1
|
Ivich F, Calderon I, Fang Q, Clark H, Niedre M. Ratiometric fluorescence sensing and quantification of circulating blood sodium sensors in mice in vivo. BIOMEDICAL OPTICS EXPRESS 2023; 14:5555-5568. [PMID: 38021147 PMCID: PMC10659809 DOI: 10.1364/boe.499263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
In this work, we introduce ratiometric diffuse in vivo flow cytometry (R-DiFC) for quantitative measurement of circulating fluorescent red blood cell (fRBC) sensors for systemic blood sodium levels. Unlike in our previous work in measuring circulating fRBC sensors, R-DiFC allows simultaneous measurement of two fluorophores encapsulated in the sensor, the ratio of which enables self-calibration of the fluorescence signal with different fRBC depths in biological tissue. We show that the R-DiFC signal varies significantly less than either fluorescence signal alone. This work holds promise for personalized monitoring of systemic sodium for bipolar patients in the future.
Collapse
Affiliation(s)
- Fernando Ivich
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| | - Isen Calderon
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| | - Heather Clark
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| |
Collapse
|
2
|
Ivich F, Pace J, Williams AL, Shumel M, Fang Q, Niedre M. Signal and measurement considerations for human translation of diffuse in vivo flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220066R. [PMID: 35726129 PMCID: PMC9207655 DOI: 10.1117/1.jbo.27.6.067001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE "Diffuse in vivo flow cytometry" (DiFC) is an emerging technology for fluorescence detection of rare circulating cells directly in large deep-seated blood vessels in mice. Because DiFC uses highly scattered light, in principle, it could be translated to human use. However, an open question is whether fluorescent signals from single cells would be detectable in human-scale anatomies. AIM Suitable blood vessels in a human wrist or forearm are at a depth of ∼2 to 4 mm. The aim of this work was to study the impact of DiFC instrument geometry and wavelength on the detected DiFC signal and on the maximum depth of detection of a moving cell. APPROACH We used Monte Carlo simulations to compute fluorescence Jacobian (sensitivity) matrices for a range of source and detector separations (SDS) and tissue optical properties over the visible and near infrared spectrum. We performed experimental measurements with three available versions of DiFC (488, 640, and 780 nm), fluorescent microspheres, and tissue mimicking optical flow phantoms. We used both computational and experimental data to estimate the maximum depth of detection at each combination of settings. RESULTS For the DiFC detection problem, our analysis showed that for deep-seated blood vessels, the maximum sensitivity was obtained with NIR light (780 nm) and 3-mm SDS. CONCLUSIONS These results suggest that-in combination with a suitable molecularly targeted fluorescent probes-circulating cells and nanosensors could, in principle, be detectable in circulation in humans.
Collapse
Affiliation(s)
- Fernando Ivich
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Joshua Pace
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Amber L. Williams
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Malcolm Shumel
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Schmidt I, Nagengast WB, Robinson DJ. Characterizing factors influencing calibration and optical property determination in quantitative reflectance spectroscopy to improve standardization. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:074714. [PMID: 35393792 PMCID: PMC8988964 DOI: 10.1117/1.jbo.27.7.074714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE The combination of reflectance and fluorescence spectroscopy allows the determination of tissue optical properties and the calculation of the intrinsic fluorescence in vivo. These parameters can discriminate between tissues and may allow the discrimination of malignant from benign tissue. While this approach has significant clinical potential, the lack of standardization and quality assessment prevents the upscaling of research. AIM Investigate which factors influence device calibration and tissue optical property determination. Improve system quality assessment and allow upscaling of the clinical research using multidiameter single fiber reflectance/singe fiber fluorescence spectroscopy. APPROACH Two studies, one phantom based on uniform calibrations and skin measurements and a clinical study including clinical calibrations. The first validates the effect of factors under identical conditions and the effect of calibration quality on the optical property determination of skin. The second shows the effect of different system configurations and the performance of the system and probe over an extended period. RESULTS Phantom calibrations showed stability over a period of 20 weeks except for a 16-week-old intralipid phantom which showed a significant difference (at least p = 0.0032) for all five probes evaluated. For clinical calibrations, only the fiber tree had a significant influence (probe 4: p < 0.000001 and probe 5: p = 0.00038) on the calibration quality. Interestingly, no degradation of probe performance was detected over a period of 21 months despite the exposure to stress during clinical measurements. Calibration quality affected μs' and the power law scattering exponent, but the degree of the influence was different per fiber. CONCLUSIONS Intralipid phantom quality and fiber tree performance are the main factors influencing the calibration quality. Probe and user performance did not show any effect, which makes the upscaling of research to multicenter trials easier. A high-quality assessment procedure should be implemented to track changes during clinical trials.
