1
|
Scarpa J, Parazynski S, Strangman G. Space exploration as a catalyst for medical innovations. Front Med (Lausanne) 2023; 10:1226531. [PMID: 37538310 PMCID: PMC10395101 DOI: 10.3389/fmed.2023.1226531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Aerospace research has a long history of developing technologies with industry-changing applications and recent history is no exception. The expansion of commercial spaceflight and the upcoming exploration-class missions to the Moon and Mars are expected to accelerate this process even more. The resulting portable, wearable, contactless, and regenerable medical technologies are not only the future of healthcare in deep space but also the future of healthcare here on Earth. These multi-dimensional and integrative technologies are non-invasive, easily-deployable, low-footprint devices that have the ability to facilitate rapid detection, diagnosis, monitoring, and treatment of a variety of conditions, and to provide decision-making and performance support. Therefore, they are primed for applications in low-resource and remote environments, facilitating the extension of quality care delivery to all patients in all communities and empowering non-specialists to intervene early and safely in order to optimize patient-centered outcomes. Additionally, these technologies have the potential to advance care delivery in tertiary care centers by improving transitions of care, providing holistic patient data, and supporting clinician wellness and performance. The requirements of space exploration have created a number of paradigm-altering medical technologies that are primed to revitalize and elevate our standard of care here on Earth.
Collapse
Affiliation(s)
- Julia Scarpa
- Department of Anesthesiology, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, United States
| | | | - Gary Strangman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Translational Research Institute for Space Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Bellisle R, Bjune C, Newman D. Considerations for Wearable Sensors to Monitor Physical Performance During Spaceflight Intravehicular Activities. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4160-4164. [PMID: 33018914 DOI: 10.1109/embc44109.2020.9175674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Wearable sensors provide the capability to noninvasively monitor physiological parameters during spaceflight, including those related to physical performance and daily activity. Regular monitoring of general health and exercise capabilities in astronauts can ensure adequate performance levels and record health changes caused by the space environment. Relevant measurables include vital signs, cardiovascular health, and activity monitoring. Wearable sensor devices can be comfortable for long-term use and easy to operate, which is particularly important during more autonomous future planetary missions. Many devices are currently being developed and tested, but few wearable devices or integrated "smart" garments have been assigned for regular use on the International Space Station. The unique needs of the space environment must be considered to facilitate the development and implementation of wearable devices, particularly "smart" sensor garments, for space applications.
Collapse
|
3
|
Optics Based Label-Free Techniques and Applications in Brain Monitoring. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) has been utilized already around three decades for monitoring the brain, in particular, oxygenation changes in the cerebral cortex. In addition, other optical techniques are currently developed for in vivo imaging and in the near future can be potentially used more in human brain research. This paper reviews the most common label-free optical technologies exploited in brain monitoring and their current and potential clinical applications. Label-free tissue monitoring techniques do not require the addition of dyes or molecular contrast agents. The following optical techniques are considered: fNIRS, diffuse correlations spectroscopy (DCS), photoacoustic imaging (PAI) and optical coherence tomography (OCT). Furthermore, wearable optical brain monitoring with the most common applications is discussed.
Collapse
|
4
|
Zhang Q, Zhang N, Kang L, Hu G, Yan X, Ding X, Fu Q, Zhang YT, Zhao N, Gao J, Strangman GE. Technology Development for Simultaneous Wearable Monitoring of Cerebral Hemodynamics and Blood Pressure. IEEE J Biomed Health Inform 2019; 23:1952-1963. [PMID: 30334773 PMCID: PMC8571987 DOI: 10.1109/jbhi.2018.2876087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
For many cerebrovascular diseases both blood pressure (BP) and hemodynamic changes are important clinical variables. In this paper, we describe the development of a novel approach to noninvasively and simultaneously monitor cerebral hemodynamics, BP, and other important parameters at high temporal resolution (250 Hz sampling rate). In this approach, cerebral hemodynamics are acquired using near infrared spectroscopy based sensors and algorithms, whereas continuous BP is acquired by superficial temporal artery tonometry with pulse transit time based drift correction. The sensors, monitoring system, and data analysis algorithms used in the prototype for this approach are reported in detail in this paper. Preliminary performance tests demonstrated that we were able to simultaneously and noninvasively record and reveal cerebral hemodynamics and BP during people's daily activity. As examples, we report dynamic cerebral hemodynamic and BP fluctuations during postural changes and micturition. These preliminary results demonstrate the feasibility of our approach, and its unique power in catching hemodynamics and BP fluctuations during transient symptoms (such as syncope) and revealing the dynamic features of related events.
