1
|
Yu TC, Davis SJ, Scimone MT, Grimble J, Maguluri G, Anand S, Cheng CE, Maytin E, Cao X, Pogue BW, Zhao Y. High Sensitivity Singlet Oxygen Luminescence Sensor Using Computational Spectroscopy and Solid-State Detector. Diagnostics (Basel) 2023; 13:3431. [PMID: 37998567 PMCID: PMC10670281 DOI: 10.3390/diagnostics13223431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
This paper presents a technique for high sensitivity measurement of singlet oxygen luminescence generated during photodynamic therapy (PDT) and ultraviolet (UV) irradiation on skin. The high measurement sensitivity is achieved by using a computational spectroscopy (CS) approach that provides improved photon detection efficiency compared to spectral filtering methodology. A solid-state InGaAs photodiode is used as the CS detector, which significantly reduces system cost and improves robustness compared to photomultiplier tubes. The spectral resolution enables high-accuracy determination and subtraction of photosensitizer fluorescence baseline without the need for time-gating. This allows for high sensitivity detection of singlet oxygen luminescence emission generated by continuous wave light sources, such as solar simulator sources and those commonly used in PDT clinics. The value of the technology is demonstrated during in vivo and ex vivo experiments that show the correlation of measured singlet oxygen with PDT treatment efficacy and the illumination intensity on the skin. These results demonstrate the potential use of the technology as a dosimeter to guide PDT treatment and as an analytical tool supporting the development of improved sunscreen products for skin cancer prevention.
Collapse
Affiliation(s)
- Tiffany C. Yu
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| | - Steve J. Davis
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| | | | - John Grimble
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| | - Gopi Maguluri
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| | | | | | | | - Xu Cao
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| | - Youbo Zhao
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| |
Collapse
|
2
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14:1265751. [PMID: 37795091 PMCID: PMC10545965 DOI: 10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Changliang Chi
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Jiang Zhao
- Department of Urology, Xi’an First Hospital, Xi’an, China
| | - Eunice Chong
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ke Xin Casey Chin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nicole Zian Vi Tan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Korolev Dmitry
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
|
4
|
Davis SJ, Zhao Y, Yu TC, Maytin EV, Anand S, Hasan T, Pogue BW. Singlet Molecular Oxygen: from COIL Lasers to Photodynamic Cancer Therapy. J Phys Chem B 2023; 127:2289-2301. [PMID: 36893448 PMCID: PMC11209853 DOI: 10.1021/acs.jpcb.2c07330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Translation of experimental techniques from one scientific discipline to another is often difficult but rewarding. Knowledge gained from the new area can lead to long lasting and fruitful collaborations with concomitant development of new ideas and studies. In this Review Article, we describe how early work on the chemically pumped atomic iodine laser (COIL) led to the development of a key diagnostic for a promising cancer treatment known as photodynamic therapy (PDT). The highly metastable excited state of molecular oxygen, a1Δg, also known as singlet oxygen, is the link between these disparate fields. It powers the COIL laser and is the active species that kills cancer cells during PDT. We describe the fundamentals of both COIL and PDT and trace the development path of an ultrasensitive dosimeter for singlet oxygen. The path from COIL lasers to cancer research was relatively long and required medical and engineering expertise from numerous collaborations. As we show below, the knowledge gained in the COIL research, combined with these extensive collaborations, has resulted in our being able to show a strong correlation between cancer cell death and the singlet oxygen measured during PDT treatments of mice. This progress is a key step in the eventual development of a singlet oxygen dosimeter that could be used to guide PDT treatments and improve outcomes.