Collapse
Affiliation(s)
- Iris Schmidt
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Wouter B. Nagengast
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Dominic J. Robinson
- Erasmus Medical Center, Center for Optical Diagnostics and Therapy, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Lauwerends LJ, Abbasi H, Bakker Schut TC, Van Driel PBAA, Hardillo JAU, Santos IP, Barroso EM, Koljenović S, Vahrmeijer AL, Baatenburg de Jong RJ, Puppels GJ, Keereweer S. The complementary value of intraoperative fluorescence imaging and Raman spectroscopy for cancer surgery: combining the incompatibles. Eur J Nucl Med Mol Imaging 2022; 49:2364-2376. [PMID: 35102436 PMCID: PMC9165240 DOI: 10.1007/s00259-022-05705-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023]
Abstract
A clear margin is an important prognostic factor for most solid tumours treated by surgery. Intraoperative fluorescence imaging using exogenous tumour-specific
fluorescent agents has shown particular benefit in improving complete resection of tumour tissue. However, signal processing for fluorescence imaging is complex, and fluorescence signal intensity does not always perfectly correlate with tumour location. Raman spectroscopy has the capacity to accurately differentiate between malignant and healthy tissue based on their molecular composition. In Raman spectroscopy, specificity is uniquely high, but signal intensity is weak and Raman measurements are mainly performed in a point-wise manner on microscopic tissue volumes, making whole-field assessment temporally unfeasible. In this review, we describe the state-of-the-art of both optical techniques, paying special attention to the combined intraoperative application of fluorescence imaging and Raman spectroscopy in current clinical research. We demonstrate how these techniques are complementary and address the technical challenges that have traditionally led them to be considered mutually exclusive for clinical implementation. Finally, we present a novel strategy that exploits the optimal characteristics of both modalities to facilitate resection with clear surgical margins.
Collapse
Affiliation(s)
- L J Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H Abbasi
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands.,Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - T C Bakker Schut
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - P B A A Van Driel
- Department of Orthopedic Surgery, Isala Hospital, Zwolle, Netherlands
| | - J A U Hardillo
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - I P Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | | | - S Koljenović
- Department of Pathology, Antwerp University Hospital/Antwerp University, Antwerp, Belgium
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - R J Baatenburg de Jong
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - G J Puppels
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
| |
Collapse
|
5
|
Bugter O, Aaboubout Y, Algoe M, de Bruijn HS, Keereweer S, Sewnaik A, Monserez DA, Koljenović S, Hardillo JAU, Robinson DJ, Baatenburg de Jong RJ. Detecting head and neck lymph node metastases with white light reflectance spectroscopy; a pilot study. Oral Oncol 2021; 123:105627. [PMID: 34826688 DOI: 10.1016/j.oraloncology.2021.105627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION A challenge in the treatment of patients with head and neck cancer is the management of occult cervical lymph node (LN) metastases. Single-fiber reflectance (SFR) spectroscopy has the potential to detect physiological tissue changes that occur in a positive LN. This pilot study aimed to investigate whether SFR spectroscopy could serve as an alternative or additional technique to detect cervical lymph node metastases. MATERIALS AND METHODS We performed intraoperative SFR spectroscopy measurements of LNs with and without malignancies. We analyzed if physiological and scattering parameters were significantly altered in positive LNs. RESULTS Nine patients with a total of nineteen LNs were included. Three parameters, blood volume fraction (BVF), microvascular saturation (StO2), and Rayleigh amplitude, were significantly lower in positive LNs. They were combined into one optical parameter 'delta', using discriminant analysis. Delta was significantly decreased in positive LNs, p = 0,0006. It had a high diagnostic accuracy where the sensitivity, specificity, PPV, and NPV were 90,0%, 88.9%, 90,0%, and 88.9%, respectively. The area under the ROC curve was 96.7% (95% confidence interval 89.7-100.0%). CONCLUSION This proof of principle study is a first step in the development of an SFR spectroscopy technique to detect LN metastases in real time. A next step towards this goal is replicating these results in LNs with smaller metastases and in a larger cohort of patients. This future study will combine SFR spectroscopy with fine-needle aspiration, using the same needle, to perform preoperative in vivo measurements.
