
- Univ. Grenoble Alpes, CEA , CNRS, IBS , F-38000 Grenoble , France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA , CNRS, IBS , F-38000 Grenoble , France
| | - Emilie Rustique
- Univ. Grenoble Alpes, CEA , LETI , F-38000 Grenoble , France
| | - Isabelle Texier
- Univ. Grenoble Alpes, CEA , LETI , F-38000 Grenoble , France
| | - Adriele Prina Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine , Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin , Dublin 8 , Ireland.,AMBER Centre and CRANN Institute, Trinity College Dublin , Dublin 2 , Ireland
| | | |
Collapse
|
23
|
Matuszak J, Dörfler P, Lyer S, Unterweger H, Juenet M, Chauvierre C, Alaarg A, Franke D, Almer G, Texier I, Metselaar JM, Prassl R, Alexiou C, Mangge H, Letourneur D, Cicha I. Comparative analysis of nanosystems’ effects on human endothelial and monocytic cell functions. Nanotoxicology 2018; 12:957-974. [DOI: 10.1080/17435390.2018.1502375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jasmin Matuszak
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Philipp Dörfler
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Stefan Lyer
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Harald Unterweger
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Maya Juenet
- INSERM, U1148, LVTS, Paris Diderot University, X Bichat Hospital, Paris, France
| | - Cédric Chauvierre
- INSERM, U1148, LVTS, Paris Diderot University, X Bichat Hospital, Paris, France
| | - Amr Alaarg
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Isabelle Texier
- Grenoble Alpes Université, CEA-LETI MINATEC Campus, Grenoble, France
| | - Josbert M. Metselaar
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Experimental Molecular Imaging, RWTH University Clinic Aachen, Aachen, Germany
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Didier Letourneur
- INSERM, U1148, LVTS, Paris Diderot University, X Bichat Hospital, Paris, France
| | - Iwona Cicha
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
24
|
Wang H, Li X, Tse BWC, Yang H, Thorling CA, Liu Y, Touraud M, Chouane JB, Liu X, Roberts MS, Liang X. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 2018; 8:1227-1242. [PMID: 29507616 PMCID: PMC5835932 DOI: 10.7150/thno.22872] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022] Open
Abstract
Indocyanine green (ICG) is a near-infrared dye that has been used in the clinic for retinal angiography, and defining cardiovascular and liver function for over 50 years. Recently, there has been an increasing interest in the incorporation of ICG into nanoparticles (NPs) for cancer theranostic applications. Various types of ICG-incorporated NPs have been developed and strategically functionalised to embrace multiple imaging and therapeutic techniques for cancer diagnosis and treatment. This review systematically summaries the biodistribution of various types of ICG-incorporated NPs for the first time, and discusses the principles, opportunities, limitations, and application of ICG-incorporated NPs for cancer theranostics. We believe that ICG-incorporated NPs would be a promising multifunctional theranostic platform in oncology and facilitate significant advancements in this research-active area.
Collapse
Affiliation(s)
- Haolu Wang
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Xinxing Li
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, 415S, Fengyang Road, Shanghai, 200003, China
| | | | - Haotian Yang
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Camilla A. Thorling
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Yuxin Liu
- School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Margaux Touraud
- Department of Pharmacy, University of Rennes 1, Ille-et-Vilaine, Rennes, 35043, France
| | - Jean Batiste Chouane
- Department of Pharmacy, University of Rennes 1, Ille-et-Vilaine, Rennes, 35043, France
| | - Xin Liu
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Michael S. Roberts
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia
| | - Xiaowen Liang
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
25
|
Tezgel Ö, Szarpak-Jankowska A, Arnould A, Auzély-Velty R, Texier I. Chitosan-lipid nanoparticles (CS-LNPs): Application to siRNA delivery. J Colloid Interface Sci 2018; 510:45-56. [DOI: 10.1016/j.jcis.2017.09.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 01/13/2023]
|
26
|
Joseph J, B.N. VH, D. RD. Experimental optimization of Lornoxicam liposomes for sustained topical delivery. Eur J Pharm Sci 2018; 112:38-51. [DOI: 10.1016/j.ejps.2017.10.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023]
|
27
|
Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR dye: In vitro and in vivo evaluation. Int J Pharm 2017; 532:677-685. [DOI: 10.1016/j.ijpharm.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 11/17/2022]
|
28
|
Racine L, Guliyeva A, Wang I, Larreta-Garde V, Auzély-Velty R, Texier I. Time-Controllable Lipophilic-Drug Release System Designed by Loading Lipid Nanoparticles into Polysaccharide Hydrogels. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa Racine
- University of Grenoble Alpes; F-38000 Grenoble France
- CEA LETI MlNATEC Campus; Grenoble F-38054 France
- University of Grenoble Alpes; CERMAV-CNRS; Grenoble F-38000 France
| | - Aynur Guliyeva
- University of Grenoble Alpes; CERMAV-CNRS; Grenoble F-38000 France
| | - Irène Wang
- University of Grenoble Alpes; CNRS, LIPhy; Grenoble F-38000 France
| | - Véronique Larreta-Garde
- Laboratoire ERRMECe UFR Sciences et Techniques Université de Cergy-Pontoise; 2 avenue Adolphe Chauvin Pontoise Cedex BP222-95302 France
| | | | - Isabelle Texier
- University of Grenoble Alpes; F-38000 Grenoble France
- CEA LETI MlNATEC Campus; Grenoble F-38054 France
| |
Collapse
|
29
|
Varache M, Escudé M, Laffont C, Rustique E, Couffin AC. Development and validation of an HPLC-fluorescence method for the quantification of IR780-oleyl dye in lipid nanoparticles. Int J Pharm 2017; 532:779-789. [PMID: 28619458 DOI: 10.1016/j.ijpharm.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
A reversed-phase (RP) high-performance liquid chromatography (HPLC) method for the content determination of IR780-oleyl (IRO) dye in lipid nanoparticles was developed and validated. Chromatographic separation was performed on a RP C18 column with a gradient program of water and acetonitrile both with 0.1% (v/v) TFA, at a flow rate of 1.0mL/min and a total run of 21min. IRO dye detection was made by fluorescence at emission wavelength of 773nm (excitation wavelength: 744nm). According to ICH guidelines, the developed method was shown to be specific, linear in the range 3-8μg/mL (R2=0.9998), precise at the intra-day and inter-day levels as reflected by the coefficient of variation (CV≤1.98%) at three different concentrations (4, 6 and 8 μg/mL) and accurate, with recovery rates between 98.2-101.6% and 99.2-100.5%. The detection and quantitation limits were 0.41 and 1.24μg/mL, respectively. Stability studies of sample processing showed that IRO dye was stable after 24h in the autosampler or after three freeze/thaw cycles. Combined with fluorescence measurements, the developed method was successfully applied to optimize the loading capacity of IRO dye in the core of lipid nanoparticles.
