1
|
Hasan AM, Cavalu S, Kira AY, Hamad RS, Abdel-Reheim MA, Elmorsy EA, El-kott AF, Morsy K, AlSheri AS, Negm S, Saber S. Localized Drug Delivery in Different Gastrointestinal Cancers: Navigating Challenges and Advancing Nanotechnological Solutions. Int J Nanomedicine 2025; 20:741-770. [PMID: 39845772 PMCID: PMC11752831 DOI: 10.2147/ijn.s502833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations. However, the localized delivery via oral administration faces many challenges related to the complex structure of GIT (varied pH levels and transit times) as well as the harsh environment within tumor cells (hypoxia, efflux pumps, and acidity). To overcome these obstacles, nano-drug delivery systems (NDDs) have been designed and proved their potential by exploiting these challenges in favor of offering a specific delivery to the desired target. The current review begins with an overview of different GI cancers and their impact globally. Then, it discusses the current treatment approaches and their corresponding limitations. Additionally, the different challenges associated with localized drug delivery for GI cancers are summarized. Finally, the review discusses in detail the recent therapeutic and diagnostic applications of NDDs that have been conducted in oral, esophageal, gastric, colon, and liver cancers, aiming to offer valuable insights into the current and future state of utilizing NDDs for the local treatment of GI cancers.
Collapse
Affiliation(s)
- Alexandru Madalin Hasan
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Attalla F El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art, Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
2
|
Sharma S, Bhattacharya S, Joshi K, Singh S. A shift in focus towards precision oncology, driven by revolutionary nanodiagnostics; revealing mysterious pathways in colorectal carcinogenesis. J Cancer Res Clin Oncol 2023; 149:16157-16177. [PMID: 37650995 DOI: 10.1007/s00432-023-05331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Multiple molecular mechanisms contribute to the development of colorectal cancer (CRC), with chromosomal instability (CIN) playing a significant role. CRC is influenced by mutations in several important genes, including APC, TP53, KRAS, PIK3CA, BRAF, and SMYD4. The three molecular subtypes of this disease are CIN, MSI-H, and CIMP (CpG-island phenotype). p53 dysfunction and aberrant Wnt signalling are common characteristics of CRC carcinogenesis. Despite advances in conventional therapy, metastatic CRC remains difficult to treat due to toxicity and resistance. Theranostics for cancer could significantly benefit from nanotechnology, as it would enable more targeted, individualised care with fewer side effects. Utilising functionalized nanoparticles has enabled MRI-guided gene therapy, magnetic hyperthermia, chemotherapy, immunotherapy, and photothermal/photodynamic therapy, thereby radically modifying the way cancer is treated. Active targeting using ligands or peptides on nanoparticles improves the delivery of drugs to cancer cells. Nanostructures such as drug peptide conjugates, chitosan nanoparticles, gold nanoparticles, carbon nanotubes, mesoporous silica-based nanoparticles, silver nanoparticles, hybrid lipid-polymer nanoparticles, iron oxide nanoparticles, and quantum dots may enable targeted drug delivery and enhanced therapeutic efficacy against CRC. Nanomedicines are presently being evaluated in clinical trials for the treatment of colorectal cancer, with the promise of more effective and individualised therapies. This article examines current nanomedicine patents for CRC, including the work of Delta-Fly, Merrimack, and Pfenning, Meaning & Partner, among others. In terms of future nanomedicine research and development, ligand production, particle size, and clearance are crucial factors. Lastly, the numerous nanostructures utilized in nanomedicine for targeted drug administration and diagnostics indicate optimistic prospects for enhancing CRC treatment. The successes of nanomedicine research and development for existing colon cancer treatments are also highlighted in this review.
