1
|
Lee YJ, Moon BC, Lee DK, Ahn JH, Gong G, Um Y, Lee SM, Kim KH, Ko JK. Sustainable production of microbial protein from carbon dioxide in the integrated bioelectrochemical system using recycled nitrogen sources. WATER RESEARCH 2024; 268:122576. [PMID: 39395365 DOI: 10.1016/j.watres.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Given the urgency of climate change, it is imperative to develop innovative technologies for repurposing CO2 into value-added products to achieve carbon neutrality. Additionally, repurposing nitrogen-source-derived wastewater streams is crucial, focusing on sustainability rather than conventional nitrogen removal in wastewater treatment plants. In this context, microbial protein (MP) production presents a sustainable and promising approach for transforming recovered low-value resources into high-quality feed and food. We assessed MP production by hydrogen-oxidizing bacteria (HOB) utilizing CO2 and various nitrogen sources. Specifically, we investigated MP production by two different HOB strains, Cupriavidus necator H16 and Xanthobacter viscosus 7d, within an integrated water-splitting biosynthetic system that generates in situ H2 via water electrolysis. The electroautotrophically produced MPs of C. necator H16 and X. viscosus 7d exhibited amino acid contents of 555 and 717 mg protein/g cell dry weight, with 243 and 299 mg essential amino acid/g cell dry weight, respectively. They could serve as viable alternatives to conventional food/feed sources like fishmeal or soybean protein. Ammonium-rich wastewater streams are preferable for MP production in integrated bioelectrochemical systems. This study provides valuable insights into sustainable, carbon-neutral MP production using CO2, water, renewable electricity, and recycled nitrogen sources.
Collapse
Affiliation(s)
- Yeon Ji Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Cheul Moon
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dong Ki Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Department of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
2
|
Huang Y, Zhang T, Hu H, Duan X, Wu K, Chai X, He D. Trans-cinnamaldehyde fumigation inhibits Escherichia coli by affecting the mechanism of intracellular biological macromolecules. Nat Prod Res 2024:1-12. [PMID: 38516726 DOI: 10.1080/14786419.2024.2331611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
This study aimed to determine the antibacterial mechanism of cinnamaldehyde fumigation in Escherichia coli (E. coli). Through vapour fumigation, cinnamaldehyde was confirmed to exhibit effective antibacterial activity against E. coli. The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) were 0.25 μL/mL and 0.5 μL/mL, respectively. Based on transmission electron microscopy, the wrinkled bacterial cells observed after fumigation could be related to the leakage of intracellular substances. Laser tweezers Raman spectroscopy revealed changes in the main chain of proteins, the hydrogen bond system and spatial structure, and single- and double-stranded DNA breaks. In addition, breakage of the fatty acyl chain backbone was found to affect the vertical order degree of the lipid bilayer and cell membrane fluidity, thereby inhibiting the growth of E. coli. Overall, our findings indicate that cinnamaldehyde fumigation inhibits E. coli growth by inducing changes in intracellular biological macromolecules.
Collapse
Affiliation(s)
- Yuqiang Huang
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Tong Zhang
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Huiying Hu
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Xuejuan Duan
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Kegang Wu
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Xianghua Chai
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Dong He
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Jiang G, Yu L, Zhang M, Wang F, Zhang S. Poly(propylene carbonate)/poly(3‐hydroxybutyrate)‐based bionanocomposites reinforced with cellulose nanocrystal for potential application as a packaging material. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Guo Jiang
- The Key Laboratory of Polymer Processing Engineering of the Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced ManufacturingSouth China University of Technology Guangzhou 510640 P.R. China
| | - Li Yu
- The Key Laboratory of Polymer Processing Engineering of the Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced ManufacturingSouth China University of Technology Guangzhou 510640 P.R. China
| | - Mengdi Zhang
- The Key Laboratory of Polymer Processing Engineering of the Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced ManufacturingSouth China University of Technology Guangzhou 510640 P.R. China
| | - Feng Wang
- The Key Laboratory of Polymer Processing Engineering of the Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced ManufacturingSouth China University of Technology Guangzhou 510640 P.R. China
| | - Shuidong Zhang
- The Key Laboratory of Polymer Processing Engineering of the Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced ManufacturingSouth China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|
4
|
Zhang Y, Miao Z, Huang X, Wang X, Liu J, Wang G. Laser Tweezers Raman Spectroscopy (LTRS) to Detect Effects of Chlorine Dioxide on Individual Nosema bombycis Spores. APPLIED SPECTROSCOPY 2019; 73:774-780. [PMID: 30444144 DOI: 10.1177/0003702818817522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The microsporidium Nosema bombycis (Nb) causes pebrine, a fatal disease in sericulture. Nb is effectively killed by chlorine dioxide (ClO2); however, the precise killing mechanism remains unclear. We used laser tweezers Raman spectroscopy (LTRS) to monitor the action of ClO2 on individual Nb spores in real time. Raman peaks of ClO2 appeared in Nb spores, corresponding to decreased peaks of trehalose that gradually disappeared. A peak (1658 cm-1) corresponding to the protein α-helix significantly weakened while that (1668 cm-1) corresponding to irregular protein structures was enhanced; their intensities were negatively correlated in a certain time range and dependent on ClO2 concentration. The intensities of peaks at 782 cm-1 (nucleic acids) and 1004 cm-1 (phenylalanine of protein) did not change evidently even under extremely high ClO2 concentrations. Thus, ClO2 rapidly permeates the Nb spore wall, changing the protein secondary structure to lose biological function and destroy permeability, causing trehalose to leak out. These effects are ClO2 concentration-dependent, but no other obvious changes to biomacromolecules were detected. Single-cell analysis using LTRS is an effective method to monitor the action of chemical sporicides on microbes in real time, providing insight into the heterogeneity of cell stress resistance.
Collapse
Affiliation(s)
- Yu Zhang
- 1 School of Physical Science and Technology, Guangxi Normal University, Guangxi, China
- 2 Guangxi Academy of Sciences, Guangxi, China
| | - Zhenbin Miao
- 1 School of Physical Science and Technology, Guangxi Normal University, Guangxi, China
- 2 Guangxi Academy of Sciences, Guangxi, China
| | - Xuhua Huang
- 3 Guangxi Academy of Sericultural Sciences, Guangxi, China
| | | | - Junxian Liu
- 1 School of Physical Science and Technology, Guangxi Normal University, Guangxi, China
| | - Guiwen Wang
- 2 Guangxi Academy of Sciences, Guangxi, China
| |
Collapse
|