Collapse
Affiliation(s)
- Mathieu Varache
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Marie Escudé
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Corentin Laffont
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Emilie Rustique
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Anne-Claude Couffin
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
30
|
Courant T, Bayon E, Reynaud-Dougier HL, Villiers C, Menneteau M, Marche PN, Navarro FP. Tailoring nanostructured lipid carriers for the delivery of protein antigens: Physicochemical properties versus immunogenicity studies. Biomaterials 2017; 136:29-42. [PMID: 28511142 DOI: 10.1016/j.biomaterials.2017.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/14/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022]
Abstract
New vaccine formulations are still highly anticipated in the near-future to face incoming health challenges, such as emergence or reemergence of severe infectious diseases, immunosenescence associated with elderly or the spread of pathogens resistant to antibiotics. In particular, new nanoparticle-based adjuvants are promising for sub-unit vaccines in order to elicit potent and long lasting immune responses with a better control on their safety. In this context, an innovative delivery system of protein antigens has been designed based on the chemical grafting of the antigen onto the shell of Nanostructured Lipid Carriers (NLC). By using the well-known ovalbumin (OVA) as model of protein antigen, we have compared the immunogenicity properties in mice of different formulations of NLC grafted with OVA, by studying the influence of two main parameters: the size (80 nm versus 120 nm) and the surface charge (anionic versus cationic). We have shown that all mice immunized with OVA delivered through NLC produced much higher antibody titers for all tested formulations as compared to that immunized with OVA or OVA formulated in Complete Freund Adjuvant (CFA, positive control). More interestingly, the 80 nm anionic lipid particles were the most efficient antigen carrier for eliciting higher humoral immune response, as well as cellular immune response characterized by a strong secretion of gamma interferon (IFN-γ). These results associated with the demonstrated non-immunogenicity of the NLC carrier by itself open new avenues for the design of smart sub-unit vaccines containing properly engineered lipid nanoparticles which could stimulate or orient the immune system in a specific way.
Collapse
Affiliation(s)
- Thomas Courant
- Univ. Grenoble Alpes, F-38000, Grenoble, France; CEA, LETI, MINATEC Campus, F-38054, Grenoble, France
| | - Emilie Bayon
- Univ. Grenoble Alpes, F-38000, Grenoble, France; CEA, LETI, MINATEC Campus, F-38054, Grenoble, France; INSERM U1209, IAB, F-38042, Grenoble, France
| | | | - Christian Villiers
- Univ. Grenoble Alpes, F-38000, Grenoble, France; INSERM U1209, IAB, F-38042, Grenoble, France
| | - Mathilde Menneteau
- Univ. Grenoble Alpes, F-38000, Grenoble, France; CEA, LETI, MINATEC Campus, F-38054, Grenoble, France
| | - Patrice N Marche
- Univ. Grenoble Alpes, F-38000, Grenoble, France; INSERM U1209, IAB, F-38042, Grenoble, France
| | - Fabrice P Navarro
- Univ. Grenoble Alpes, F-38000, Grenoble, France; CEA, LETI, MINATEC Campus, F-38054, Grenoble, France.
| |
Collapse
|
31
|
Ferrauto G, Carniato F, Di Gregorio E, Tei L, Botta M, Aime S. Large photoacoustic effect enhancement for ICG confined inside MCM-41 mesoporous silica nanoparticles. NANOSCALE 2017; 9:99-103. [PMID: 27934996 DOI: 10.1039/c6nr08282c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Indocyanine green was encapsulated inside the pores of pegylated amino-functionalized MCM-41 Mesoporous Silica Nanoparticles (ICG-MSNs). In addition to a greater stability and a decrease of toxicity, the photoacoustic effect of ICG-MSNs increases by nearly 400% compared to free ICG due to fluorescence quenching and high photothermal conversion of the encapsulated dyes. Upon i.v. administration in tumor-bearing mice, an overall photoacoustic enhancement of ca. 25% was measured in the tumor region.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Nicholls FJ, Liu JR, Modo M. A Comparison of Exogenous Labels for the Histological Identification of Transplanted Neural Stem Cells. Cell Transplant 2016; 26:625-645. [PMID: 27938486 DOI: 10.3727/096368916x693680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interpretation of cell transplantation experiments is often dependent on the presence of an exogenous label for the identification of implanted cells. The exogenous labels Hoechst 33342, 5-bromo-2'-deoxyuridine (BrdU), PKH26, and Qtracker were compared for their labeling efficiency, cellular effects, and reliability to identify a human neural stem cell (hNSC) line implanted intracerebrally into the rat brain. Hoechst 33342 (2 mg/ml) exhibited a delayed cytotoxicity that killed all cells within 7 days. This label was hence not progressed to in vivo studies. PKH26 (5 μM), Qtracker (15 nM), and BrdU (0.2 μM) labeled 100% of the cell population at day 1, although BrdU labeling declined by day 7. BrdU and Qtracker exerted effects on proliferation and differentiation. PKH26 reduced viability and proliferation at day 1, but this normalized by day 7. In an in vitro coculture assay, all labels transferred to unlabeled cells. After transplantation, the reliability of exogenous labels was assessed against the gold standard of a human-specific nuclear antigen (HNA) antibody. BrdU, PKH26, and Qtracker resulted in a very small proportion (<2%) of false positives, but a significant amount of false negatives (∼30%), with little change between 1 and 7 days. Exogenous labels can therefore be reliable to identify transplanted cells without exerting major cellular effects, but validation is required. The interpretation of cell transplantation experiments should be presented in the context of the label's limitations.
