1
|
Herminghaus A, Kozlov AV, Szabó A, Hantos Z, Gylstorff S, Kuebart A, Aghapour M, Wissuwa B, Walles T, Walles H, Coldewey SM, Relja B. A Barrier to Defend - Models of Pulmonary Barrier to Study Acute Inflammatory Diseases. Front Immunol 2022; 13:895100. [PMID: 35874776 PMCID: PMC9300899 DOI: 10.3389/fimmu.2022.895100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or pathogen-associated molecular pattern and inflammatory agents e.g. damage-associated molecular pattern cause significant disturbances in the pulmonary barrier. The physiological and biological functions, as well as the architecture and homeostatic maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and cytokines, and is further covered with a mucus layer containing antimicrobial peptides, which are responsible for the pathogen clearance. Submucosal antigen-presenting cells and neutrophilic granulocytes are also involved in the defense mechanisms and counterregulation of pulmonary infections, and thus may directly affect the pulmonary barrier function. The detailed understanding of the pulmonary barrier including its architecture and functions is crucial for the diagnosis, prognosis, and therapeutic treatment strategies of pulmonary diseases. Thus, considering multiple side effects and limited efficacy of current therapeutic treatment strategies in patients with inflammatory diseases make experimental in vitro and in vivo models necessary to improving clinical therapy options. This review describes existing models for studyying the pulmonary barrier function under acute inflammatory conditions, which are meant to improve the translational approaches for outcome predictions, patient monitoring, and treatment decision-making.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Andrey V. Kozlov
- L Boltzmann Institute for Traumatology in Cooperation with AUVA and Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Human Pathology , IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Zoltán Hantos
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Severin Gylstorff
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Mahyar Aghapour
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Bianka Wissuwa
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Thorsten Walles
- Department of Thoracic Surgery, Magdeburg University Medicine, Magdeburg, Germany
| | - Heike Walles
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- *Correspondence: Borna Relja,
| |
Collapse
|
2
|
Matuszak J, Tabuchi A, Kuebler WM. Ventilation and Perfusion at the Alveolar Level: Insights From Lung Intravital Microscopy. Front Physiol 2020; 11:291. [PMID: 32308629 PMCID: PMC7145899 DOI: 10.3389/fphys.2020.00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/16/2020] [Indexed: 01/13/2023] Open
Abstract
Intravital microscopy (IVM) offers unique possibilities for the observation of biological processes and disease related mechanisms in vivo. Especially for anatomically complex and dynamic organs such as the lung and its main functional unit, the alveolus, IVM provides exclusive advantages in terms of spatial and temporal resolution. By the use of lung windows, which have advanced and improved over time, direct access to the lung surface is provided. In this review we will discuss two main topics, namely alveolar dynamics and perfusion from the perspective of IVM-based studies. Of special interest are unanswered questions regarding alveolar dynamics such as: What are physiologic alveolar dynamics? How do these dynamics change under pathologic conditions and how do those changes contribute to ventilator-induced lung injury? How can alveolar dynamics be targeted in a beneficial way? With respect to alveolar perfusion IVM has propelled our understanding of the pulmonary microcirculation and its perfusion, as well as pulmonary vasoreactivity, permeability and immunological aspects. Whereas the general mechanism behind these processes are understood, we still lack a proper understanding of the complex, multidimensional interplay between alveolar ventilation and microvascular perfusion, capillary recruitment, or vascular immune responses under physiologic and pathologic conditions. These are only part of the unanswered questions and problems, which we still have to overcome. IVM as the tool of choice might allow us to answer part of these questions within the next years or decades. As every method, IVM has advantages as well as limitations, which have to be taken into account for data analysis and interpretation, which will be addressed in this review.
Collapse
Affiliation(s)
- Jasmin Matuszak
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arata Tabuchi
- The Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, ON, Canada
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Grune J, Tabuchi A, Kuebler WM. Alveolar dynamics during mechanical ventilation in the healthy and injured lung. Intensive Care Med Exp 2019; 7:34. [PMID: 31346797 PMCID: PMC6658629 DOI: 10.1186/s40635-019-0226-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/12/2023] Open
Abstract
Mechanical ventilation is a life-saving therapy in patients with acute respiratory distress syndrome (ARDS). However, mechanical ventilation itself causes severe co-morbidities in that it can trigger ventilator-associated lung injury (VALI) in humans or ventilator-induced lung injury (VILI) in experimental animal models. Therefore, optimization of ventilation strategies is paramount for the effective therapy of critical care patients. A major problem in the stratification of critical care patients for personalized ventilation settings, but even more so for our overall understanding of VILI, lies in our limited insight into the effects of mechanical ventilation at the actual site of injury, i.e., the alveolar unit. Unfortunately, global lung mechanics provide for a poor surrogate of alveolar dynamics and methods for the in-depth analysis of alveolar dynamics on the level of individual alveoli are sparse and afflicted by important limitations. With alveolar dynamics in the intact lung remaining largely a "black box," our insight into the mechanisms of VALI and VILI and the effectiveness of optimized ventilation strategies is confined to indirect parameters and endpoints of lung injury and mortality.In the present review, we discuss emerging concepts of alveolar dynamics including alveolar expansion/contraction, stability/instability, and opening/collapse. Many of these concepts remain still controversial, in part due to limitations of the different methodologies applied. We therefore preface our review with an overview of existing technologies and approaches for the analysis of alveolar dynamics, highlighting their individual strengths and limitations which may provide for a better appreciation of the sometimes diverging findings and interpretations. Joint efforts combining key technologies in identical models to overcome the limitations inherent to individual methodologies are needed not only to provide conclusive insights into lung physiology and alveolar dynamics, but ultimately to guide critical care patient therapy.
Collapse
Affiliation(s)
- Jana Grune
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117 Berlin, Germany
| | - Arata Tabuchi
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117 Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
LIU TIANYA, WANG YUXING, LIU XIAOYU, YUAN LAN, LI DEYU, QIAO HUITING, FAN YUBO. EFFECTS OF ALVEOLAR MORPHOLOGY ON ALVEOLAR MECHANICS: AN EXPERIMENTAL STUDY OF MOUSE LUNG BASED ON TWO- AND THREE-DIMENSIONAL IMAGING METHODS. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding alveolar mechanics is important for preventing the possible lung injuries during mechanical ventilation. Alveolar clusters with smaller size are found having lower compliance in two-dimensional studies. But the influence of alveolar shape on compliance is unclear. In order to investigate how alveolar morphology affects their behavior, we tracked subpleural alveoli of isolated mouse lungs during quasi-static ventilation using two- and three-dimensional imaging techniques. Results showed that alveolar clusters with smaller size and more spherical shape had lower compliance. There was a better correlation of sphericity rather than circularity with alveolar compliance. The compliance of clusters with great shape change was larger than that with relatively slight shape change. These findings suggest the contribution of lung heterogeneous expansion to lung injuries associated with mechanical ventilation.
Collapse
Affiliation(s)
- TIANYA LIU
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - YUXING WANG
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - XIAOYU LIU
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - LAN YUAN
- Beijing Key Laboratory of Rehabilitation Engineering for Elderly, National Research Center for Rehabilitation Technical Aids, Beijing 100176, P. R. China
| | - DEYU LI
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - HUITING QIAO
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - YUBO FAN
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
- Medical and Health Analysis Center, Peking University, Beijing 100191, P. R. China
| |
Collapse
|