Collapse
Affiliation(s)
- S J Davis
- Physical Sciences Inc., 20 New England Business Center, Andover, Massachusetts 01810, United States
| | - Y Zhao
- Physical Sciences Inc., 20 New England Business Center, Andover, Massachusetts 01810, United States
| | - T C Yu
- Physical Sciences Inc., 20 New England Business Center, Andover, Massachusetts 01810, United States
| | - E V Maytin
- Departments of Biomedical Engineering and Dermatology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - S Anand
- Departments of Biomedical Engineering and Dermatology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - T Hasan
- Wellman Center for Photomedicine, 40 Blossom Street, BAR 314A, Boston, Massachusetts 02114, United States
| | - B W Pogue
- Department of Medical Physics, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
5
|
Parilov E, Beeson K, Potasek M, Zhu T, Sun H, Sourvanos D. A Monte Carlo simulation for Moving Light Source in Intracavity PDT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12359:1235903. [PMID: 37206985 PMCID: PMC10194003 DOI: 10.1117/12.2649538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We developed a simulation method for modeling the light fluence delivery in intracavity Photodynamic Therapy (icav-PDT) for pleural lung cancer using a moving light source. Due to the large surface area of the pleural lung cavity, the light source needs to be moved to deliver a uniform dose around the entire cavity. While multiple fixed detectors are used for dosimetry at a few locations, an accurate simulation of light fluence and fluence rate is still needed for the rest of the cavity. We extended an existing Monte Carlo (MC) based light propagation solver to support moving light sources by densely sampling the continuous light source trajectory and assigning the proper number of photon packages launched along the way. The performance of Simphotek GPU CUDA-based implementation of the method - PEDSy-MC - has been demonstrated on a life-size lung-shaped phantom, custom printed for testing icav-PDT navigation system at the Perlman School of Medicine (PSM) - calculations completed under a minute (for some cases) and within minutes have been achieved. We demonstrate results within a 5% error of the analytic solution for multiple detectors in the phantom. PEDSy-MC is accompanied by a dose-cavity visualization tool that allows real-time inspection of dose values of the treated cavity in 2D and 3D, which will be expanded to ongoing clinical trials at PSM. PSM has developed a technology to measure 8-detectors in a pleural cavity phantom using Photofrin-mediated PDT that has been used during validation.
Collapse
Affiliation(s)
| | - Karl Beeson
- Simphotek, Inc., 211 Warren St., Newark, NJ 07103
| | - Mary Potasek
- Simphotek, Inc., 211 Warren St., Newark, NJ 07103
| | - Timothy Zhu
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongjing Sun
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Sun H, Rastogi V, Zhu TC. Evaluation of Fractionated Photofrin-mediated Photodynamic Therapy Using Different Light Fluences with Reactive Oxygen Species Explicit Dosimetry (ROSED). PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12359:1235906. [PMID: 37378071 PMCID: PMC10299793 DOI: 10.1117/12.2650434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Photodynamic therapy (PDT) is an established modality for cancer treatment, and reactive oxygen species explicit dosimetry (ROSED), based on direct measurements of in-vivo light fluence (rate), in-vivo photofrin concentration, and tissue oxygenation concentration, has been proved to provide the best dosimetric quantity which can be used to predict non-fractionated PDT outcome. This study performed ROSED for Photofrin-mediated PDT for mice bearing radiation-induced fibrosacorma (RIF) tumor. As demonstrated by our previous study, fractionated PDT with a 2-hour time interval can significantly improve the long-term cure rate (from 15% to 65% at 90 days), and it tends to increase as the light dose for the first light fraction gets larger. This study focused on further improving the long-term cure rate without introducing apparent toxicity using combinations of different first light fraction lengths and total light fluences. Photofrin was injected through the mouse tail vein at a concentration of 5 mg/kg. After 18~24 hours, treatment was delivered with a collimated laser beam of 1 cm diameter at 630 nm. Mice were treated using two fractions of light fluences with a 2-hour dark interval. Different dose metrics were quantified, including light fluence, PDT dose, and [ROS]rx. In addition, the total reacted [ROS]rx and treatment outcomes were evaluated and compared to identify the optimal light fraction length and total light fluence.