Collapse
|
33
|
Hinger D, Navarro F, Käch A, Thomann JS, Mittler F, Couffin AC, Maake C. Photoinduced effects of m-tetrahydroxyphenylchlorin loaded lipid nanoemulsions on multicellular tumor spheroids. J Nanobiotechnology 2016; 14:68. [PMID: 27604187 PMCID: PMC5015221 DOI: 10.1186/s12951-016-0221-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Photosensitizers are used in photodynamic therapy (PDT) to destruct tumor cells, however, their limited solubility and specificity hampers routine use, which may be overcome by encapsulation. Several promising novel nanoparticulate drug carriers including liposomes, polymeric nanoparticles, metallic nanoparticles and lipid nanocomposites have been developed. However, many of them contain components that would not meet safety standards of regulatory bodies and due to difficulties of the manufacturing processes, reproducibility and scale up procedures these drugs may eventually not reach the clinics. Recently, we have designed a novel lipid nanostructured carrier, namely Lipidots, consisting of nontoxic and FDA approved ingredients as promising vehicle for the approved photosensitizer m-tetrahydroxyphenylchlorin (mTHPC). RESULTS In this study we tested Lipidots of two different sizes (50 and 120 nm) and assessed their photodynamic potential in 3-dimensional multicellular cancer spheroids. Microscopically, the intracellular accumulation kinetics of mTHPC were retarded after encapsulation. However, after activation mTHPC entrapped into 50 nm particles destroyed cancer spheroids as efficiently as the free drug. Cell death and gene expression studies provide evidence that encapsulation may lead to different cell killing modes in PDT. CONCLUSIONS Since ATP viability assays showed that the carriers were nontoxic and that encapsulation reduced dark toxicity of mTHPC we conclude that our 50 nm photosensitizer carriers may be beneficial for clinical PDT applications.
Collapse
Affiliation(s)
- Doris Hinger
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Fabrice Navarro
- Technologies for Biology and Healthcare Division, CEA, LETI, MINATEC Campus, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), 38054, Grenoble, France.,Université Grenoble Alpes, 38000, Grenoble, France
| | - Andres Käch
- Center for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jean-Sébastien Thomann
- Technologies for Biology and Healthcare Division, CEA, LETI, MINATEC Campus, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), 38054, Grenoble, France.,Université Grenoble Alpes, 38000, Grenoble, France
| | - Frédérique Mittler
- Technologies for Biology and Healthcare Division, CEA, LETI, MINATEC Campus, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), 38054, Grenoble, France.,Université Grenoble Alpes, 38000, Grenoble, France
| | - Anne-Claude Couffin
- Technologies for Biology and Healthcare Division, CEA, LETI, MINATEC Campus, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), 38054, Grenoble, France.,Université Grenoble Alpes, 38000, Grenoble, France
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
34
|
Cabon Q, Sayag D, Texier I, Navarro F, Boisgard R, Virieux-Watrelot D, Ponce F, Carozzo C. Evaluation of intraoperative fluorescence imaging-guided surgery in cancer-bearing dogs: a prospective proof-of-concept phase II study in 9 cases. Transl Res 2016; 170:73-88. [PMID: 26746803 DOI: 10.1016/j.trsl.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 01/26/2023]
Abstract
The objective was to prospectively evaluate the application of intraoperative fluorescence imaging (IOFI) in the surgical excision of malignant masses in dogs, using a novel lipid nanoparticle contrast agent. Dogs presenting with spontaneous soft-tissue sarcoma or subcutaneous tumors were prospectively enrolled. Clinical staging and whole-body computed tomography (CT) were performed. All the dogs received an intravenous injection of dye-loaded lipid nanoparticles, LipImage 815. Wide or radical resection was realized after CT examination. Real-time IOFI was performed before skin incision and after tumor excision. In cases of radical resection, the lymph nodes (LNs) were imaged. The margin/healthy tissues fluorescence ratio or LN/healthy tissues fluorescence ratio was measured and compared with the histologic margins or LN status. Nine dogs were included. Limb amputation was performed in 3 dogs, and wide resection in 6. No adverse effect was noted. Fluorescence was observed in all 9 of the tumors. The margins were clean in 5 of 6 dogs after wide surgical resection, and the margin/healthy tissues fluorescence ratio was close to 1.0 in all these dogs. Infiltrated margins were observed in 1 case, with a margin/healthy tissues fluorescence ratio of 3.2. Metastasis was confirmed in 2 of 3 LNs, associated with LN/healthy tissues fluorescence ratios of 2.1 and 4.2, whereas nonmetastatic LN was associated with a ratio of 1.0. LipImage 815 used as a contrast agent during IOFI seemed to allow for good discrimination between tumoral and healthy tissues. Future studies are scheduled to evaluate the sensitivity and specificity of IOFI using LipImage 815 as a tracer.