Collapse
Affiliation(s)
- Satyam Sharma
- Department of Pharmacology and Toxicology, Export Promotions Industrial Park (EPIP), National Institute of Pharmaceutical Education and Research, Industrial Area, Vaishali, Hajipur, Bihar, 844102, India
| | - Sankha Bhattacharya
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| | - Kajal Joshi
- Department of Pharmacology and Toxicology, Export Promotions Industrial Park (EPIP), National Institute of Pharmaceutical Education and Research, Industrial Area, Vaishali, Hajipur, Bihar, 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, Export Promotions Industrial Park (EPIP), National Institute of Pharmaceutical Education and Research, Industrial Area, Vaishali, Hajipur, Bihar, 844102, India
| |
Collapse
|
3
|
Kasi PB, Mallela VR, Ambrozkiewicz F, Trailin A, Liška V, Hemminki K. Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances. Int J Mol Sci 2023; 24:ijms24097922. [PMID: 37175627 PMCID: PMC10178331 DOI: 10.3390/ijms24097922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and metastatic CRC is a fatal disease. The CRC-affected tissues show several molecular markers that could be used as a fresh strategy to create newer methods of treating the condition. The liver and the peritoneum are where metastasis occurs most frequently. Once the tumor has metastasized to the liver, peritoneal carcinomatosis is frequently regarded as the disease's final stage. However, nearly 50% of CRC patients with peritoneal carcinomatosis do not have liver metastases. New diagnostic and therapeutic approaches must be developed due to the disease's poor response to present treatment choices in advanced stages and the necessity of an accurate diagnosis in the early stages. Many unique and amazing nanomaterials with promise for both diagnosis and treatment may be found in nanotechnology. Numerous nanomaterials and nanoformulations, including carbon nanotubes, dendrimers, liposomes, silica nanoparticles, gold nanoparticles, metal-organic frameworks, core-shell polymeric nano-formulations, and nano-emulsion systems, among others, can be used for targeted anticancer drug delivery and diagnostic purposes in CRC. Theranostic approaches combined with nanomedicine have been proposed as a revolutionary approach to improve CRC detection and treatment. This review highlights recent studies, potential, and challenges for the development of nanoplatforms for the detection and treatment of CRC.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Gogoi P, Kaur G, Singh NK. Nanotechnology for colorectal cancer detection and treatment. World J Gastroenterol 2022; 28:6497-6511. [PMID: 36569271 PMCID: PMC9782835 DOI: 10.3748/wjg.v28.i46.6497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related mortality in the United States. Across the globe, people in the age group older than 50 are at a higher risk of CRC. Genetic and environmental risk factors play a significant role in the development of CRC. If detected early, CRC is preventable and treatable. Currently, available screening methods and therapies for CRC treatment reduce the incidence rate among the population, but the micrometastasis of cancer may lead to recurrence. Therefore, the challenge is to develop an alternative therapy to overcome this complication. Nanotechnology plays a vital role in cancer treatment and offers targeted chemotherapies directly and selectively to cancer cells, with enhanced therapeutic efficacy. Additionally, nanotechnology elevates the chances of patient survival in comparison to traditional chemotherapies. The potential of nanoparticles includes that they may be used simultaneously for diagnosis and treatment. These exciting properties of nanoparticles have enticed researchers worldwide to unveil their use in early CRC detection and as effective treatment. This review discusses contemporary methods of CRC screening and therapies for CRC treatment, while the primary focus is on the theranostic approach of nanotechnology in CRC treatment and its prospects. In addition, this review aims to provide knowledge on the advancement of nanotechnology in CRC and as a starting point for researchers to think about new therapeutic approaches using nanotechnology.
Collapse
Affiliation(s)
- Purnima Gogoi
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Geetika Kaur
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Nikhlesh K Singh
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| |
Collapse
|
5
|
Zhou J, Chen L, Chen L, Zeng X, Zhang Y, Yuan Y. Emerging role of nanoparticles in the diagnostic imaging of gastrointestinal cancer. Semin Cancer Biol 2022; 86:580-594. [DOI: 10.1016/j.semcancer.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
|
6
|
Waldner MJ, Neurath MF. Molecular Endoscopy for the Diagnosis and Therapeutic Monitoring of Colorectal Cancer. Front Oncol 2022; 12:835256. [PMID: 35280747 PMCID: PMC8913894 DOI: 10.3389/fonc.2022.835256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer related death in the western world. Its successful treatment requires early detection and removal of precursor lesions as well as individualized treatment of advanced disease. During recent years, molecular imaging techniques have shown promising results to improve current clinical practice. For instance, molecular endoscopy resulted in higher detection rates of precursors in comparison to conventional endoscopy in preclinical and clinical studies. Molecular confocal endomicroscopy allowed a further classification of suspect lesions as well as the prediction and monitoring of the therapeutic response. In this review, we summarize recent achievements for molecular imaging of CRC in preclinical studies, initial clinical trials and the remaining challenges for future translation into clinical practice.
