1
|
Picazo-Bueno JÁ, Ketelhut S, Schnekenburger J, Micó V, Kemper B. Off-axis digital lensless holographic microscopy based on spatially multiplexed interferometry. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22715. [PMID: 39161785 PMCID: PMC11331263 DOI: 10.1117/1.jbo.29.s2.s22715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Significance Digital holographic microscopy (DHM) is a label-free microscopy technique that provides time-resolved quantitative phase imaging (QPI) by measuring the optical path delay of light induced by transparent biological samples. DHM has been utilized for various biomedical applications, such as cancer research and sperm cell assessment, as well as for in vitro drug or toxicity testing. Its lensless version, digital lensless holographic microscopy (DLHM), is an emerging technology that offers size-reduced, lightweight, and cost-effective imaging systems. These features make DLHM applicable, for example, in limited resource laboratories, remote areas, and point-of-care applications. Aim In addition to the abovementioned advantages, in-line arrangements for DLHM also include the limitation of the twin-image presence, which can restrict accurate QPI. We therefore propose a compact lensless common-path interferometric off-axis approach that is capable of quantitative imaging of fast-moving biological specimens, such as living cells in flow. Approach We suggest lensless spatially multiplexed interferometric microscopy (LESSMIM) as a lens-free variant of the previously reported spatially multiplexed interferometric microscopy (SMIM) concept. LESSMIM comprises a common-path interferometric architecture that is based on a single diffraction grating to achieve digital off-axis holography. From a series of single-shot off-axis holograms, twin-image free and time-resolved QPI is achieved by commonly used methods for Fourier filtering-based reconstruction, aberration compensation, and numerical propagation. Results Initially, the LESSMIM concept is experimentally demonstrated by results from a resolution test chart and investigations on temporal stability. Then, the accuracy of QPI and capabilities for imaging of living adherent cell cultures is characterized. Finally, utilizing a microfluidic channel, the cytometry of suspended cells in flow is evaluated. Conclusions LESSMIM overcomes several limitations of in-line DLHM and provides fast time-resolved QPI in a compact optical arrangement. In summary, LESSMIM represents a promising technique with potential biomedical applications for fast imaging such as in imaging flow cytometry or sperm cell analysis.
Collapse
Affiliation(s)
- José Ángel Picazo-Bueno
- University of Muenster, Biomedical Technology Center, Muenster, Germany
- University of Valencia, Department of Optics, Optometry and Vision Science, Burjassot, Spain
| | - Steffi Ketelhut
- University of Muenster, Biomedical Technology Center, Muenster, Germany
| | | | - Vicente Micó
- University of Valencia, Department of Optics, Optometry and Vision Science, Burjassot, Spain
| | - Björn Kemper
- University of Muenster, Biomedical Technology Center, Muenster, Germany
| |
Collapse
|
2
|
Zdańkowski P, Winnik J, Patorski K, Gocłowski P, Ziemczonok M, Józwik M, Kujawińska M, Trusiak M. Common-path intrinsically achromatic optical diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:4219-4234. [PMID: 34457410 PMCID: PMC8367224 DOI: 10.1364/boe.428828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In this work we propose an open-top like common-path intrinsically achromatic optical diffraction tomography system. It operates as a total-shear interferometer and employs Ronchi-type amplitude diffraction grating, positioned in between the camera and the tube lens without an additional 4f system, generating three-beam interferograms with achromatic second harmonic. Such configuration makes the proposed system low cost, compact and immune to vibrations. We present the results of the measurements of 3D-printed cell phantom using laser diode (coherent) and superluminescent diode (partially coherent) light sources. Broadband light sources can be naturally employed without the need for any cumbersome compensation because of the intrinsic achromaticity of the interferometric recording (holograms generated by -1st and +1st conjugated diffraction orders are not affected by the illumination wavelength). The results show that the decreased coherence offers much reduced coherent noise and higher fidelity tomographic reconstruction especially when applied nonnegativity constraint regularization procedure.