Collapse
|
5
|
Strangman GE, Ivkovic V, Zhang Q. Wearable brain imaging with multimodal physiological monitoring. J Appl Physiol (1985) 2018; 124:564-572. [DOI: 10.1152/japplphysiol.00297.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain is a central component of cognitive and physical human performance. Measures, including functional brain activation, cerebral perfusion, cerebral oxygenation, evoked electrical responses, and resting hemodynamic and electrical activity are all related to, or can predict, health status or performance decrements. However, measuring brain physiology typically requires large, stationary machines that are not suitable for mobile or self-monitoring. Moreover, when individuals are ambulatory, systemic physiological fluctuations—e.g., in heart rate, blood pressure, skin perfusion, and more—can interfere with noninvasive brain measurements. In efforts to address the physiological monitoring and performance assessment needs for astronauts during spaceflight, we have developed easy-to-use, wearable prototypes, such as NINscan, for near-infrared scanning, which can collect synchronized multimodal physiology data, including hemodynamic deep-tissue imaging (including brain and muscles), electroencephalography, electrocardiography, electromyography, electrooculography, accelerometry, gyroscopy, pressure, respiration, and temperature measurements. Given their self-contained and portable nature, these devices can be deployed in a much broader range of settings—including austere environments—thereby, enabling a wider range of novel medical and research physiology applications. We review these, including high-altitude assessments, self-deployable multimodal e.g., (polysomnographic) recordings in remote or low-resource environments, fluid shifts in variable-gravity, or spaceflight analog environments, intracranial brain motion during high-impact sports, and long-duration monitoring for clinical symptom-capture in various clinical conditions. In addition to further enhancing sensitivity and miniaturization, advanced computational algorithms could help support real-time feedback and alerts regarding performance and health.
Collapse
Affiliation(s)
- Gary E. Strangman
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Translational Research Institute, Houston, Texas
| | - Vladimir Ivkovic
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Quan Zhang
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Kassab A, Le Lan J, Tremblay J, Vannasing P, Dehbozorgi M, Pouliot P, Gallagher A, Lesage F, Sawan M, Nguyen DK. Multichannel wearable fNIRS-EEG system for long-term clinical monitoring. Hum Brain Mapp 2017; 39:7-23. [PMID: 29058341 DOI: 10.1002/hbm.23849] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/02/2017] [Accepted: 10/08/2017] [Indexed: 01/27/2023] Open
Abstract
Continuous brain imaging techniques can be beneficial for the monitoring of neurological pathologies (such as epilepsy or stroke) and neuroimaging protocols involving movement. Among existing ones, functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) have the advantage of being noninvasive, nonobstructive, inexpensive, yield portable solutions, and offer complementary monitoring of electrical and local hemodynamic activities. This article presents a novel system with 128 fNIRS channels and 32 EEG channels with the potential to cover a larger fraction of the adult superficial cortex than earlier works, is integrated with 32 EEG channels, is light and battery-powered to improve portability, and can transmit data wirelessly to an interface for real-time display of electrical and hemodynamic activities. A novel fNIRS-EEG stretchable cap, two analog channels for auxiliary data (e.g., electrocardiogram), eight digital triggers for event-related protocols and an internal accelerometer for movement artifacts removal contribute to improve data acquisition quality. The system can run continuously for 24 h. Following instrumentation validation and reliability on a solid phantom, performance was evaluated on (1) 12 healthy participants during either a visual (checkerboard) task at rest or while pedalling on a stationary bicycle or a cognitive (language) task and (2) 4 patients admitted either to the epilepsy (n = 3) or stroke (n = 1) units. Data analysis confirmed expected hemodynamic variations during validation recordings and useful clinical information during in-hospital testing. To the best of our knowledge, this is the first demonstration of a wearable wireless multichannel fNIRS-EEG monitoring system in patients with neurological conditions. Hum Brain Mapp 39:7-23, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ali Kassab
- Research Center, Centre Hospitalier Universitaire de Montréal, Université de Montréal, Montréal, Québec, H2X 0A9, Canada
| | - Jérôme Le Lan
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Julie Tremblay
- Research Center, Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec, H3T 1C4, Canada
| | - Phetsamone Vannasing
- Research Center, Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec, H3T 1C4, Canada
| | - Mahya Dehbozorgi
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Philippe Pouliot
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada.,Research Center, Montreal Heart Institute, Montréal, Québec, H1T 1C8, Canada
| | - Anne Gallagher
- Research Center, Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec, H3T 1C4, Canada
| | - Frédéric Lesage