Collapse
Affiliation(s)
- Hongjing Sun
- Department of Radiation Oncology, Perelman Center for Advanced Medicine (PCAM), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivek Rastogi
- Department of Radiation Oncology, Perelman Center for Advanced Medicine (PCAM), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy C. Zhu
- Department of Radiation Oncology, Perelman Center for Advanced Medicine (PCAM), University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Sun H, Ong YH, Zhu TC. Reactive oxygen species explicit dosimetry (ROSED) for fractionated photofrin-mediated photodynamic therapy (PDT). PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11940:1194007. [PMID: 35529670 PMCID: PMC9075689 DOI: 10.1117/12.2609969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is an established modality for cancer treatment and reactive oxygen species explicit dosimetry (ROSED), based on direct measurements of in-vivo light fluence (rate), in-vivo photofrin concentration, and tissue oxygenation concentration, has been proved to be an effective dosimetric quantity which can be used to predict PDT outcome. In this study, ROSED was performed for photofrin-mediated PDT for mice bearing radiation-induced fibrosacorma (RIF) tumor. PDT treatments were performed using single or fractionated illumination to a same total fluence of 135 Jcm-2. The effects of light fractionation on the total reacted [ROS]rx and treatment outcomes were evaluated.
Collapse
Affiliation(s)
- Hongjing Sun
- Department of Radiation Oncology, Perelman Center for Advanced Medicine (PCAM), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Hong Ong
- Department of Radiation Oncology, Perelman Center for Advanced Medicine (PCAM), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy C. Zhu
- Department of Radiation Oncology, Perelman Center for Advanced Medicine (PCAM), University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Zhao Y, Moritz T, Hinds MF, Gunn JR, Shell JR, Pogue BW, Davis SJ. High optical-throughput spectroscopic singlet oxygen and photosensitizer luminescence dosimeter for monitoring of photodynamic therapy. JOURNAL OF BIOPHOTONICS 2021; 14:e202100088. [PMID: 34323374 DOI: 10.1002/jbio.202100088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/05/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
We report a high light-throughput spectroscopic dosimeter system that is able to noninvasively measure luminescence signals of singlet oxygen (1 O2 ) produced during photodynamic therapy (PDT) using a CW (continuous wave) light source. The system is based on a compact, fiber-coupled, high collection efficiency spectrometer (>50% transmittance) designed to maximize optical throughput but with sufficient spectral resolution (~7 nm). This is adequate to detect 1 O2 phosphorescence in the presence of strong luminescence background in vivo. This system provides simultaneous acquisition of multiple spectral data points, allowing for more accurate determination of luminescence baseline via spectral fitting and thus the extraction of 1 O2 phosphorescence signal based solely on spectroscopic decomposition, without the need for time-gating. Simultaneous collection of photons at different wavelengths improves the quantum efficiency of the system when compared to sequential spectral measurements such as filter-wheel or tunable-filter based systems. A prototype system was tested during in vivo PDT tumor regression experiments using benzoporphyrin derivative (BPD) photosensitizer. It was found that the treatment efficacy (tumor growth inhibition rate) correlated more strongly with 1 O2 phosphorescence than with PS fluorescence. These results indicate that this high photon-collection efficiency spectrometer instrument may offer a viable option for real-time 1 O2 dosimetry during PDT treatment using CW light.