Collapse
Affiliation(s)
- Piotr Zdańkowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
- These authors contributed equally to this work
| | - Julianna Winnik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
- These authors contributed equally to this work
| | - Krzysztof Patorski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Paweł Gocłowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Michał Ziemczonok
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Michał Józwik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Małgorzata Kujawińska
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| |
Collapse
|
3
|
Yang Y, Huang HY, Guo CS. Polarization holographic microscope slide for birefringence imaging of anisotropic samples in microfluidics. OPTICS EXPRESS 2020; 28:14762-14773. [PMID: 32403511 DOI: 10.1364/oe.389973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/11/2020] [Indexed: 05/27/2023]
Abstract
Birefringence is an important optical property of anisotropic materials arising from anisotropies of tissue microstructures. Birefringence parameters have been found to be important to understand optical anisotropic architecture of many materials and polarization imaging has been applied in many researches in the field of biology and medicine. Here, we propose a scheme to miniaturize a double-channel polarization holographic interferometer optics to create a polarization holographic microscope slide (P-HMS) suitable for integrating with microfluidic lab-on-a-chip (LoC) systems. Based on the P-HMS combined with a simple reconstruction algorithm described in the paper, we can not only simultaneously realize holographic imaging of two orthogonal polarization components of dynamic samples in a microfluidic channel but also quantitative measurement of 2D birefringence information, both including the birefringence phase retardation and optic-axis orientation. This chip interferometer allows for off-axis double-channel polarization digital holographic recording using only a single illumination beam without need of any beam splitter or mirror. Its quasi-common path configuration and self-aligned design also make it tolerant to vibrations and misalignment. This work about the P-HMS could play a positive role in promoting the application of birefringence imaging in microfluidic LoC technology.
Collapse
|
4
|
Patorski K, Zdańkowski P, Trusiak M. Grating deployed total-shear 3-beam interference microscopy with reduced temporal coherence. OPTICS EXPRESS 2020; 28:6893-6908. [PMID: 32225927 DOI: 10.1364/oe.383201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Interference microscopy is a powerful optical imaging technique providing quantitative phase distribution information to characterize various type technical and biomedical objects. Static and dynamic objects and processes can be investigated. In this paper we propose very compact, common-path and partially coherent diffraction grating-based interference microscopy system for studying small objects like single cells with low densities being sparsely distributed in the field of view. Simple binary amplitude diffraction grating is the only additional element to be introduced into a conventional microscope optical system. By placing it at a proper distance in front of the microscope image plane the total-shear operation mode is deployed resulting in interferograms of the object-reference beam type. Depending on the grating to image plane separation distance two or three-beam interferograms are generated. The latter ones are advantageous since they contain achromatic second harmonics in the interferogram intensity distributions. This feature enables to use reduced temporal coherence light sources for the microscope to reduce coherent noise and parasitic interference patterns. For this purpose we employ the laser diode with driving current below the threshold one. Results of conducted experiments including automatic computer processing of interferograms fully corroborate analytical description of the proposed method and illustrate its capabilities for studying static and dynamic phase objects.
Collapse
|
5
|
Mirsky SK, Shaked NT. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution. OPTICS EXPRESS 2019; 27:26708-26720. [PMID: 31674546 DOI: 10.1364/oe.27.026708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
It has long been assumed that off-axis holography is less spatial bandwidth efficient than on-axis holography. Six-pack holography (6PH) is the first off-axis configuration that changes this paradigm. We present the first experimental realization of 6PH, an off-axis interferometric system capable of spatially multiplexing six complex wavefronts while using the same number of camera pixels needed for a single off-axis hologram. Each of the six parallel complex wavefronts is encoded using a different fringe orientation and can be fully reconstructed. This technique is especially useful for dynamic samples, as it allows the acquisition of six complex wavefronts simultaneously. There are many applications for the data that can be compressed into the six channels. Here, we utilize 6PH to increase resolution in dynamic synthetic aperture imaging, where each of the six optically compressed off-axis holograms encodes a different spatial frequency range of the imaged sample, yielding 1.62 × resolution enhancement.