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Mohamad Sawan
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Dang Khoa Nguyen
- Research Center, Centre Hospitalier Universitaire de Montréal, Université de Montréal, Montréal, Québec, H2X 0A9, Canada.,Department of Neurology, Hôpital Notre-Dame (Centre Hospitalier de l'Université de Montréal), Montréal, Québec, H2L 4M1, Canada
| |
Collapse
|
7
|
von Luhmann A, Wabnitz H, Sander T, Muller KR. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring. IEEE Trans Biomed Eng 2017; 64:1199-1210. [DOI: 10.1109/tbme.2016.2594127] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Strangman GE, Zhang Q, Marshall-Goebel K, Mulder E, Stevens B, Clark JB, Bershad EM. Increased cerebral blood volume pulsatility during head-down tilt with elevated carbon dioxide: the SPACECOT Study. J Appl Physiol (1985) 2017; 123:62-70. [PMID: 28360122 DOI: 10.1152/japplphysiol.00947.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023] Open
Abstract
Astronauts aboard the International Space Station (ISS) have exhibited hyperopic shifts, posterior eye globe flattening, dilated optic nerve sheaths, and even optic disk swelling from spaceflight. Elevated intracranial pressure (ICP) consequent to cephalad fluid shifts is commonly hypothesized as contributing to these ocular changes. Head-down tilt (HDT) is frequently utilized as an Earth-based analog to study similar fluid shifts. Sealed environments like the ISS also exhibit elevated CO2, a potent arteriolar vasodilator that could further affect cerebral blood volume (CBV) and cerebral blood flow, intracranial compliance, and ICP. A collaborative pilot study between the National Space Biomedical Research Institute and the German Aerospace Center tested the hypotheses that 1) HDT and elevated CO2 physiologically interact and 2) cerebrovascular pulsatility is related to HDT and/or elevated CO2 In a double-blind crossover study (n = 6), we measured CBV pulsatility via near-infrared spectroscopy, alongside noninvasive ICP and intraocular pressure (IOP) during 28-h -12° HDT at both nominal (0.04%) and elevated (0.5%) ambient CO2 In our cohort, CBV pulsatility increased significantly over time at cardiac frequencies (0.031 ± 0.009 μM/h increase in total hemoglobin concentration pulsatility amplitude) and Mayer wave frequencies (0.019 ± 0.005 μM/h increase). The HDT-CO2 interaction on pulsatility was not robust but rather driven by one individual. Significant differences between atmospheres were not detected in ICP or IOP. Further work is needed to determine whether individual differences in pulsatility responses to CO2 relate to visual changes in space.NEW & NOTEWORTHY Cerebral blood volume (CBV) pulsatility-as measured by near-infrared spectroscopy-increases over time during -12° head-down tilt at both cardiac and Mayer wave frequencies. CBV pulsatility appeared to increase more under elevated (0.5%) CO2 at Mayer wave frequencies in some individuals. If similar dynamic pulsatility increases occur in astronauts, there is the potential to initiate vascular and possibly other remodeling processes that lead to symptoms associated with sustained increases in intracranial pressure.
Collapse
Affiliation(s)
- Gary E Strangman
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; .,Center for Space Medicine, Baylor College of Medicine, Houston, Texas.,National Space Biomedical Research Institute, Houston, Texas; and
| | - Quan Zhang
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| | - Karina Marshall-Goebel
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Brian Stevens
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Jonathan B Clark
- Department of Neurology, Baylor College of Medicine, Houston, Texas.,Center for Space Medicine, Baylor College of Medicine, Houston, Texas.,National Space Biomedical Research Institute, Houston, Texas; and
| | - Eric M Bershad
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Carrieri M, Petracca A, Lancia S, Basso Moro S, Brigadoi S, Spezialetti M, Ferrari M, Placidi G, Quaresima V. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics. Front Hum Neurosci 2016; 10:53. [PMID: 26909033 PMCID: PMC4754420 DOI: 10.3389/fnhum.2016.00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 11/15/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found between the distance traveled by the guided VB and the corresponding cortical activation. These results confirm the suitability of fNIRS technology to objectively evaluate cortical hemodynamic changes occurring in VR environments. Future studies could give a contribution to a better understanding of the cognitive mechanisms underlying human performance either in expert or non-expert operators during the simulation of different demanding/fatiguing activities.
Collapse
Affiliation(s)
- Marika Carrieri
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Andrea Petracca
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Stefania Lancia
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Sara Basso Moro
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Sabrina Brigadoi
- Department of Developmental Psychology, University of Padova Padova, Italy
| | - Matteo Spezialetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Marco Ferrari
- Department of Physical and Chemical Sciences, University of L'Aquila L'Aquila, Italy
| | - Giuseppe Placidi
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| |
Collapse
|