Collapse
Affiliation(s)
- Youbo Zhao
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| | - Tobias Moritz
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| | - Michael F Hinds
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA
| | - Jennifer R Shell
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA
| | - Steven J Davis
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| |
Collapse
|
9
|
Sheng T, Ong Y, Busch TM, Zhu TC. Reactive oxygen species explicit dosimetry to predict local tumor growth for Photofrin-mediated photodynamic therapy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4586-4601. [PMID: 32923066 PMCID: PMC7449736 DOI: 10.1364/boe.393524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 05/31/2023]
Abstract
Although photodynamic therapy (PDT) is an established modality for cancer treatment, current dosimetric quantities, such as light fluence and PDT dose, do not account for the differences in PDT oxygen consumption for different fluence rates (ϕ). A macroscopic model was adopted to calculate reactive oxygen species concentration ([ROS]rx) to predict Photofrin-PDT outcome in mice bearing radiation-induced fibrosarcoma (RIF) tumors. Singlet oxygen is the primary cytotoxic species for ROS, which is responsible for cell death in type II PDT, although other type I ROS is included in the parameters used in our model. Using a combination of fluences (50-250 J∕cm2) and ϕ (75 or 150 mW∕cm2), tumor regrowth rate, k, was determined for each condition by fitting the tumor volume versus time to V0 *exp(k*t). Treatment was delivered with a collimated laser beam of 1 cm diameter at 630 nm. Explicit dosimetry of light fluence rate on tissue surface, tissue oxygen concentration, tissue optical properties, and Photofrin concentration were performed. Light fluence rate at 3 mm depth (ϕ 3mm) was determined for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. Initial tissue oxygenation [3 O 2]0 was measured by an Oxylite oxygen probe before PDT and used to calculate [ROS]rx,calc. This value was compared to [ROS]rx,meas as calculated with the entire tissue oxygen spectrum [3 O 2](t), measured over the duration of light delivery for PDT. Cure index, CI = 1-k/kctr , for tumor growth up to 14 days after PDT was predicted by four dose metrics: light fluence, PDT dose, and [ROS]rx,calc, and [ROS]rx,meas. PDT dose was defined as the product of the time-integral of photosensitizer concentration and ϕ at a 3 mm tumor depth. These studies show that [ROS]rx,meas best correlates with CI and is an effective dosimetric quantity that can predict treatment outcome.
Collapse
|
10
|
Cramer GM, Sandell Meo J, Finlay JC, Zhu TC, Busch TM, Cengel KA. In vivo Spectroscopic Evaluation of the Intraperitoneal Cavity in Canines. Photochem Photobiol 2020; 96:426-433. [PMID: 32060914 DOI: 10.1111/php.13226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
Abstract
As part of a preclinical trial for the treatment of peritoneal carcinomatosis (PC) with photodynamic therapy (PDT), we have assessed changes in optical properties, tissue oxygenation and drug concentration as a result of benzoporphyrin derivative (BPD)-mediated PDT using diffuse reflectance and fluorescence measurements. PDT can effectively treat superficial disease spread, but treatment efficacy is influenced by physical properties of the treated tissue which can change over the treatment time. In this study, healthy canines were given BPD and irradiated with 690 nm light during a partial bowel resection, and spectroscopic and fluorescence measurements were made using an in-house built spectroscopic probe. Hemoglobin concentration, oxygenation and optical properties were determined to be highly heterogeneous between canines and at different anatomical locations within the same subject, so further development of PDT dosimetry systems will need to address this patient and location-specific dose optimization. Compared to other photosensitizers, we found no apparent BPD photobleaching after PDT.
Collapse
Affiliation(s)
- Gwendolyn M Cramer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia Sandell Meo
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States
| | - Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Kim MM, Darafsheh A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem Photobiol 2020; 96:280-294. [PMID: 32003006 DOI: 10.1111/php.13219] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Effective treatment delivery in photodynamic therapy (PDT) requires coordination of the light source, the photosensitizer, and the delivery device appropriate to the target tissue. Lasers, light-emitting diodes (LEDs), and lamps are the main types of light sources utilized for PDT applications. The choice of light source depends on the target location, photosensitizer used, and light dose to be delivered. Geometry of minimally accessible areas also plays a role in deciding light applicator type. Typically, optical fiber-based devices are used to deliver the treatment light close to the target. The optical properties of tissue also affect the distribution of the treatment light. Treatment light undergoes scattering and absorption in tissue. Most tissue will scatter light, but highly pigmented areas will absorb light, especially at short wavelengths. This review will summarize the basic physics of light sources, and describe methods for determining the dose delivered to the patient.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
12
|
Greer A. In vivo Tissue Evaluation Reveals Improvements in Explicit PDT Dosimetry. Photochem Photobiol 2020; 96:437-439. [PMID: 32060926 DOI: 10.1111/php.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/29/2022]
Abstract
Progress is needed before explicit photodynamic therapy (PDT) dosimetry can treat peritoneal carcinomatosis and yet spare all healthy tissue. A report by Cengel et al. in this issue of Photochemistry & Photobiology on tissue evaluation in a canine model may bring that goal a step closer and may even be dogma-changing.
