1
|
Li J, Zhu Z, Xue Y, Downes A. Analysis of Drug Molecules in Living Cells. Crit Rev Anal Chem 2025:1-16. [PMID: 39854220 DOI: 10.1080/10408347.2025.2453431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Cells are the fundamental units of life, comprising a highly concentrated and complex assembly of biomolecules that interact dynamic ally across spatial and temporal scales. Living cells are constantly undergoing dynamic processes, therefore, to understand the interactions between drug molecules and living cells is of paramount importance in the biomedical sciences and pharmaceutical development. Compared with traditional end-point assays and fixed cell analysis, analysis of drug molecules in living cells can provide more insight into the effects of drugs on cells in real-time and allowing for a better understanding of drug mechanisms and effects, which will contribute to the development of drug developing and testing and personalize medicine. However, the high demands of living cell analysis, including high costs, technical complexity, and throughput limitations, hinder the widespread application of this technology. In recent years, the rapid development of analytical methods such as Raman spectroscopy and fluorescence has made the in situ and real-time detection possible, allowing the analysis of single cell or cell populations at various conditions. In this review, we summarize the advanced analytical methods and technologies from last few years for drug detection in living cells.
Collapse
Affiliation(s)
- Jiaming Li
- Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Zhiyuan Zhu
- Department of Infection Medicine, Faculty of Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yuxiang Xue
- Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Andrew Downes
- Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Wang T, Jiang J, Liu K, Wang S, Xu T, Niu P, Ma J, Yin J, Liu T. Simultaneous bond-selective deuterium-based isotopic labeling sensing with disposable ultra-miniature CARS fiber probe. OPTICS EXPRESS 2023; 31:40717-40729. [PMID: 38041364 DOI: 10.1364/oe.505939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023]
Abstract
Deuterium-based isotopic labeling is an important technique for tracking cellular metabolism with the Raman signals analysis of low-wavenumber (LW) C-D bonds and high-wavenumber (HW) C-H bonds. We propose and demonstrate a disposable ultra-miniature fiber probe to detect LW and HW coherent anti-Stokes Raman scattering (CARS) spectra for deuterated compounds simultaneously and bond-selectively sensing. The 10.78 µm diameter disposable fiber probe, comprised of focusing taper as fiber probe head and time-domain walk-off eliminating fiber section with designed length, realizes wide-frequency-interval dual Stokes pulse delivering and focusing. The fiber probe enables quantitative concentration determination with resolution down to 11 mM. The chemical vibration modes of LW region C-D bonds and HW region C-H bonds of the mixture samples of organic compounds and their deuterated counterparts in a simulated cell are simultaneously excited and characterized. The CARS disposable fiber probe introduces a promising handle for in vivo biochemical detection based on isotopic labeling sensing.
Collapse
|
3
|
Spencer-Dene B, Mukherjee P, Alex A, Bera K, Tseng WJ, Shi J, Chaney EJ, Spillman DR, Marjanovic M, Miranda E, Boppart SA, Hood SR. Localization of unlabeled bepirovirsen antisense oligonucleotide in murine tissues using in situ hybridization and CARS imaging. RNA (NEW YORK, N.Y.) 2023; 29:1575-1590. [PMID: 37460153 PMCID: PMC10578491 DOI: 10.1261/rna.079699.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023]
Abstract
Current methods for detecting unlabeled antisense oligonucleotide (ASO) drugs rely on immunohistochemistry (IHC) and/or conjugated molecules, which lack sufficient sensitivity, specificity, and resolution to fully investigate their biodistribution. Our aim was to demonstrate the qualitative and quantitative distribution of unlabeled bepirovirsen, a clinical stage ASO, in livers and kidneys of dosed mice using novel staining and imaging technologies at subcellular resolution. ASOs were detected in formalin-fixed paraffin-embedded (FFPE) and frozen tissues using an automated chromogenic in situ hybridization (ISH) assay: miRNAscope. This was then combined with immunohistochemical detection of cell lineage markers. ASO distribution in hepatocytes versus nonparenchymal cell lineages was quantified using HALO AI image analysis. To complement this, hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) imaging microscopy was used to specifically detect the unique cellular Raman spectral signatures following ASO treatment. Bepirovirsen was localized primarily in nonparenchymal liver cells and proximal renal tubules. Codetection of ASO with distinct cell lineage markers of liver and kidney populations aided target cell identity facilitating quantification. Positive liver signal was quantified using HALO AI, with 12.9% of the ASO localized to the hepatocytes and 87.1% in nonparenchymal cells. HS-CARS imaging specifically detected ASO fingerprints based on the unique vibrational signatures following unlabeled ASO treatment in a totally nonperturbative manner at subcellular resolution. Together, these novel detection and imaging modalities represent a significant increase in our ability to detect unlabeled ASOs in tissues, demonstrating improved levels of specificity and resolution. These methods help us understand their underlying mechanisms of action and ultimately improve the therapeutic potential of these important drugs for treating globally significant human diseases.
