1
|
Zhang C, Li T, Zhao Q, Ma R, Hong Z, Huang X, Gao P, Liu J, Zhao J, Wang Z. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404709. [PMID: 39082395 DOI: 10.1002/smll.202404709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Indexed: 11/02/2024]
Abstract
Liquid biopsy technology provides invaluable support for the early diagnosis of tumors and surveillance of disease course by detecting tumor-related biomarkers in bodily fluids. Currently, liquid biopsy techniques are mainly divided into two categories: biomarker and label-free. Biomarker liquid biopsy techniques utilize specific antibodies or probes to identify and isolate target cells, exosomes, or molecules, and these techniques are widely used in clinical practice. However, they have certain limitations including dependence on tumor markers, alterations in cell biological properties, and high cost. In contrast, label-free liquid biopsy techniques directly utilize physical or chemical properties of cells, exosomes, or molecules for detection and isolation. These techniques have the advantage of not needing labeling, not impacting downstream analysis, and low detection cost. However, most are still in the research stage and not yet mature. This review first discusses recent advances in liquid biopsy techniques for early tumor diagnosis and disease surveillance. Several current techniques are described in detail. These techniques exploit differences in biomarkers, size, density, deformability, electrical properties, and chemical composition in tumor components to achieve highly sensitive tumor component identification and separation. Finally, the current research progress is summarized and the future research directions of the field are discussed.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Qian Zhao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Rui Ma
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhengchao Hong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Jingjing Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| |
Collapse
|
2
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
3
|
Schie IW, Stiebing C, Popp J. Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210137VR. [PMID: 34387049 PMCID: PMC8358667 DOI: 10.1117/1.jbo.26.8.080601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Raman spectroscopy has shown very promising results in medical diagnostics by providing label-free and highly specific molecular information of pathological tissue ex vivo and in vivo. Nevertheless, the high specificity of Raman spectroscopy comes at a price, i.e., low acquisition rate, no direct access to depth information, and limited sampling areas. However, a similar case regarding advantages and disadvantages can also be made for other highly regarded optical modalities, such as optical coherence tomography, autofluorescence imaging and fluorescence spectroscopy, fluorescence lifetime microscopy, second-harmonic generation, and others. While in these modalities the acquisition speed is significantly higher, they have no or only limited molecular specificity and are only sensitive to a small group of molecules. It can be safely stated that a single modality provides only a limited view on a specific aspect of a biological specimen and cannot assess the entire complexity of a sample. To solve this issue, multimodal optical systems, which combine different optical modalities tailored to a particular need, become more and more common in translational research and will be indispensable diagnostic tools in clinical pathology in the near future. These systems can assess different and partially complementary aspects of a sample and provide a distinct set of independent biomarkers. Here, we want to give an overview on the development of multimodal systems that use RS in combination with other optical modalities to improve the diagnostic performance.
Collapse
Affiliation(s)
- Iwan W. Schie
- Leibniz Institute of Photonic Technology, Jena, Germany
- University of Applied Sciences—Jena, Department for Medical Engineering and Biotechnology, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
| |
Collapse
|
4
|
Kedarisetti P, Bouvet VR, Shi W, Bergman CN, Dufour J, Kashani Ilkhechi A, Bell KL, Paproski RJ, Lewis JD, Wuest FR, Zemp RJ. Enrichment and ratiometric detection of circulating tumor cells using PSMA- and folate receptor-targeted magnetic and surface-enhanced Raman scattering nanoparticles. BIOMEDICAL OPTICS EXPRESS 2020; 11:6211-6230. [PMID: 33282485 PMCID: PMC7687927 DOI: 10.1364/boe.410527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 06/12/2023]
Abstract
The presence of circulating tumor cells (CTCs) in a patient's bloodstream is a hallmark of metastatic cancer. The detection and analysis of CTCs is a promising diagnostic and prognostic strategy as they may carry useful genetic information from their derived primary tumor, and the enumeration of CTCs in the bloodstream has been known to scale with disease progression. However, the detection of CTCs is a highly challenging task owing to their sparse numbers in a background of billions of background blood cells. To effectively utilize CTCs, there is a need for an assay that can detect CTCs with high specificity and can locally enrich CTCs from a liquid biopsy. We demonstrate a versatile methodology that addresses these needs by utilizing a combination of nanoparticles. Enrichment is achieved using targeted magnetic nanoparticles and high specificity detection is achieved using a ratiometric detection approach utilizing multiplexed targeted and non-targeted surface-enhanced Raman Scattering Nanoparticles (SERS-NPs). We demonstrate this approach with model prostate and cervical circulating tumor cells and show the ex vivo utility of our methodology for the detection of PSMA or folate receptor over-expressing CTCs. Our approach allows for the mitigation of interference caused by the non-specific uptake of nanoparticles by other cells present in the bloodstream and our results from magnetically trapped CTCs reveal over a 2000% increase in targeted SERS-NP signal over non-specifically bound SERS-NPs.