Collapse
Affiliation(s)
- Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Al-Joufi FA, Setia A, Salem-Bekhit MM, Sahu RK, Alqahtani FY, Widyowati R, Aleanizy FS. Molecular Pathogenesis of Colorectal Cancer with an Emphasis on Recent Advances in Biomarkers, as Well as Nanotechnology-Based Diagnostic and Therapeutic Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:169. [PMID: 35010119 PMCID: PMC8746463 DOI: 10.3390/nano12010169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a serious disease that affects millions of people throughout the world, despite considerable advances in therapy. The formation of colorectal adenomas and invasive adenocarcinomas is the consequence of a succession of genetic and epigenetic changes in the normal colonic epithelium. Genetic and epigenetic processes associated with the onset, development, and metastasis of sporadic CRC have been studied in depth, resulting in identifying biomarkers that might be used to predict behaviour and prognosis beyond staging and influence therapeutic options. A novel biomarker, or a group of biomarkers, must be discovered in order to build an accurate and clinically useful test that may be used as an alternative to conventional methods for the early detection of CRC and to identify prospective new therapeutic intervention targets. To minimise the mortality burden of colorectal cancer, new screening methods with higher accuracy and nano-based diagnostic precision are needed. Cytotoxic medication has negative side effects and is restricted by medication resistance. One of the most promising cancer treatment techniques is the use of nano-based carrier system as a medication delivery mechanism. To deliver cytotoxic medicines, targeted nanoparticles might take advantage of differently expressed molecules on the surface of cancer cells. The use of different compounds as ligands on the surface of nanoparticles to interact with cancer cells, enabling the efficient delivery of antitumor medicines. Formulations based on nanoparticles might aid in early cancer diagnosis and help to overcome the limitations of traditional treatments, including low water solubility, nonspecific biodistribution, and restricted bioavailability. This article addresses about the molecular pathogenesis of CRC and highlights about biomarkers. It also provides conceptual knowledge of nanotechnology-based diagnostic techniques and therapeutic approaches for malignant colorectal cancer.
Collapse
Affiliation(s)
- Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia;
| | - Aseem Setia
- Department of Pharmacy, Shri Rawatpura Sarkar University, Raipur 492015, India
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ram Kumar Sahu
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, India
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| |
Collapse
|
8
|
Brar B, Ranjan K, Palria A, Kumar R, Ghosh M, Sihag S, Minakshi P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.699266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently occurring tumor in the human population. CRCs are usually adenocarcinomatous and originate as a polyp on the inner wall of the colon or rectum which may become malignant in the due course of time. Although the therapeutic options of CRC are limited, the early diagnosis of CRC may play an important role in preventive and therapeutic interventions to decrease the mortality rate. The CRC-affected tissues exhibit several molecular markers that may be exploited as the novel strategy to develop newer approaches for the treatment of the disease. Nanotechnology consists of a wide array of innovative and astonishing nanomaterials with both diagnostics and therapeutic potential. Several nanomaterials and nano formulations such as Carbon nanotubes, Dendrimer, Liposomes, Silica Nanoparticles, Gold nanoparticles, Metal-organic frameworks, Core-shell polymeric nano-formulations, Nano-emulsion System, etc can be used to targeted anticancer drug delivery and diagnostic purposes in CRC. The light-sensitive photosensitizer drugs loaded gold and silica nanoparticles can be used to diagnose as well as the killing of CRC cells by the targeted delivery of anticancer drugs to cancer cells. This review is focused on the recent advancement of nanotechnology in the diagnosis and treatment of CRC.