Collapse
|
6
|
Trusiak M, Picazo-Bueno JA, Patorski K, Zdańkowski P, Mico V. Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31522487 PMCID: PMC6997581 DOI: 10.1117/1.jbo.24.9.096004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Single-shot, two-frame, π-shifted spatially multiplexed interference microscopy (π-SMIM) is presented as an improvement to previous SMIM implementations, introducing a versatile, robust, fast, and accurate method for cumbersome, noisy, and low-contrast phase object analysis. The proposed π-SMIM equips a commercially available nonholographic microscope with a high-speed (video frame rate) enhanced quantitative phase imaging (QPI) capability by properly placing a beam-splitter in the microscope embodiment to simultaneously (in a single shot) record two holograms mutually phase shifted by π radians at the expense of reducing the field of view. Upon subsequent subtractive superimposition of holograms, a π-hologram is generated with reduced background and improved modulation of interference fringes. These features determine superior phase retrieval quality, obtained by employing the Hilbert spiral transform on the π-hologram, as compared with a single low-quality (low signal-to-noise ratio) hologram analysis. In addition, π-SMIM enables accurate in-vivo analysis of high dynamic range phase objects, otherwise measurable only in static regime using time-consuming phase-shifting. The technique has been validated utilizing a 20 × / 0.46 NA objective in a regular Olympus BX-60 upright microscope for QPI of different lines of prostate cancer cells and flowing microbeads.
Collapse
Affiliation(s)
- Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
- Address all correspondence to Maciej Trusiak, E-mail: ; Vicente Mico, E-mail:
| | - Jose-Angel Picazo-Bueno
- Universitat de Valencia, Departamento de Óptica y Optometría y Ciencias de la Visión, Burjassot, Spain
| | - Krzysztof Patorski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
| | - Piotr Zdańkowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
| | - Vicente Mico
- Universitat de Valencia, Departamento de Óptica y Optometría y Ciencias de la Visión, Burjassot, Spain
- Address all correspondence to Maciej Trusiak, E-mail: ; Vicente Mico, E-mail:
| |
Collapse
|
7
|
Picazo-Bueno JA, Trusiak M, Micó V. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube. OPTICS EXPRESS 2019; 27:5655-5669. [PMID: 30876163 DOI: 10.1364/oe.27.005655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 05/21/2023]
Abstract
Slightly off-axis digital holographic microscopy (SO-DHM) has recently emerged as a novel experimental arrangement for quantitative phase imaging (QPI). It offers improved capabilities in conventional on-axis and off-axis interferometric configurations. In this contribution, we report on a single-shot SO-DHM approach based on an add-on module adapted to the exit port of a regular microscope. The module employs a beamsplitter (BS) cube interferometer and includes, in addition, a Stokes lens (SL) for astigmatism compensation. Each recorded frame contains two fields of view (FOVs) of the sample, where each FOV is a hologram which is phase shifted by π rads with respect to the other. These two simultaneously recorded holograms are numerically processed, in order to retrieve complex amplitude distribution with enhanced quality. The tradeoff is done in the FOV which becomes penalized as a consequence of the simultaneous recording of the two holograms in a single snapshot. Experimental validation is presented for a wide variety of samples using a regular Olympus BX-60 upright microscope. The proposed approach provides an optimized use of the imaging system, in terms of the space-bandwidth product, in comparison with off-axis configuration; allows the analysis of fast-dynamic events, owing to its single-shot capability when compared with on-axis arrangement; and becomes easily implementable in conventional white-light microscopes for upgrading them into holographic microscopes for QPI.