Collapse
Affiliation(s)
- Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
13
|
Moritz TJ, Zhao Y, Hinds MF, Gunn JR, Shell JR, Pogue BW, Davis SJ. Multispectral singlet oxygen and photosensitizer luminescence dosimeter for continuous photodynamic therapy dose assessment during treatment. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-13. [PMID: 32170859 PMCID: PMC7068220 DOI: 10.1117/1.jbo.25.6.063810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/17/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Photodynamic therapy (PDT) involves complex light-drug-pathophysiology interactions that can be affected by multiple parameters and often leads to large variations in treatment outcome from patient to patient. Direct PDT dosimetry technologies have been sought to optimize the control variables (e.g., light dose, drug administration, tissue oxygenation, and patient conditioning) for best patient outcomes. In comparison, singlet oxygen (O21) dosimetry has been tested in various forms to provide an accurate and perhaps comprehensive prediction of the treatment efficacy. AIM We discuss an advanced version of this approach provided by a noninvasive, continuous wave dosimeter that can measure near-infrared spectrally resolved luminescence of both photosensitizer (PS) and O21 generated during PDT cancer treatment. APPROACH This dosimetry technology uses an amplified, high quantum efficiency InGaAs detector with spectroscopic decomposition during the light treatment to continuously extract the maximum signal of O21 phosphorescence while suppressing the strong PS luminescence background by spectrally fitting the data points across nine narrow band wavelengths. O21 and PS luminescence signals were measured in vivo in FaDu xenograft tumors grown in mice during PDT treatment using Verteporfin as the PS and a continuous laser treatment at 690 nm wavelength. RESULTS A cohort of 19 mice was used and observations indicate that the tumor growth rate inhibition showed a stronger correlation with O21 than with just the PS signal. CONCLUSIONS These results suggest that O21 measurement may be a more direct dosimeter of PDT damage, and it has potential value as a definitive diagnostic for PDT treatment, especially with spectral separation of the background luminescence and online estimation of the PS concentration.
Collapse
Affiliation(s)
| | - Youbo Zhao
- Physical Sciences Inc., Andover, Massachusetts, United States
- Address all correspondence to Youbo Zhao, E-mail:
| | | | - Jason R. Gunn
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Jennifer R. Shell
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Steven J. Davis
- Physical Sciences Inc., Andover, Massachusetts, United States
| |
Collapse
|
14
|
Sheng T, Ong Y, Guo W, Zhu TC. Reactive oxygen species explicit dosimetry to predict tumor growth for benzoporphyrin derivative-mediated vascular photodynamic therapy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-13. [PMID: 31912689 PMCID: PMC6952881 DOI: 10.1117/1.jbo.25.6.063805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (ϕ) effects, which impact the photochemical oxygen consumption rate, are not accounted for. In this preclinical study, reacted reactive oxygen species ([ROS]rx) was investigated as a dosimetric quantity for PDT outcome. The ability of [ROS]rx to predict the cure index (CI) of tumor growth, CI = 1 - k / kctr, where k and kctr are the growth rate of tumor under PDT study and the control tumor without PDT, respectively, for benzoporphyrin derivative (BPD)-mediated PDT, was examined. Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated with different in-air fluences (Φ = 22.5 to 166.7 J / cm2) and in-air fluence rates (ϕair = 75 to 250 mW / cm2) with a BPD dose of 1 mg / kg and a drug-light interval (DLI) of 15 min. Treatment was delivered with a collimated laser beam of 1-cm-diameter at 690 nm. Explicit measurements of in-air light fluence rate, tissue oxygen concentration, and BPD concentration were used to calculate for [ROS]rx. Light fluence rate at 3-mm depth (ϕ3 mm), determined based on Monte-Carlo simulations, was used in the calculation of [ROS]rx at the base of tumor. CI was used as an endpoint for three dose metrics: light fluence, PDT dose, and [ROS]rx. PDT dose was defined as the product of the time-integral of photosensitizer concentration and ϕ3 mm. Preliminary studies show that [ROS]rx best correlates with CI and is an effective dosimetric quantity that can predict treatment outcome. The threshold dose for [ROS]rx for vascular BPD-mediated PDT using DLI of 15 min is determined to be 0.26 mM and is about 3.8 times smaller than the corresponding value for conventional BPD-mediated PDT using DLI of 3 h.