Collapse
Affiliation(s)
- Bradley Spencer-Dene
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
| | - Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- In Vitro/In Vivo Translation, BioImaging, GSK, Upper Providence, Pennsylvania 19426, USA
| | - Kajari Bera
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wei-Ju Tseng
- In Vitro/In Vivo Translation, BioImaging, GSK, Upper Providence, Pennsylvania 19426, USA
| | - Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Elena Miranda
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Steve R Hood
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Shi J, Bera K, Mukherjee P, Alex A, Chaney EJ, Spencer-Dene B, Majer J, Marjanovic M, Spillman DR, Hood SR, Boppart SA. Weakly Supervised Identification and Localization of Drug Fingerprints Based on Label-Free Hyperspectral CARS Microscopy. Anal Chem 2023. [PMID: 37450658 PMCID: PMC10372874 DOI: 10.1021/acs.analchem.3c00979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Understanding drug fingerprints in complex biological samples is essential for the development of a drug. Hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) microscopy, a label-free nondestructive chemical imaging technique, can profile biological samples based on their endogenous vibrational contrast. Here, we propose a deep learning-assisted HS-CARS imaging approach for the investigation of drug fingerprints and their localization at single-cell resolution. To identify and localize drug fingerprints in complex biological systems, an attention-based deep neural network, hyperspectral attention net (HAN), was developed. By formulating the task to a multiple instance learning problem, HAN highlights informative regions through the attention mechanism when being trained on whole-image labels. Using the proposed technique, we investigated the drug fingerprints of a hepatitis B virus therapy in murine liver tissues. With the increase in drug dosage, higher classification accuracy was observed, with an average area under the curve (AUC) of 0.942 for the high-dose group. Besides, highly informative tissue structures predicted by HAN demonstrated a high degree of similarity with the drug localization shown by the in situ hybridization staining results. These results demonstrate the potential of the proposed deep learning-assisted optical imaging technique for the label-free profiling, identification, and localization of drug fingerprints in biological samples, which can be extended to nonperturbative investigations of complex biological systems under various biological conditions.