Collapse
Affiliation(s)
- Pradyumna Kedarisetti
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Vincent R. Bouvet
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Wei Shi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Cody N. Bergman
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Afshin Kashani Ilkhechi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Kevan L. Bell
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Robert J. Paproski
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Frank R. Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
5
|
Vardaki MZ, Kourkoumelis N. Tissue Phantoms for Biomedical Applications in Raman Spectroscopy: A Review. Biomed Eng Comput Biol 2020; 11:1179597220948100. [PMID: 32884391 PMCID: PMC7440735 DOI: 10.1177/1179597220948100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Raman spectroscopy is a group of analytical techniques, currently applied in several research fields, including clinical diagnostics. Tissue-mimicking optical phantoms have been established as an essential intermediate stage for medical applications with their employment from spectroscopic techniques to be constantly growing. This review outlines the types of tissue phantoms currently employed in different biomedical applications of Raman spectroscopy, focusing on their composition and optical properties. It is therefore an attempt to present an informed range of options for potential use to the researchers.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Willadsen M, Chaise M, Yarovoy I, Zhang AQ, Parashurama N. Engineering molecular imaging strategies for regenerative medicine. Bioeng Transl Med 2018; 3:232-255. [PMID: 30377663 PMCID: PMC6195904 DOI: 10.1002/btm2.10114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The reshaping of the world's aging population has created an urgent need for therapies for chronic diseases. Regenerative medicine offers a ray of hope, and its complex solutions include material, cellular, or tissue systems. We review basics of regenerative medicine/stem cells and describe how the field of molecular imaging, which is based on quantitative, noninvasive, imaging of biological events in living subjects, can be applied to regenerative medicine in order to interrogate tissues in innovative, informative, and personalized ways. We consider aspects of regenerative medicine for which molecular imaging will benefit. Next, genetic and nanoparticle-based cell imaging strategies are discussed in detail, with modalities like magnetic resonance imaging, optical imaging (near infra-red, bioluminescence), raman microscopy, and photoacoustic microscopy), ultrasound, computed tomography, single-photon computed tomography, and positron emission tomography. We conclude with a discussion of "next generation" molecular imaging strategies, including imaging host tissues prior to cell/tissue transplantation.
Collapse
Affiliation(s)
- Matthew Willadsen
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - Marc Chaise
- Jacobs School of Medicine and Biomedical Sciences University at Buffalo State University of New York 955 Main St., Buffalo, New York 14203
| | - Iven Yarovoy
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - An Qi Zhang
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228.,Department of Biomedical Engineering University at Buffalo, State University of New York, Bonner Hall Buffalo New York 14228.,Clinical and Translation Research Center (CTRC) University at Buffalo, State University of New York 875 Ellicott St., Buffalo, New York 14203
| |
Collapse
|
7
|
Segura-Uribe JJ, Farfán-García ED, Guerra-Araiza C, Ciprés-Flores FJ, García-dela Torre P, Soriano-Ursúa MA. Differences in brain regions of three mice strains identified by label-free micro-Raman. SPECTROSCOPY LETTERS 2018. [DOI: 10.1080/00387010.2018.1473883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Julia Jeanett Segura-Uribe
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eunice Dalet Farfán-García
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Fabiola Jimena Ciprés-Flores
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Paola García-dela Torre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marvin Antonio Soriano-Ursúa
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
8
|
Cialla-May D, Zheng XS, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 2018. [PMID: 28639667 DOI: 10.1039/c7cs00172j] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of surface-enhanced Raman spectroscopy (SERS) in biological and biomedical detection schemes is feasible due to its excellent molecular specificity and high sensitivity as well as the capability of SERS to be performed in complex biological compositions. SERS-based investigation of cells, which are the basic structure and functional unit of organisms, represents the starting point of this review. It is demonstrated that SERS provides a deep understanding of living cells as well as their microenvironment which is needed to assess the development of diseases. The clinical relevance of SERS is proved by its application for the detection of cancer cells and tumour margins under in vivo conditions and examples for theranostic approaches are discussed. This review article provides a comprehensive overview of the recent progress within the last 3 years.
Collapse
Affiliation(s)
- D Cialla-May
- Friedrich Schiller University Jena, Institute of Physical Chemical and Abbe Center of Photonics, Helmholtzweg 4, 07745 Jena, Germany.
| | | | | | | |
Collapse
|