Collapse
Affiliation(s)
- Tianqi Sheng
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Yihong Ong
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Wensheng Guo
- University of Pennsylvania, Department of Biostatistics and Epidemiology, Philadelphia, Pennsylvania, United States
| | - Timothy C. Zhu
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| |
Collapse
|
15
|
Wilson BC, Weersink RA. The Yin and Yang of PDT and PTT. Photochem Photobiol 2019; 96:219-231. [PMID: 31769516 DOI: 10.1111/php.13184] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
In Chinese philosophy, yin and yang ("dark-bright," "negative-positive") describe how seemingly opposite or contrary forces may actually be complementary, interconnected and interdependent. This paper provides this perspective on photodynamic and photothermal therapies, with a focus on the treatment of solid tumors. The relative strengths and weaknesses of each modality, both current and emerging, are considered with respect to the underlying biophysics, the required technologies, the biological effects, their translation into clinical practice and the realized or potential clinical outcomes. For each specific clinical application, one or the other modality may be clearly preferred, or both are effectively equivalent in terms of the various scientific/technological/practical/clinical trade-offs involved. Alternatively, a combination may the best approach. Such combined approaches may be facilitated by the use of multifunctional nanoparticles. It is important to understand the many factors that go into the selection of the optimal approach and the objective of this paper is to provide guidance on this.
Collapse
Affiliation(s)
- Brian C Wilson
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Robert A Weersink
- University Health Network/University of Toronto, Toronto, ON, M5G 1L7, Canada
| |
Collapse
|
16
|
Ong YH, Dimofte A, Kim MM, Finlay JC, Sheng T, Singhal S, Cengel KA, Yodh AG, Busch TM, Zhu TC. Reactive Oxygen Species Explicit Dosimetry for Photofrin-mediated Pleural Photodynamic Therapy. Photochem Photobiol 2019; 96:340-348. [PMID: 31729774 DOI: 10.1111/php.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 01/10/2023]
Abstract
Explicit dosimetry of treatment light fluence and implicit dosimetry of photosensitizer photobleaching are commonly used methods to guide dose delivery during clinical PDT. Tissue oxygen, however, is not routinely monitored intraoperatively even though it is one of the three major components of treatment. Quantitative information about in vivo tissue oxygenation during PDT is desirable, because it enables reactive oxygen species explicit dosimetry (ROSED) for prediction of treatment outcome based on PDT-induced changes in tumor oxygen level. Here, we demonstrate ROSED in a clinical setting, Photofrin-mediated pleural photodynamic therapy, by utilizing tumor blood flow information measured by diffuse correlation spectroscopy (DCS). A DCS contact probe was sutured to the pleural cavity wall after surgical resection of pleural mesothelioma tumor to monitor tissue blood flow (blood flow index) during intraoperative PDT treatment. Isotropic detectors were used to measure treatment light fluence and photosensitizer concentration. Blood-flow-derived tumor oxygen concentration, estimated by applying a preclinically determined conversion factor of 1.5 × 109 μMs cm-2 to the blood flow index, was used in the ROSED model to calculate the total reacted reactive oxygen species [ROS]rx. Seven patients and 12 different pleural sites were assessed and large inter- and intrapatient heterogeneities in [ROS]rx were observed although an identical light dose of 60 J cm-2 was prescribed to all patients.