Collapse
Affiliation(s)
- Quentin Cabon
- From the Surgery and Anesthesia Unit, VetAgro-Sup Campus Vétérinaire de Lyon, Marcy l'Etoile, France.
| | - David Sayag
- Clinical Oncology Department, Small Animal Internal Medicine Unit, VetAgro-Sup Campus Vétérinaire de Lyon, Marcy l'Etoile, France
| | - Isabelle Texier
- Université Grenoble Alpes, Grenoble, France; CEA-LETI MINATEC/ DTBS, Grenoble, France.
| | - Fabrice Navarro
- Université Grenoble Alpes, Grenoble, France; CEA-LETI MINATEC/ DTBS, Grenoble, France
| | | | | | - Frédérique Ponce
- Clinical Oncology Department, Small Animal Internal Medicine Unit, VetAgro-Sup Campus Vétérinaire de Lyon, Marcy l'Etoile, France
| | - Claude Carozzo
- From the Surgery and Anesthesia Unit, VetAgro-Sup Campus Vétérinaire de Lyon, Marcy l'Etoile, France
| |
Collapse
|
35
|
Rosenholm JM, Gulin-Sarfraz T, Mamaeva V, Niemi R, Özliseli E, Desai D, Antfolk D, von Haartman E, Lindberg D, Prabhakar N, Näreoja T, Sahlgren C. Prolonged Dye Release from Mesoporous Silica-Based Imaging Probes Facilitates Long-Term Optical Tracking of Cell Populations In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1578-1592. [PMID: 26807551 DOI: 10.1002/smll.201503392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Nanomedicine is gaining ground worldwide in therapy and diagnostics. Novel nanoscopic imaging probes serve as imaging tools for studying dynamic biological processes in vitro and in vivo. To allow detectability in the physiological environment, the nanostructure-based probes need to be either inherently detectable by biomedical imaging techniques, or serve as carriers for existing imaging agents. In this study, the potential of mesoporous silica nanoparticles carrying commercially available fluorochromes as self-regenerating cell labels for long-term cellular tracking is investigated. The particle surface is organically modified for enhanced cellular uptake, the fluorescence intensity of labeled cells is followed over time both in vitro and in vivo. The particles are not exocytosed and particles which escaped cells due to cell injury or death are degraded and no labeling of nontargeted cell populations are observed. The labeling efficiency is significantly improved as compared to that of quantum dots of similar emission wavelength. Labeled human breast cancer cells are xenotransplanted in nude mice, and the fluorescent cells can be detected in vivo for a period of 1 month. Moreover, ex vivo analysis reveals fluorescently labeled metastatic colonies in lymph node and rib, highlighting the capability of the developed probes for tracking of metastasis.
Collapse
Affiliation(s)
- Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Tina Gulin-Sarfraz
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
- Laboratory of Physical Chemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500, Turku, Finland
| | - Veronika Mamaeva
- Department of Clinical Science, University of Bergen, Norway
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FI-20521, Turku, Finland
| | - Rasmus Niemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FI-20521, Turku, Finland
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Ezgi Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Diti Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Daniel Antfolk
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FI-20521, Turku, Finland
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Eva von Haartman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
- Laboratory of Physical Chemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500, Turku, Finland
| | - Desiré Lindberg
- Laboratory of Physical Chemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500, Turku, Finland
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
- Laboratory of Biophysics, Faculty of Medicine, University of Turku, FI-20520, Turku, Finland
| | - Tuomas Näreoja
- Laboratory of Biophysics, Faculty of Medicine, University of Turku, FI-20520, Turku, Finland
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FI-20521, Turku, Finland
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Technical University of Eindhoven, 2612, Eindhoven, The Netherlands
| |
Collapse
|
36
|
Matuszak J, Baumgartner J, Zaloga J, Juenet M, da Silva AE, Franke D, Almer G, Texier I, Faivre D, Metselaar JM, Navarro FP, Chauvierre C, Prassl R, Dézsi L, Urbanics R, Alexiou C, Mangge H, Szebeni J, Letourneur D, Cicha I. Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing. Nanomedicine (Lond) 2016; 11:597-616. [DOI: 10.2217/nnm.15.216] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: We report the physicochemical analysis of nanosystems intended for cardiovascular applications and their toxicological characterization in static and dynamic cell culture conditions. Methods: Size, polydispersity and ζ-potential were determined in 10 nanoparticle systems including liposomes, lipid nanoparticles, polymeric and iron oxide nanoparticles. Nanoparticle effects on primary human endothelial cell viability were monitored using real-time cell analysis and live-cell microscopy in static conditions, and in a flow model of arterial bifurcations. Results & conclusions: The majority of tested nanosystems were well tolerated by endothelial cells up to the concentration of 100 μg/ml in static, and up to 400 μg/ml in dynamic conditions. Pilot experiments in a pig model showed that intravenous administration of liposomal nanoparticles did not evoke the hypersensitivity reaction. These findings are of importance for future clinical use of nanosystems intended for intravascular applications.
