1
|
Yeung MK, Chu VW. Viewing neurovascular coupling through the lens of combined EEG-fNIRS: A systematic review of current methods. Psychophysiology 2022; 59:e14054. [PMID: 35357703 DOI: 10.1111/psyp.14054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
Neurovascular coupling is a key physiological mechanism that occurs in the healthy human brain, and understanding this process has implications for understanding the aging and neuropsychiatric populations. Combined electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) has emerged as a promising, noninvasive tool for probing neurovascular interactions in humans. However, the utility of this approach critically depends on the methodological quality used for multimodal integration. Despite a growing number of combined EEG-fNIRS applications reported in recent years, the methodological rigor of past studies remains unclear, limiting the accurate interpretation of reported findings and hindering the translational application of this multimodal approach. To fill this knowledge gap, we critically evaluated various methodological aspects of previous combined EEG-fNIRS studies performed in healthy individuals. A literature search was conducted using PubMed and PsycINFO on June 28, 2021. Studies involving concurrent EEG and fNIRS measurements in awake and healthy individuals were selected. After screening and eligibility assessment, 96 studies were included in the methodological evaluation. Specifically, we critically reviewed various aspects of participant sampling, experimental design, signal acquisition, data preprocessing, outcome selection, data analysis, and results presentation reported in these studies. Altogether, we identified several notable strengths and limitations of the existing EEG-fNIRS literature. In light of these limitations and the features of combined EEG-fNIRS, recommendations are made to improve and standardize research practices to facilitate the use of combined EEG-fNIRS when studying healthy neurovascular coupling processes and alterations in neurovascular coupling among various populations.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Vivian W Chu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
2
|
Lo Y, Wee S, Zhao Y, Narasimhalu K. Interictal hemodynamic abnormality during motor activation in sporadic hemiplegic migraine: An explorative study. J Neurol Sci 2020; 418:117148. [DOI: 10.1016/j.jns.2020.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
|
3
|
Bae S, Kim KY. Dual-afferent sensory input training for voluntary movement after stroke: A pilot randomized controlled study. NeuroRehabilitation 2017; 40:293-300. [DOI: 10.3233/nre-161417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Nambu I, Ozawa T, Sato T, Aihara T, Fujiwara Y, Otaka Y, Osu R, Izawa J, Wada Y. Transient increase in systemic interferences in the superficial layer and its influence on event-related motor tasks: a functional near-infrared spectroscopy study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:35008. [PMID: 28294282 DOI: 10.1117/1.jbo.22.3.035008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/24/2017] [Indexed: 05/07/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a widely utilized neuroimaging tool in fundamental neuroscience research and clinical investigation. Previous research has revealed that task-evoked systemic artifacts mainly originating from the superficial-tissue may preclude the identification of cerebral activation during a given task. We examined the influence of such artifacts on event-related brain activity during a brisk squeezing movement. We estimated task-evoked superficial-tissue hemodynamics from short source–detector distance channels (15 mm) by applying principal component analysis. The estimated superficial-tissue hemodynamics exhibited temporal profiles similar to the canonical cerebral hemodynamic model. Importantly, this task-evoked profile was also observed in data from a block design motor experiment, suggesting a transient increase in superficial-tissue hemodynamics occurs following motor behavior, irrespective of task design. We also confirmed that estimation of event-related cerebral hemodynamics was improved by a simple superficial-tissue hemodynamic artifact removal process using 15-mm short distance channels, compared to the results when no artifact removal was applied. Thus, our results elucidate task design-independent characteristics of superficial-tissue hemodynamics and highlight the need for the application of superficial-tissue hemodynamic artifact removal methods when analyzing fNIRS data obtained during event-related motor tasks.
Collapse
Affiliation(s)
- Isao Nambu
- Nagaoka University of Technology, Graduate School of Engineering, Nagaoka, Japan
| | - Takuya Ozawa
- Nagaoka University of Technology, Graduate School of Engineering, Nagaoka, JapanbATR Brain Information Communication Research Lab Group, Keihanna-Science City, Kyoto, Japan
| | - Takanori Sato
- Nagaoka University of Technology, Graduate School of Engineering, Nagaoka, Japan
| | - Takatsugu Aihara
- ATR Brain Information Communication Research Lab Group, Keihanna-Science City, Kyoto, Japan
| | - Yusuke Fujiwara
- ATR Brain Information Communication Research Lab Group, Keihanna-Science City, Kyoto, Japan
| | - Yohei Otaka
- ATR Brain Information Communication Research Lab Group, Keihanna-Science City, Kyoto, JapancTokyo Bay Rehabilitation Hospital, Narashino, Chiba, JapandKeio University School of Medicine, Department of Rehabilitation Medicine, Shinjuku-ku, Tokyo, Japan
| | - Rieko Osu
- ATR Brain Information Communication Research Lab Group, Keihanna-Science City, Kyoto, Japan
| | - Jun Izawa
- ATR Brain Information Communication Research Lab Group, Keihanna-Science City, Kyoto, JapaneUniversity of Tsukuba, Faculty of Engineering, Information and System, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Wada
- Nagaoka University of Technology, Graduate School of Engineering, Nagaoka, Japan
| |
Collapse
|
5
|
Sato K, Fukuda M, Sato Y, Hiraishi T, Takao T, Fujii Y. Cortico-cortical evoked hemodynamic responses in human language systems using intraoperative near-infrared spectroscopy during direct cortical stimulation. Neurosci Lett 2016; 630:136-140. [PMID: 27453057 DOI: 10.1016/j.neulet.2016.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Understanding of cortico-cortical activity in eloquent areas intraoperatively is crucial for neurosurgical procedures. Here, we used intraoperative near-infrared spectroscopy (iNIRS) during direct cortical stimulation as a robust tool to better understand the cortico-cortical connectivity in language systems. METHODS We applied iNIRS to 3 patients who underwent epilepsy surgery due to lesions (cavernous angioma, epidermoid cyst, and low-grade glioma) located in language areas. Using iNIRS, we measured the blood concentration changes of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) in the lateral temporal cortex during direct cortical stimulation (50Hz) at the inferior frontal area where Broca's area was probabilistically located. RESULTS In all patients, 50Hz stimulation elicited hemodynamic changes in the superior temporal gyrus (STG). During 0.8-4.8s after stimulation, HbO2 increased and HbR decreased in the posterior part of the STG (Wernicke's area). Similar responses were observed in the anterior part of the STG 1.3-8.0s after stimulation. Finally, these changes were disappeared in the middle temporal gyrus. CONCLUSIONS Our results suggest that cortical stimulation of Broca's area elicits hemodynamic responses in Wernicke's area via cortico-cortical connectivity. We demonstrated cortico-cortical evoked responses in language systems using iNIRS during direct cortical stimulation. Our iNIRS data will provide useful information about cortico-cortical networks underlying human brain functions intraoperatively and will contribute to neurosurgical treatment in eloquent areas.