Collapse
Affiliation(s)
- Oisín Bugter
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, University Medical Center Rotterdam, Center for Optical Diagnostics and Therapy, Rotterdam, the Netherlands
| | - Yassine Aaboubout
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, University Medical Center Rotterdam, Center for Optical Diagnostics and Therapy, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Pathology, Rotterdam, the Netherlands
| | - Mahesh Algoe
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Pathology, Rotterdam, the Netherlands
| | - Henriëtte S de Bruijn
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, University Medical Center Rotterdam, Center for Optical Diagnostics and Therapy, Rotterdam, the Netherlands
| | - Stijn Keereweer
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, the Netherlands
| | - Aniel Sewnaik
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, the Netherlands
| | - Dominiek A Monserez
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, the Netherlands
| | - Senada Koljenović
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Pathology, Rotterdam, the Netherlands
| | - Jose A U Hardillo
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, the Netherlands.
| | - Dominic J Robinson
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, University Medical Center Rotterdam, Center for Optical Diagnostics and Therapy, Rotterdam, the Netherlands
| | - Robert J Baatenburg de Jong
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, the Netherlands
| |
Collapse
|
6
|
van Manen L, Birkhoff WAJ, Eggermont J, Hoveling RJM, Nicklin P, Burggraaf J, Wilson R, Mieog JSD, Robinson DJ, Vahrmeijer AL, Bradbury MS, Dijkstra J. Detection of cutaneous oxygen saturation using a novel snapshot hyperspectral camera: a feasibility study. Quant Imaging Med Surg 2021; 11:3966-3977. [PMID: 34476182 DOI: 10.21037/qims-21-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 11/06/2022]
Abstract
Background Tissue necrosis, a consequence of inadequate tissue oxygenation, is a common post-operative complication. As current surgical assessments are often limited to visual and tactile feedback, additional techniques that can aid in the interrogation of tissue viability are needed to improve patient outcomes. In this bi-institutional pilot study, the performance of a novel snapshot hyperspectral imaging camera to detect superficial cutaneous oxygen saturation (StO2) was evaluated. Methods Healthy human volunteers were recruited at two participating centers. Cutaneous StO2 of the forearm was determined by a snapshot hyperspectral camera on two separate study days during occlusion-reperfusion of the brachial artery and after induction of local vasodilation. To calculate the blood StO2 at each pixel in the multispectral image, spectra were selected, and fitting was performed over wavelengths ranging from 470 to 950 nm. Results Quantitative detection of physiological changes in cutaneous StO2 levels was feasible in all sixteen volunteers. A significant (P<0.001) decrease in cutaneous StO2 levels from 78.3% (SD: 15.3) at baseline to 60.6% (SD: 19.8) at the end of occlusion phase was observed, although StO2 levels returned to baseline after five minutes. Mean cutaneous StO2 values were similar in the same subjects on separate study days (Pearson R2: 0.92 and 0.77, respectively) at both centers. Local vasodilation did not yield significant changes in cutaneous StO2 values. Conclusions This pilot study demonstrated the feasibility of a snapshot hyperspectral camera for detecting quantitative physiological changes in cutaneous StO2 in normal human volunteers, and serves as a precursor for further validation in perioperative studies.