Collapse
Affiliation(s)
- Jasmin Matuszak
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| | - Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Science Park Golm, Potsdam, Germany
| | - Jan Zaloga
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| | - Maya Juenet
- Inserm U1148, LVTS, Paris Diderot University, Paris 13 University, Sorbonne Paris Cité, X. Bichat Hospital, Paris, France
| | - Acarília Eduardo da Silva
- Department of Targeted Therapeutics, MIRA Institute, University of Twente, Enschede, The Netherlands
| | | | - Gunter Almer
- Clinical Institute of Medical & Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Isabelle Texier
- CEA-LETI MINATEC/DTBS, Université Grenoble Alpes, Grenoble, France
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Science Park Golm, Potsdam, Germany
| | - Josbert M Metselaar
- Department of Targeted Therapeutics, MIRA Institute, University of Twente, Enschede, The Netherlands
- Department of Experimental Molecular Imaging, University Clinic & Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | | | - Cédric Chauvierre
- Inserm U1148, LVTS, Paris Diderot University, Paris 13 University, Sorbonne Paris Cité, X. Bichat Hospital, Paris, France
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - László Dézsi
- Nanomedicine Research & Education Center, Semmelweis University, Budapest, Hungary
| | | | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| | - Harald Mangge
- Clinical Institute of Medical & Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - János Szebeni
- Nanomedicine Research & Education Center, Semmelweis University, Budapest, Hungary
- SeroScience Ltd., Budapest, Hungary
| | - Didier Letourneur
- Inserm U1148, LVTS, Paris Diderot University, Paris 13 University, Sorbonne Paris Cité, X. Bichat Hospital, Paris, France
| | - Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| |
Collapse
|
37
|
Abstract
This article gives an overview of the various kinds of nanoparticles (NPs) that are widely used for purposes of fluorescent imaging, mainly of cells and tissues. Following an introduction and a discussion of merits of fluorescent NPs compared to molecular fluorophores, labels and probes, the article assesses the kinds and specific features of nanomaterials often used in bioimaging. These include fluorescently doped silicas and sol-gels, hydrophilic polymers (hydrogels), hydrophobic organic polymers, semiconducting polymer dots, quantum dots, carbon dots, other carbonaceous nanomaterials, upconversion NPs, noble metal NPs (mainly gold and silver), various other nanomaterials, and dendrimers. Another section covers coatings and methods for surface modification of NPs. Specific examples on the use of nanoparticles in (a) plain fluorescence imaging of cells, (b) targeted imaging, (c) imaging of chemical species, and (d) imaging of temperature are given next. A final section covers aspects of multimodal imaging (such as fluorescence/nmr), imaging combined with drug and gene delivery, or imaging combined with therapy or diagnosis. The electronic supplementary information (ESI) gives specific examples for materials and methods used in imaging, sensing, multimodal imaging and theranostics such as imaging combined with drug delivery or photodynamic therapy. The article contains 273 references in the main part, and 157 references in the ESI.
Collapse
Affiliation(s)
- Otto S Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
38
|
Sayag D, Cabon Q, Texier I, Navarro FP, Boisgard R, Virieux-Watrelot D, Carozzo C, Ponce F. Phase-0/phase-I study of dye-loaded lipid nanoparticles for near-infrared fluorescence imaging in healthy dogs. Eur J Pharm Biopharm 2016; 100:85-93. [PMID: 26777342 DOI: 10.1016/j.ejpb.2016.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/28/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023]
Abstract
Near-infrared (NIR) fluorescence imaging using FDA-approved indocyanine green (ICG) has been the subject of numerous studies during the past few years. It could constitute a potentially exciting new paradigm shift in veterinary oncology, especially to develop in vivo fluorescence imaging diagnostics and surgery guidance methods. The objective of this study was to evaluate the pharmacologic and toxicological characteristics in healthy beagle dogs of LipImage™ 815, a formulation made of NIR-dye-loaded lipid nanoparticles. The initial dosage for the evaluation of biodistribution was extrapolated from data in mice and then adapted to define the more adapted dose (MAD) according to the fluorescence results obtained in 5 dogs using a Fluobeam® 800 imaging device (phase 0 study). A single dose acute toxicity study was then performed (3 dogs, phase I study). Before the systemic administration of LipImage™ 815, the dogs presented a very mild residual fluorescence, particularly in the liver and kidneys. After injection, the plasma fluorescence continuously decreased, and the signal was relatively homogeneously distributed throughout the different organs, though more pronounced in the liver and to a lesser extent in the steroid-rich organs (adrenal, ovaries), intestines, lymph nodes and kidneys. A MAD of 2.0μg/kg was found. No evidence of acute or delayed general, hepatic, renal or hematologic toxicity was observed at 1-fold, 5-fold or 10-fold MAD. The results of this phase-0/phase-I study showed that an optimal dosage of LipImage™ 815 of 2.0μg/kg allowed the achievement of a fluorescence signal suitable for surgery guidance application without any acute side effects.
Collapse
Affiliation(s)
- David Sayag
- Clinical Oncology Department, Small Animal Internal Medicine Unit, VetAgro Sup Campus Vétérinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Quentin Cabon
- Surgery and Anesthesia Unit, VetAgro Sup Campus Vétérinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France
| | - Isabelle Texier
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, MINATEC Campus, Technologies for Healthcare and Biology Division, 17 rue des Martyrs, F-38054 Grenoble, France.