Collapse
Affiliation(s)
- Yi Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Andreaa Dimofte
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Tianqi Sheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Sheng T, Ong YH, Busch TM, Zhu TC. Reactive oxygen species explicit dosimetry to predict local tumor control for Photofrin-mediated photodynamic therapy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10860. [PMID: 31327886 DOI: 10.1117/12.2508803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although photodynamic therapy (PDT) is an established modality for cancer treatment, current dosimetric quantities, such as light fluence and PDT dose, do not account for the differences in PDT oxygen consumption for different fluence rates (ϕ). A macroscopic model was adopted to calculate reactive oxygen species concentration ([ROS]rx) to predict Photofrin-PDT outcome in mice bearing radiation-induced fibrosarcoma (RIF) tumors. Singlet oxygen is the primary cytotoxic species for ROS, which is responsible for cell death in type II PDT, although other type I ROS is included in the parameters used in our model. Using a combination of fluences (50-250 J/cm2) and ϕ (50 - 150 mW/cm2), tumor regrowth rate, k, was determined for each condition by fitting the tumor volume vs. time to V0*exp(k*t). Treatment was delivered with a collimated laser beam of 1 cm diameter at 630 nm. Explicit dosimetry of initial tissue oxygen concentration, tissue optical properties, and Photofrin concentration was used to calculate [ROS]rx,cal. ϕ was determined for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. Tissue oxygenation is measured using an oxylite oxygen probe to throughout the treatment to calculate the measured [ROS]rx,mea. Cure index, CI = 1-k/k ctr , for tumor gowth up to 14 days were determined as an endpoint using five dose metrics: light fluence, PDT dose, and [ROS]rx,cal, and [ROS]rx,mea. PDT dose was defined as the product of the time-integral of photosensitizer concentration and ϕ at a 3 mm tumor depth. Preliminary studies show that [ROS]rx,mea best correlates with CI and is an effective dosimetric quantity that can predict treatment outcome.
Collapse
Affiliation(s)
- Tianqi Sheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yi Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
18
|
Beeson KW, Parilov E, Potasek M, Kim MM, Zhu TC. Validation of combined Monte Carlo and photokinetic simulations for the outcome correlation analysis of benzoporphyrin derivative-mediated photodynamic therapy on mice. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 30873764 PMCID: PMC6416474 DOI: 10.1117/1.jbo.24.3.035006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/05/2019] [Indexed: 05/16/2023]
Abstract
We compare previously reported benzoporphyrin derivative (BPD)-mediated photodynamic therapy (PDT) results for reactive singlet oxygen concentration (also called singlet oxygen dose) on mice with simulations using a computational device, Dosie™, that calculates light transport and photokinetics for PDT in near real-time. The two sets of results are consistent and validate the use of the device in PDT treatment planning to predict BPD-mediated PDT outcomes in mice animal studies based on singlet oxygen dose, which showed a much better correlation with the cure index than the conventional light dose.
Collapse
Affiliation(s)
- Karl W. Beeson
- Simphotek, Inc., Newark, New Jersey, United States
- Address all correspondence to Karl W. Beeson, E-mail:
| | | | - Mary Potasek
- Simphotek, Inc., Newark, New Jersey, United States
| | - Michele M. Kim
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Timothy C. Zhu
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| |
Collapse
|
19
|
Sheng T, Ong YH, Busch TM, Zhu TC. Reactive oxygen species explicit dosimetry to predict tumor growth for BPD-mediated vascular photodynamic therapy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10861:108610A. [PMID: 31080306 PMCID: PMC6510274 DOI: 10.1117/12.2514657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence, and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (ϕ) effects are not accounted for, which has a large effect on the oxygen consumption rate. In this preclinical study, reacted reactive oxygen species ([ROS]rx) was investigated as a dosimetric quantity for PDT outcome. We studied the ability of [ROS]rx to predict the cure index (CI) after PDT of murine tumors; CI = 1 - k/kctr, where k and kctr are the growth rate of PDT-treated and control(untreated) tumor, respectively. Mice bearing radiation induced fibrosarcoma (RIF) tumors were treated with BPD-mediated PDT at different in-air fluences (22.5, 40, 45, 50, 70 and 100 J/cm2) and in-air ϕ (75 and 150 mW/cm2) with a BPD dose of 1 mg/kg and a drug-light interval of 15 mins. Treatment was delivered with a collimated laser beam of 1 cm diameter at 690 nm. Explicit dosimetry of initial tissue oxygen concentration, tissue optical properties, and BPD concentration was used to calculate [ 1 O 2 ] rx . ϕ was calculated for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. CI was used as an endpoint for four dose metrics: light fluence, PDT dose, and [ROS]rx. PDT dose was defined as the product of the time-integral of photosensitizer concentration and ϕ at a 3 mm tumor depth. Preliminary studies show that [ROS]rx best correlates with CI and is an effective dosimetric quantity that can predict treatment outcome. The threshold dose for [ROS]rx is determined to be 0.23 mM and is about 4.3 times smaller than the corresponding value for conventional BPD-mediated PDT using DLI of 3 hrs.