Collapse
Affiliation(s)
- Labrinus van Manen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jeroen Eggermont
- Leiden University Medical Center, Division of Image Processing, Department of Radiology, Leiden, The Netherlands
| | | | - Philip Nicklin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | - Roger Wilson
- Department of Anesthesiology, Critical Care Medicine, and Surgery, Memorial Sloan Kettering Cancer Center Research, New York, NY, USA
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Dominic J Robinson
- Erasmus Medical Center, Center for Optical Diagnostics and Therapy, Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, The Netherlands
| | | | - Michelle S Bradbury
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jouke Dijkstra
- Leiden University Medical Center, Division of Image Processing, Department of Radiology, Leiden, The Netherlands
| |
Collapse
|
7
|
Zhang XU, Faber DJ, Van Leeuwen TG, Sterenborg HJCM. Effect of probe pressure on skin tissue optical properties measurement using multi-diameter single fiber reflectance spectroscopy. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/ab9071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Zhang XU, van der Zee P, Atzeni I, Faber DJ, van Leeuwen TG, Sterenborg HJCM. Multidiameter single-fiber reflectance spectroscopy of heavily pigmented skin: modeling the inhomogeneous distribution of melanin. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31820596 PMCID: PMC7006040 DOI: 10.1117/1.jbo.24.12.127001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/28/2019] [Indexed: 05/05/2023]
Abstract
When analyzing multidiameter single-fiber reflectance (MDSFR) spectra, the inhomogeneous distribution of melanin pigments in skin tissue is usually not accounted for. Especially in heavily pigmented skins, this can result in bad fits and biased estimation of tissue optical properties. A model is introduced to account for the inhomogeneous distribution of melanin pigments in skin tissue. In vivo visible MDSFR measurements were performed on heavily pigmented skin of type IV to VI. Skin tissue optical properties and related physiological properties were extracted from the measured spectra using the introduced model. The absorption of melanin pigments described by the introduced model demonstrates a good correlation with the co-localized measurement of the well-known melanin index.
Collapse
Affiliation(s)
- Xu U. Zhang
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Address all correspondence to Xu U. Zhang, E-mail:
| | | | - Isabella Atzeni
- University of Groningen, University Medical Center Groningen, Division of Vascular Medicine, Department of Internal Medicine, Groningen, The Netherlands
| | - Dirk J. Faber
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Ton G. van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Henricus J. C. M. Sterenborg
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Bugter O, Spaander MCW, Bruno MJ, Baatenburg de Jong RJ, Amelink A, Robinson DJ. Optical detection of field cancerization in the buccal mucosa of patients with esophageal cancer. Clin Transl Gastroenterol 2018; 9:152. [PMID: 29712897 PMCID: PMC5928160 DOI: 10.1038/s41424-018-0023-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022] Open
Abstract
Introduction Esophageal cancer is an increasingly common type of neoplasm with a very poor prognosis. This prognosis could improve with more early tumor detection. We have previously shown that we can use an optical spectroscopy to detect field cancerization in the buccal mucosa of patients with laryngeal cancer. The aim of this prospective study was to investigate whether we could detect field cancerization of buccal mucosa of patients with esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). Methods Optical measurements were performed in vivo using a novel optical technique: multidiameter single-fiber reflectance (MDSFR) spectroscopy. MDSFR spectra were acquired by a handheld probe incorporating three fiber diameters. Multiple absorption and scattering parameters that are related to the physiological and ultrastructural properties of the buccal mucosa were derived from these spectra. A linear discriminant analysis of the parameters was performed to create a combined biomarker σ to discriminate oncologic from non-oncologic patients. Results Twelve ESCC, 12 EAC, and 24 control patients were included in the study. The median value of our biomarker σ was significantly higher in patients with ESCC (2.07 [1.93–2.10]) than control patients (1.86 [1.73–1.95], p = 0.022). After cross-validation σ was able to identify ESCC patients with a sensitivity of 66.7% and a specificity of 70.8%. There were no significant differences between the EAC group and the control group. Conclusion Field cancerization in the buccal mucosa can be detected using optical spectroscopy in ESCC patients. This may be the first step towards non-invasive ESCC cancer screening.