| | - Fabrice P Navarro
- Univ. Grenoble Alpes, F-38000 Grenoble, France; CEA LETI, MINATEC Campus, Technologies for Healthcare and Biology Division, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Raphaël Boisgard
- CEA I2BM SHFJ INSERM U1023, 4 place du Général, Leclerc, 91400 Orsay, France
| | - Dorothée Virieux-Watrelot
- Pathology Unit, VetAgro Sup Campus Vétérinaire de Lyon, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France; ICE 2011-03-101 Research Unit, VetAgro Sup Campus Vétérinaire de Lyon, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - Claude Carozzo
- Surgery and Anesthesia Unit, VetAgro Sup Campus Vétérinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; ICE 2011-03-101 Research Unit, VetAgro Sup Campus Vétérinaire de Lyon, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - Frédérique Ponce
- Clinical Oncology Department, Small Animal Internal Medicine Unit, VetAgro Sup Campus Vétérinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; ICE 2011-03-101 Research Unit, VetAgro Sup Campus Vétérinaire de Lyon, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France
| |
Collapse
|
39
|
Garcia-Amorós J, Tang S, Zhang Y, Thapaliya ER, Raymo FM. Self-Assembling Nanoparticles of Amphiphilic Polymers for In Vitro and In Vivo FRET Imaging. Top Curr Chem (Cham) 2016; 370:29-59. [DOI: 10.1007/978-3-319-22942-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Mérian J, Boisgard R, Bayle PA, Bardet M, Tavitian B, Texier I. Comparative biodistribution in mice of cyanine dyes loaded in lipid nanoparticles. Eur J Pharm Biopharm 2015; 93:1-10. [PMID: 25805562 DOI: 10.1016/j.ejpb.2015.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/14/2022]
Abstract
Two near infrared cyanine dyes, DiD (1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine perchlorate) and ICG (Indocyanine Green) were loaded in lipid nanoparticles (LNP). DiD-LNP and ICG-LNP presented similar physicochemical characteristics (hydrodynamic diameter, polydispersity, zeta potential), encapsulation efficiency, and colloidal stability when stored in PBS buffer. However, whereas DiD had similar biodistribution than cholesteryl-1-(14)C-oleate ([(14)C]CHO, a constituent of the nanoparticle used as a reference radiotracer), ICG displayed a different biodistribution pattern, similar to that of the free dye, indicative of its immediate leakage from the nanovector after blood injection. NMR spectroscopy using Proton NOE (Nuclear Overhauser Effect) measurements showed that the localization of the dye in the lipid nanoparticles was slightly different: ICG, more amphiphilic than DiD, was found both inside the lipid core and at particle interface, whereas DiD, more hydrophobic, appeared exclusively located inside the particle core. The ICG release rate from the particles was 7% per 1 month under storage conditions (4 °C, dark, 10% of lipids), whereas no leakage could be detected for DiD. ICG leakage increased considerably in the presence of BSA 40 g/L (45% leakage in 24h at 100 mg/mL of lipids), because of the high affinity of the fluorophore for plasma proteins. On the contrary, no DiD leakage was observed, until high dilution of the nanoparticles which triggered their dissociation (45% leakage in 24h at 1 mg/mL of lipids). Altogether, the subtle difference in dye localization into the nanoparticles, the partial dissociation of the LNP in diluted media, and more importantly the high ICG affinity for plasma proteins, accounted for the differences observed in the fluorescence biodistribution after tail vein injection of the dye-loaded nanoparticles.
Collapse
Affiliation(s)
- Juliette Mérian
- Université Grenoble Alpes, F-38000 Grenoble, France; CEA-LETI MINATEC/ DTBS, 17 avenue des Martyrs, F-38054 Grenoble Cedex 9, France; SHFJ, CEA Orsay, 4 place Général Leclerc, 91401 Orsay Cedex, France; INSERM UMR 970, PARCC, Université Paris Descartes, Sorbonne Paris Cité, France; Assistance Publique des Hopitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Raphaël Boisgard
- SHFJ, CEA Orsay, 4 place Général Leclerc, 91401 Orsay Cedex, France
| | - Pierre-Alain Bayle
- Université Grenoble Alpes, INAC-SCIB, LRM, F-38000 Grenoble, France; CEA, INAC-SCIB, LRM, F-38054 Grenoble, France
| | - Michel Bardet
- Université Grenoble Alpes, INAC-SCIB, LRM, F-38000 Grenoble, France; CEA, INAC-SCIB, LRM, F-38054 Grenoble, France
| | - Bertrand Tavitian
- INSERM UMR 970, PARCC, Université Paris Descartes, Sorbonne Paris Cité, France; Assistance Publique des Hopitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Isabelle Texier
- Université Grenoble Alpes, F-38000 Grenoble, France; CEA-LETI MINATEC/ DTBS, 17 avenue des Martyrs, F-38054 Grenoble Cedex 9, France.
| |
Collapse
|
41
|
Gravier J, Sancey L, Hirsjärvi S, Rustique E, Passirani C, Benoît JP, Coll JL, Texier I. FRET imaging approaches for in vitro and in vivo characterization of synthetic lipid nanoparticles. Mol Pharm 2014; 11:3133-44. [PMID: 25098740 DOI: 10.1021/mp500329z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DiI and DiD, two fluorophores able to interact by FRET (Förster resonance energy transfer), were coencapsulated in the core of lipid nanocapsules (LNCs) and nanoemulsions (LNEs), lipophilic reservoirs for the delivery of drugs. The ability of FRET imaging to provide information on the kinetics of dissociation of the nanoparticles in the presence of bovine serum albumin (BSA) or whole serum, or after incubation with cancer cells, and after systemic administration in tumor-bearing mice, was studied. Both microscopic and macroscopic imaging was performed to determine the behavior of the nanostructures in a biological environment. When 2 mg/mL FRET LNEs or LNCs were dispersed in buffer, in the presence of unloaded nanoparticles, BSA, or in whole serum, the presence of serum was the most active in destroying the particles. This occurred immediately with a diminution of 20% of FRET, then slowly, ending up with still 30% intact nanoparticles at 24 h. LNCs were internalized rapidly in cultured cells with the FRET signal decreasing within the first minutes of incubation, and then a plateau was reached and LNCs remained intact during 3 h. In contrast, LNEs were poorly internalized and were rapidly dissociated after internalization. Following their iv injection, LNCs appeared very stable in subcutaneous tumors implanted in mice. Intact particles were found using microscopic FRET determination on tumor sections 24 h after injection, that correlated well with the 8% calculated noninvasively on live animals. FRET investigations showed the potential to determine valid and reliable information about in vitro and in vivo behavior of nanoparticles.