Collapse
|
8
|
Picazo-Bueno JÁ, Trusiak M, García J, Patorski K, Micó V. Hilbert-Huang single-shot spatially multiplexed interferometric microscopy. OPTICS LETTERS 2018; 43:1007-1010. [PMID: 29489765 DOI: 10.1364/ol.43.001007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/18/2018] [Indexed: 05/21/2023]
Abstract
Hilbert-Huang single-shot spatially multiplexed interferometric microscopy (H2S2MIM) is presented as the implementation of a robust, fast, and accurate single-shot phase estimation algorithm with an extremely simple, low-cost, and highly stable way to convert a bright field microscope into a holographic one using partially coherent illumination. Altogether, H2S2MIM adds high-speed (video frame rate) quantitative phase imaging capability to a commercially available nonholographic microscope with improved phase reconstruction (coherence noise reduction). The technique has been validated using a 20×/0.46 NA objective in a regular Olympus BX-60 upright microscope for static, as well as dynamic, samples showing perfect agreement with the results retrieved from a temporal phase-shifting algorithm.
Collapse
|
9
|
Picazo-Bueno JÁ, Cojoc D, Iseppon F, Torre V, Micó V. Single-shot, dual-mode, water-immersion microscopy platform for biological applications. APPLIED OPTICS 2018; 57:A242-A249. [PMID: 29328152 DOI: 10.1364/ao.57.00a242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
A single-shot water-immersion digital holographic microscope combined with broadband (white light) illumination mode is presented. This double imaging platform allows conventional incoherent visualization with phase holographic imaging of inspected samples. The holographic architecture is implemented at the image space (that is, after passing the microscope lens), thus reducing the sensitivity of the system to vibrations and/or thermal changes in comparison to regular interferometers. Because of the off-axis holographic recording principle, quantitative phase images of live biosamples can be recorded in a single camera snapshot at full-field geometry without any moving parts. And, the use of water-immersion imaging lenses maximizes the achievable resolution limit. This dual-mode microscope platform is first calibrated using microbeads, then applied to the characterization of fixed cells (neuroblastoma, breast cancer, and hippocampal neuronal cells) and, finally, validated for visualization of dynamic living cells (hippocampal neurons).
Collapse
|
10
|
Han L, Cheng ZJ, Yang Y, Wang BY, Yue QY, Guo CS. Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration. OPTICS EXPRESS 2017; 25:21877-21886. [PMID: 29041479 DOI: 10.1364/oe.25.021877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
We propose a double-channel angular-multiplexing polarization holographic imaging system with common-path and off-axis configurations. In the system, its input plane is spatially divided into three windows: an object window and two reference windows, and two orthogonal linear polarizers are attached, respectively, on the two reference windows; a two-dimensional cross grating is inserted between the input and output planes of the system. Thus the object beam passing through the object window and the two orthogonal polarized reference beams passing through the two reference windows can overlap each other at the output plane of the system and form a double-channel angular-multiplexing polarization hologram (DC-AM-PH). Using this system, the complex amplitude distributions of two orthogonal polarized components from an object can be recorded and reconstructed by one single-shot DC-AM-PH at the same time. Theoretical analysis and experimental results demonstrated that the system can be used to measure the Jones matrix parameters of polarization-sensitive or birefringent materials.
Collapse
|
11
|
Picazo-Bueno JÁ, Zalevsky Z, García J, Micó V. Superresolved spatially multiplexed interferometric microscopy. OPTICS LETTERS 2017; 42:927-930. [PMID: 28248333 DOI: 10.1364/ol.42.000927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Superresolution capability by angular and time multiplexing is implemented onto a regular microscope. The technique, named superresolved spatially multiplexed interferometric microscopy (S2MIM), follows our previously reported SMIM technique [Opt. Express22, 14929 (2014)OPEXFF1094-408710.1364/OE.22.014929, J. Biomed. Opt.21, 106007 (2016)JBOPFO1083-366810.1117/1.JBO.21.10.106007] improved with superresolved imaging. All together, S2MIM updates a commercially available non-holographic microscope into a superresolved holographic one. Validation is presented for an Olympus BX-60 upright microscope with resolution test targets.
Collapse
|