Collapse
|
9
|
Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev 2021; 42:227-258. [PMID: 33891325 DOI: 10.1002/med.21809] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Colon cancer is an adenocarcinoma, which subsequently develops into malignant tumors, if not treated properly. The current colon cancer therapy mainly revolves around chemotherapy, radiotherapy and surgery, but the search continues for more effective interventions. With the advancement of nanoparticles (NPs), it is now possible to diagnose and treat colon cancers with different types, shapes, and sizes of NPs. Nanoformulations such as quantum dots, iron oxide, polymeric NPs, dendrimers, polypeptides, gold NPs, silver NPs, platinum NPs, and cerium oxide have been either extensively used alone or in combination with other nanomaterials or drugs in colon cancer diagnosis, and treatments. These nanoformulations possess high biocompatibility and bioavailability, which makes them the most suitable candidates for cancer treatment. The size and shape of NPs are critical to achieving an effective drug delivery in cancer treatment and diagnosis. Most NPs currently are under different testing phases (in vitro, preclinical, and clinical), whereas some of them have been approved for therapeutic applications. We have comprehensively reviewed the recent advances in the applications of NPs-based formulations in colon cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Firdos A Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Albalawi
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Student of the volunteer/training program at IRMC
| | - Faheem H Pottoo
- College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Filali S, Pirot F, Miossec P. Biological Applications and Toxicity Minimization of Semiconductor Quantum Dots. Trends Biotechnol 2020; 38:163-177. [DOI: 10.1016/j.tibtech.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
|
11
|
Meng Q, Wang Z, Cui J, Cui Q, Dong J, Zhang Q, Li S. Design, Synthesis, and Biological Evaluation of Cytochrome P450 1B1 Targeted Molecular Imaging Probes for Colorectal Tumor Detection. J Med Chem 2018; 61:10901-10909. [DOI: 10.1021/acs.jmedchem.8b01633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiahua Cui
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qing Cui
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
12
|
Fiorica C, Mauro N, Pitarresi G, Scialabba C, Palumbo FS, Giammona G. Double-Network-Structured Graphene Oxide-Containing Nanogels as Photothermal Agents for the Treatment of Colorectal Cancer. Biomacromolecules 2017; 18:1010-1018. [PMID: 28192653 DOI: 10.1021/acs.biomac.6b01897] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we reported the production of hyaluronic acid/polyaspartamide-based double-network nanogels for the potential treatment of colorectal carcinoma. Graphene oxide, thanks to the huge aromatic surface area, allows to easily load high amount of irinotecan (33.0% w/w) and confers to the system hyperthermic properties when irradiated with a near-infrared (NIR) laser beam. We demonstrate that the release of antitumor drug is influenced both by the pH of the external medium and the NIR irradiation process. In vitro biological studies, conducted on human colon cancer cells (HCT 116), revealed that nanogels are uptaken by the cancer cells and, in the presence of the antitumor drug, can produce a synergistic hyperthermic/cytotoxic effect. Finally, 3D experiments demonstrate that it is possible to conduct thermal ablation of solid tumors after the intratumoral administration of nanogels.
Collapse
Affiliation(s)
- Calogero Fiorica
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Giovanna Pitarresi
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Fabio S Palumbo
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy.,Mediterranean Center for Human Advanced Biotechnologies (Med-Chab), Viale delle Scienze Ed.18, 90128 Palermo, Italy
| |
Collapse
|
13
|
Jayanthi VSPKSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 2016; 91:15-23. [PMID: 27984706 DOI: 10.1016/j.bios.2016.12.014] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/24/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023]
Abstract
Cancer is the second largest disease throughout the world with an increasing mortality rate over the past few years. The patient's survival rate is uncertain due to the limitations of cancer diagnosis and therapy. Early diagnosis of cancer is decisive for its successful treatment. A biomarker-based cancer diagnosis may significantly improve the early diagnosis and subsequent treatment. Biosensors play a crucial role in the detection of biomarkers as they are easy to use, portable, and can do analysis in real time. This review describes various biosensors designed for detecting nucleic acid and protein-based cancer biomarkers for cancer diagnosis. It mainly lays emphasis on different approaches to use electrochemical, optical, and mass-based transduction systems in cancer biomarker detection. It also highlights the analytical performances of various biosensor designs concerning cancer biomarkers in detail.
Collapse
Affiliation(s)
| | - Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Urmila Saxena
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
14
|
Progress of Multimodal Molecular Imaging Technology in Diagnosis of Tumor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60966-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem Rev 2016; 116:12234-12327. [DOI: 10.1021/acs.chemrev.6b00290] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gaixia Xu
- Key
Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong
Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Shuwen Zeng
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Butian Zhang
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Ken-Tye Yong
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | |
Collapse
|
16
|
Viswanath B, Kim S, Lee K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int J Nanomedicine 2016; 11:2491-504. [PMID: 27330292 PMCID: PMC4898029 DOI: 10.2147/ijn.s108715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The global incidence of colorectal cancer (CRC) is 1.3 million cases. It is the third most frequent cancer in males and females. Most CRCs are adenocarcinomas and often begin as a polyp on the inner wall of the rectum or colon. Some of these polyps become malignant, eventually. Detecting and removing these polyps in time can prevent CRC. Therefore, early diagnosis of CRC is advantageous for preventive and instant action interventions to decrease the mortality rates. Nanotechnology has been enhancing different methods for the detection and treatment of CRCs, and the research has provided hope within the scientific community for the development of new therapeutic strategies. This review presents the recent development of nanotechnology for the detection and treatment of CRC.
Collapse
Affiliation(s)
- Buddolla Viswanath
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Kiyoung Lee
- Division of Endocrinology and Metabolism, Gachon University Gil Hospital, Incheon, Republic of Korea
| |
Collapse
|