Collapse
Affiliation(s)
- Oisín Bugter
- Erasmus MC Cancer Institute, 's-Gravendijkwal 230, Rotterdam, 3015 CE, The Netherlands. .,Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, The Netherlands. .,Center for Optical Diagnostics and Therapy, Rotterdam, The Netherlands.
| | - Manon C W Spaander
- Erasmus MC Cancer Institute, 's-Gravendijkwal 230, Rotterdam, 3015 CE, The Netherlands.,Department of Gastroenterology and Hepatology, Rotterdam, The Netherlands
| | - Marco J Bruno
- Erasmus MC Cancer Institute, 's-Gravendijkwal 230, Rotterdam, 3015 CE, The Netherlands.,Department of Gastroenterology and Hepatology, Rotterdam, The Netherlands
| | - Robert J Baatenburg de Jong
- Erasmus MC Cancer Institute, 's-Gravendijkwal 230, Rotterdam, 3015 CE, The Netherlands.,Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, The Netherlands
| | - Arjen Amelink
- Department of Optics, TNO, Stieltjesweg 1, Delft, 2628 CK, The Netherlands
| | - Dominic J Robinson
- Erasmus MC Cancer Institute, 's-Gravendijkwal 230, Rotterdam, 3015 CE, The Netherlands.,Department of Otorhinolaryngology and Head and Neck Surgery, Rotterdam, The Netherlands.,Center for Optical Diagnostics and Therapy, Rotterdam, The Netherlands
| |
Collapse
|
10
|
van Driel PBAA, Boonstra MC, Slooter MD, Heukers R, Stammes MA, Snoeks TJA, de Bruijn HS, van Diest PJ, Vahrmeijer AL, van Bergen En Henegouwen PMP, van de Velde CJH, Löwik CWGM, Robinson DJ, Oliveira S. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J Control Release 2016; 229:93-105. [PMID: 26988602 PMCID: PMC7116242 DOI: 10.1016/j.jconrel.2016.03.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) induces cell death through local light activation of a photosensitizer (PS) and has been used to treat head and neck cancers. Yet, common PS lack tumor specificity, which leads to collateral damage to normal tissues. Targeted delivery of PS via antibodies has pre-clinically improved tumor selectivity. However, antibodies have long half-lives and relatively poor tissue penetration, which could limit therapeutic efficacy and lead to long photosensitivity. Here, in this feasibility study, we evaluate at the pre-clinical level a recently introduced format of targeted PDT, which employs nanobodies as targeting agents and a water-soluble PS (IRDye700DX) that is traceable through optical imaging. In vitro, the PS solely binds to cells and induces phototoxicity on cells overexpressing the epidermal growth factor receptor (EGFR), when conjugated to the EGFR targeted nanobodies. To investigate whether this new format of targeted PDT is capable of inducing selective tumor cell death in vivo, PDT was applied on an orthotopic mouse tumor model with illumination at 1h post-injection of the nanobody-PS conjugates, as selected from quantitative fluorescence spectroscopy measurements. In parallel, and as a reference, PDT was applied with an antibody-PS conjugate, with illumination performed 24h post-injection. Importantly, EGFR targeted nanobody-PS conjugates led to extensive tumor necrosis (approx. 90%) and almost no toxicity in healthy tissues, as observed through histology 24h after PDT. Overall, results show that these EGFR targeted nanobody-PS conjugates are selective and able to induce tumor cell death in vivo. Additional studies are now needed to assess the full potential of this approach to improving PDT.
Collapse
Affiliation(s)
- Pieter B A A van Driel
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maxime D Slooter
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Raimond Heukers
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marieke A Stammes
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Thomas J A Snoeks
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Henriette S de Bruijn
- Department of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Paul M P van Bergen En Henegouwen
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Clemens W G M Löwik
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Dominic J Robinson
- Department of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Sabrina Oliveira
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|