Collapse
Affiliation(s)
- Keisuke Sato
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Masafumi Fukuda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yosuke Sato
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuya Hiraishi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuro Takao
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Sun H, Blakely TM, Darvas F, Wander JD, Johnson LA, Su DK, Miller KJ, Fetz EE, Ojemann JG. Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements. Clin Neurophysiol 2015; 126:2150-61. [PMID: 25680948 DOI: 10.1016/j.clinph.2015.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/23/2014] [Accepted: 01/11/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Human voluntary movements are a final product of complex interactions between multiple sensory, cognitive and motor areas of central nervous system. The objective was to investigate temporal sequence of activation of premotor (PM), primary motor (M1) and somatosensory (S1) areas during cued finger movements. METHODS Electrocorticography (ECoG) was used to measure activation timing in human PM, S1, and M1 neurons in preparation for finger movements in 5 subjects with subdural grids for seizure localization. Cortical activation was determined by the onset of high gamma (HG) oscillation (70-150Hz). The three cortical regions were mapped anatomically using a common brain atlas and confirmed independently with direct electrical cortical stimulation, somatosensory evoked potentials and detection of HG response to tactile stimulation. Subjects were given visual cues to flex each finger or pinch the thumb and index finger. Movements were captured with a dataglove and time-locked with ECoG. A windowed covariance metric was used to identify the rising slope of HG power between two electrodes and compute time lag. Statistical constraints were applied to the time estimates to combat the noise. Rank sum testing was used to verify the sequential activation of cortical regions across 5 subjects. RESULTS In all 5 subjects, HG activation in PM preceded S1 by an average of 53±13ms (P=0.03), PM preceded M1 by 180±40ms (P=0.001) and S1 activation preceded M1 by 136±40ms (P=0.04). CONCLUSIONS Sequential HG activation of PM, S1 and M1 regions in preparation for movements is reported. Activity in S1 prior to any overt body movements supports the notion that these neurons may encode sensory information in anticipation of movements, i.e., an efference copy. Our analysis suggests that S1 modulation likely originates from PM. SIGNIFICANCE First electrophysiological evidence of efference copy in humans.
Collapse
Affiliation(s)
- Hai Sun
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| | - Timothy M Blakely
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Felix Darvas
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jeremiah D Wander
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Lise A Johnson
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA; The Center for Sensorimotor Neural Engineering, Seattle, WA, USA
| | - David K Su
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Kai J Miller
- Neurobiology and Behavior Degree Program, University of Washington, Seattle, WA, USA
| | - Eberhard E Fetz
- The Center for Sensorimotor Neural Engineering, Seattle, WA, USA; Neurobiology and Behavior Degree Program, University of Washington, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jeffery G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; The Center for Sensorimotor Neural Engineering, Seattle, WA, USA; Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
7
|
Monitoring cerebral oxygenation during balloon occlusion with multichannel NIRS. J Cereb Blood Flow Metab 2014; 34:347-56. [PMID: 24301292 PMCID: PMC3915216 DOI: 10.1038/jcbfm.2013.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 01/22/2023]
Abstract
We report on oxygenation changes noninvasively recorded by multichannel continuous-wave near infrared spectroscopy (CW-NIRS) during endovascular neuroradiologic interventions requiring temporary balloon occlusion of arteries supplying the cerebral circulation. Digital subtraction angiography (DSA) provides reference data on the site, timing, and effectiveness of the flow stagnation as well as on the amount and direction of collateral circulation. This setting allows us to relate CW-NIRS findings to brain specific perfusion changes. We focused our analysis on the transition from normal perfusion to vessel occlusion, i.e., before hypoxia becomes clinically apparent. The localization of the maximal response correlated either with the core (occlusion of the middle cerebral artery) or with the watershed areas (occlusion of the internal carotid artery) of the respective vascular territories. In one patient with clinically and angiographically confirmed insufficient collateral flow during carotid artery occlusion, the total hemoglobin concentration became significantly asymmetric, with decreased values in the ipsilateral watershed area and contralaterally increased values. Multichannel CW-NIRS monitoring might serve as an objective and early predictive marker of critical perfusion changes during interventions-to prevent hypoxic damage of the brain. It also might provide valuable human reference data on oxygenation changes as they typically occur during acute stroke.
Collapse
|