Collapse
|
42
|
Lainé AL, Gravier J, Henry M, Sancey L, Béjaud J, Pancani E, Wiber M, Texier I, Coll JL, Benoit JP, Passirani C. Conventional versus stealth lipid nanoparticles: formulation and in vivo fate prediction through FRET monitoring. J Control Release 2014; 188:1-8. [PMID: 24878182 DOI: 10.1016/j.jconrel.2014.05.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/27/2023]
Abstract
The determination of the nanocarrier fate in preclinical models is required before any translation from laboratory to clinical trials. Modern fluorescent imaging techniques have gained considerable advances becoming a powerful technology for non-invasive visualization in living subjects. Among them, Forster (fluorescence) resonance energy transfer (FRET) is a particular fluorescence imaging which involves energy transfer between 2 fluorophores in a distance-dependent manner. Considering this feature, the encapsulation of an acceptor/donor pair in lipid nanoparticles (LNEs: lipid nanoemulsions, LNCs: lipid nanocapsules) allowed the carrier integrity to be tracked. Accordingly, we used this FRET technique to evaluate the behavior of LNEs, conventional LNCs and newly designed stealth LNCs. After the development through a one-step (OS) PEGylation process of these stealth LNCs (OS LNCs), in vitro guest exchange dynamics and release kinetics were evaluated for both LNC formulations. We thereafter assessed in vivo biodistribution of all types of lipid nanoparticles. Results showed enhanced stability of encapsulation in OS LNCs in comparison to conventional LNCs. Additionally, the presence of the long PEG chains on the lipid nanoparticle surface altered the biodistribution pattern. Despite different release kinetic profiles, OS LNCs and LNEs showed extended blood circulation time associated with a good structure stability over several hours after intravenous injection.
Collapse
Affiliation(s)
- A-L Lainé
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - J Gravier
- INSERM U823, Institut Albert Bonniot, F-38 706 Grenoble, France; Université Joseph Fourier, F-38706 Grenoble, France; CEA, LETI, DTBS, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - M Henry
- INSERM U823, Institut Albert Bonniot, F-38 706 Grenoble, France; Université Joseph Fourier, F-38706 Grenoble, France
| | - L Sancey
- INSERM U823, Institut Albert Bonniot, F-38 706 Grenoble, France; Université Joseph Fourier, F-38706 Grenoble, France
| | - J Béjaud
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - E Pancani
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - M Wiber
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - I Texier
- CEA, LETI, DTBS, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - J-L Coll
- INSERM U823, Institut Albert Bonniot, F-38 706 Grenoble, France; Université Joseph Fourier, F-38706 Grenoble, France
| | - J-P Benoit
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - C Passirani
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France.
| |
Collapse
|
43
|
Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:161-9. [DOI: 10.1016/j.jphotobiol.2013.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022]
|
44
|
Valetti S, Mura S, Stella B, Couvreur P. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. J Nanobiotechnology 2013; 11 Suppl 1:S6. [PMID: 24564841 PMCID: PMC4029540 DOI: 10.1186/1477-3155-11-s1-s6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field.
Collapse
|
45
|
Mérian J, Boisgard R, Decleves X, Thezé B, Texier I, Tavitian B. Synthetic lipid nanoparticles targeting steroid organs. J Nucl Med 2013; 54:1996-2003. [PMID: 24071507 DOI: 10.2967/jnumed.113.121657] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Lipidots are original nanoparticulate lipid delivery vectors for drugs and contrast agents made from materials generally regarded as safe. Here, we characterized the in vivo stability, biodistribution, and pharmacokinetics of lipidots. METHODS Lipidots 55 nm in diameter and coated with a phospholipid/poly(ethyleneglycol) surfactant shell were triply labeled with (3)H-cholesteryl-hexadecyl-ether, cholesteryl-(14)C-oleate, and the 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine infrared fluorescent dye and injected intravenously into immunocompetent Friend virus B-type mice. The pharmacokinetics and biodistribution of lipidots were analyzed quantitatively in serial samples of blood and tissue and with in vivo optical imaging and were refined by microscopic examination of selected target tissues. RESULTS The plasmatic half-life of lipidots was approximately 30 min. Radioactive and fluorescent tracers displayed a similar nanoparticle-driven biodistribution, indicative of the lipidots' integrity during the first hours after injection. Lipidots distributed in the liver and, surprisingly, in the steroid-rich organs adrenals and ovaries, but not in the spleen. This tropism was confirmed at the microscopic level by histologic detection of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine. Nanoparticle loading with cholesterol derivatives increased accumulation in ovaries in a dose-dependent manner. CONCLUSION This previously unreported distribution pattern is specific to lipidots and attributed to their nanometric size and composition, conferring on them a lipoproteinlike behavior. The affinity of lipidots for steroid hormone-rich areas is of interest to address drugs and contrast agents to lipoprotein-receptor-overexpressing cancer cells found in hormone-dependent tumors.
Collapse
|
46
|
Wen CJ, Sung CT, Aljuffali IA, Huang YJ, Fang JY. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes. NANOTECHNOLOGY 2013; 24:325101. [PMID: 23867977 DOI: 10.1088/0957-4484/24/32/325101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92–134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g(−1); it could be increased to 50 nmol g(−1) after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches.
Collapse
Affiliation(s)
- Chih-Jen Wen
- School of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 2013; 122:598-607. [PMID: 23741013 DOI: 10.1182/blood-2012-12-472142] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lymphatic vessels are critical for the maintenance of tissue fluid homeostasis and their dysfunction contributes to several human diseases. The activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β family type 1 receptor that is expressed on both blood and lymphatic endothelial cells (LECs). Its high-affinity ligand, bone morphogenetic protein 9 (BMP9), has been shown to be critical for retinal angiogenesis. The aim of this work was to investigate whether BMP9 could play a role in lymphatic development. We found that Bmp9 deficiency in mice causes abnormal lymphatic development. Bmp9-knockout (KO) pups presented hyperplastic mesenteric collecting vessels that maintained LYVE-1 expression. In accordance with this result, we found that BMP9 inhibited LYVE-1 expression in LECs in an ALK1-dependent manner. Bmp9-KO pups also presented a significant reduction in the number and in the maturation of mesenteric lymphatic valves at embryonic day 18.5 and at postnatal days 0 and 4. Interestingly, the expression of several genes known to be involved in valve formation (Foxc2, Connexin37, EphrinB2, and Neuropilin1) was upregulated by BMP9 in LECS. Finally, we demonstrated that Bmp9-KO neonates and adult mice had decreased lymphatic draining efficiency. These data identify BMP9 as an important extracellular regulator in the maturation of the lymphatic vascular network affecting valve development and lymphatic vessel function.