Collapse
Affiliation(s)
- Tianqi Sheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yi Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
20
|
Ong YH, Kim MM, Huang Z, Zhu TC. Reactive Oxygen Species Explicit Dosimetry (ROSED) of a Type 1 Photosensitizer. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10476:104760V. [PMID: 29861531 PMCID: PMC5975967 DOI: 10.1117/12.2291385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Type I photodynamic therapy (PDT) is based on the use of photochemical reactions mediated through an interaction between a tumor-selective photosensitizer, photoexcitation with a specific wavelength of light, and production of reactive oxygen species (ROS). The goal of this study is to develop a model to calculate reactive oxygen species concentration ([ROS]rx) after Tookad®-mediated vascular PDT. Mice with radiation-induced fibrosarcoma (RIF) tumors were treated with different light fluence and fluence rate conditions. Explicit measurements of photosensitizer drug concentration were made via diffuse reflective absorption spectrum using a contact probe before and after PDT. Blood flow and tissue oxygen concentration over time were measured during PDT as a mean to validate the photochemical parameters for the ROSED calculation. Cure index was computed from the rate of tumor regrowth after treatment and was compared against three calculated dose metrics: total light fluence, PDT dose, reacted [ROS]rx. The tumor growth study demonstrates that [ROS]rx serves as a better dosimetric quantity for predicting treatment outcome, as a clinically relevant tumor growth endpoint.
Collapse
Affiliation(s)
- Yi Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Michele M. Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Zheng Huang
- Center for Medical Photonics, Fujian Normal University, Fuzhou, China
| | - Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
21
|
Ong YH, Kim MM, Finlay JC, Dimofte A, Singhal S, Glatstein E, Cengel KA, Zhu TC. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT). Phys Med Biol 2017; 63:015031. [PMID: 29106380 DOI: 10.1088/1361-6560/aa9874] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photosensitizer fluorescence excited by photodynamic therapy (PDT) treatment light can be used to monitor the in vivo concentration of the photosensitizer and its photobleaching. The temporal integral of the product of in vivo photosensitizer concentration and light fluence is called PDT dose, which is an important dosimetry quantity for PDT. However, the detected photosensitizer fluorescence may be distorted by variations in the absorption and scattering of both excitation and fluorescence light in tissue. Therefore, correction of the measured fluorescence for distortion due to variable optical properties is required for absolute quantification of photosensitizer concentration. In this study, we have developed a four-channel PDT dose dosimetry system to simultaneously acquire light dosimetry and photosensitizer fluorescence data. We measured PDT dose at four sites in the pleural cavity during pleural PDT. We have determined an empirical optical property correction function using Monte Carlo simulations of fluorescence for a range of physiologically relevant tissue optical properties. Parameters of the optical property correction function for Photofrin fluorescence were determined experimentally using tissue-simulating phantoms. In vivo measurements of photosensitizer fluorescence showed negligible photobleaching of Photofrin during the PDT treatment, but large intra- and inter-patient heterogeneities of in vivo Photofrin concentration are observed. PDT doses delivered to 22 sites in the pleural cavity of 8 patients were different by 2.9 times intra-patient and 8.3 times inter-patient.
Collapse
Affiliation(s)
- Yi Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, United States of America. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | | | | | | | | | | | |
Collapse
|