Collapse
|
48
|
Atrux-Tallau N, Delmas T, Han SH, Kim JW, Bibette J. Skin cell targeting with self-assembled ligand addressed nanoemulsion droplets. Int J Cosmet Sci 2013; 35:310-8. [DOI: 10.1111/ics.12044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/13/2013] [Indexed: 01/10/2023]
Affiliation(s)
| | - T. Delmas
- Capsum SAS; Heliopolis Batiment C, 3 allée des Maraichers; Marseille; 13013; France
| | - S.-H. Han
- Amore-Pacific Co. R&D Center; 314-1, Bora-dong, Giheung-gu, Yongin-si; Gyeonggi-do; 449-729; South Korea
| | - J.-W. Kim
- Department of Applied Chemistry; Hanyang University; 55 Hanyangdaehak-ro; Sangnok-gu; Ansan; Gyeonggi-do 426-791; South Korea
| | - J. Bibette
- Ecole Superieure de Physique et de Chimie Industrielles; ParisTech, Laboratoire Colloïdes et Matériaux Divisés; Université Pierre et Marie Curie; Paris 06, UMR 7195, 10 Rue Vauquelin; Paris; 75231; France
| |
Collapse
|
49
|
Location-dependent coronary artery diffusive and convective mass transport properties of a lipophilic drug surrogate measured using nonlinear microscopy. Pharm Res 2012; 30:1147-60. [PMID: 23224981 DOI: 10.1007/s11095-012-0950-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Arterial wall mass transport properties dictate local distribution of biomolecules or locally delivered dugs. Knowing how these properties vary between coronary artery locations could provide insight into how therapy efficacy is altered between arterial locations. METHODS We introduced an indocarbocyanine drug surrogate to the lumens of left anterior descending and right coronary (LADC; RC) arteries from pigs with or without a pressure gradient. Interstitial fluorescent intensity was measured on live samples with multiphoton microscopy. We also measured binding to porcine coronary SMCs in monoculture. RESULTS Diffusive transport constants peaked in the middle sections of the LADC and RC arteries by 2.09 and 2.04 times, respectively, compared to the proximal and distal segments. There was no statistical difference between the average diffusivity value between LADC and RC arteries. The convection coefficients had an upward trend down each artery, with the RC being higher than the LADC by 3.89 times. CONCLUSIONS This study demonstrates that the convective and diffusive transport of lipophilic molecules changes between the LADC and the RC arteries as well as along their length. These results may have important implications in optimizing drug delivery for the treatment of coronary artery disease.
Collapse
|
50
|
Klymchenko AS, Roger E, Anton N, Anton H, Shulov I, Vermot J, Mely Y, Vandamme TF. Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Adv 2012; 2:11876-11886. [PMID: 29242742 PMCID: PMC5726488 DOI: 10.1039/c2ra21544f] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Dye-loaded lipid nano-droplets present an attractive alternative to inorganic nanoparticles, as they are composed of non-toxic biodegradable materials and easy to prepare. However, to achieve high fluorescence brightness, the nano-droplets have to be heavily loaded with the dyes avoiding fluorescence self-quenching and release (leakage) of the encapsulated dyes from the nano-droplets in biological media. In the present work, we have designed highly lipophilic fluorescent derivatives of 3-alkoxyflavone (F888) and Nile Red (NR668) that can be encapsulated in the lipophilic core of stable nano-emulsion droplets at exceptionally high concentrations in the oil core, i.e. up to 170 mM and 17 mM, respectively, corresponding to ~ 830 and 80 dyes per 40-nm droplet. Despite this high loading, these dyes keep high fluorescence quantum yield and thus, provide high nano-droplet brightness, probably due to their bulky structure preventing self-quenching. Moreover, simultaneous encapsulation of both dyes at high concentrations in single nano-droplets allows observation of FRET. FRET and fluorescence correlation spectroscopy (FCS) studies showed that NR668 release in the serum-containing medium is very slow, while the reference hydrophobic dye Nile Red leaks immediately. This drastic difference in the leakage profile between NR668 and Nile Red was confirmed by in vitro cellular studies as well as by in vivo angiography imaging on zebrafish model, where the NR668-loaded nano-droplets remained in the blood circulation, while the parent Nile Red leaked rapidly from the droplets distributing all over the animal body. This study suggests new molecular design strategies for obtaining bright nano-droplets without dye leakage and their use as efficient and stable optical contrast agents in vitro and in vivo.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France
| | - Emilie Roger
- Laboratoire de Conception et Application de Molecules Bioactives, UMR CNRS 7199, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France
| | - Nicolas Anton
- Laboratoire de Conception et Application de Molecules Bioactives, UMR CNRS 7199, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France
| | - Halina Anton
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U964, CNRS UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 ILLKIRCH, France
| | - Ievgen Shulov
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France
| | - Julien Vermot
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U964, CNRS UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 ILLKIRCH, France
| | - Yves Mely
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France
| | - Thierry F. Vandamme
- Laboratoire de Conception et Application de Molecules Bioactives, UMR CNRS 7199, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France
| |
Collapse
|