Collapse
Affiliation(s)
- Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kajari Bera
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- In vitro/In vivo Translation, Research, GSK, Collegeville, Pennsylvania 19426, United States
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Jan Majer
- In vitro/In vivo Translation, Research, GSK, Stevenage SG1 2NY, U.K
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Steve R Hood
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- In vitro/In vivo Translation, Research, GSK, Stevenage SG1 2NY, U.K
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Zhang K, Gilley P, Abdoli N, Chen X, Fung KM, Qiu Y. Using symmetric illumination and color camera to achieve high throughput Fourier ptychographic microscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200303. [PMID: 36522293 PMCID: PMC10191880 DOI: 10.1002/jbio.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 05/17/2023]
Abstract
This study aims to develop a high throughput Fourier ptychographic microscopy (FPM) technique based on symmetric illumination and a color detector, which is able to accelerate image acquisition by up to 12 times. As an emerging technology, the efficiency of FPM is limited by its data acquisition process, especially for color microscope image reconstruction. To overcome this, we built an FPM prototype equipped with a color camera and a 4×/0.13 NA objective lens. During the image acquisition, two symmetric LEDs illuminate the sample simultaneously using white light, which doubles the light intensity and reduces the total captured raw patterns by half. A standard USAF 1951 resolution target was used to measure the system's modulation transfer function (MTF) curve, and the H&E-stained ovarian cancer samples were then imaged to assess the feature qualities depicted on the reconstructed images. The results showed that the measured MTF curves of red, green, and blue channels are generally comparable to the corresponding curves generated by conventional FPM, while symmetric illumination FPM preserves more tissue details, which is superior to the results captured by conventional 20×/0.4 NA objective lens. This investigation initially verified the feasibility of symmetric illumination based color FPM.
Collapse
Affiliation(s)
- Ke Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Patrik Gilley
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Neman Abdoli
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Xuxin Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yuchen Qiu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
6
|
Orabi A, Hussein A, Saleh AA, Megahed AM, Metwally M, Moeini H, Metwally AS. Therapeutic efficacy of n-Docosanol against velogenic Newcastle disease virus infection in domestic chickens. Front Microbiol 2022; 13:1049037. [PMID: 36483200 PMCID: PMC9724783 DOI: 10.3389/fmicb.2022.1049037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION The control of Newcastle disease virus (NDV) infection depends solely on vaccination which in most cases is not sufficient to restrain the consequences of such a highly evolving viral disease. Finding out substances for preparing an efficient anti-ND drug would be of high value. n-Docosanol is a saturated fatty alcohol with an inhibitory effect against many enveloped viruses. In this study, we evaluated the therapeutic effect of n-docosanol on NDV infection and shedding in chickens. METHODS Chickens infected with a highly virulent NDV were treated with low to high concentrations of n-docosanol (20, 40, and 60 mg/kg body weight) for 4-successive days, once they showed the disease symptoms. Survival and curative rates, virus load, histopathological scoring, and virus shedding were defined. RESULTS Symptoms development was found to discontinue 24-72 hours post-treatment. Survival rate in the NDV-infected chickens raised 37.4-53.2% after the treatment. n-Docosanol treatment was also found to significantly reduce virus load in the digestive (26.2-33.9%), respiratory (38.3-63%), nervous (26.7-51.1%), and lymphatic (16.4-29.1%) tissues. Histopathological scoring of NDV lesions revealed prominent rescue effects on the histology of different tissues. Importantly, n-docosanol treatment significantly reduced virus shedding in oropharyngeal discharge and feces thereby allowing the restriction of NDV spread. CONCLUSION Our findings suggest n-docosanol as a promising remedy in the control strategy of Newcastle disease in the poultry industry.
Collapse
Affiliation(s)
- Ahmed Orabi
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Institute of Virology, School of Medicine, Techenical University of Munich, Munich, Germany
| | - Ashraf Hussein
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A. Saleh
- Department of Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman M. Megahed
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hassan Moeini
- Institute of Virology, School of Medicine, Techenical University of Munich, Munich, Germany
| | - Aya Sh. Metwally
- Department of Pharmacology, Factulty of Veterinary Medicine, Aswan University, Aswan, Egypt
| |
Collapse
|
7
|
Mukherjee P, Aksamitiene E, Alex A, Shi J, Bera K, Zhang C, Spillman DR, Marjanovic M, Fazio M, Seth PP, Frazier K, Hood SR, Boppart SA. Differential Uptake of Antisense Oligonucleotides in Mouse Hepatocytes and Macrophages Revealed by Simultaneous Two-Photon Excited Fluorescence and Coherent Raman Imaging. Nucleic Acid Ther 2021; 32:163-176. [PMID: 34797690 PMCID: PMC9221167 DOI: 10.1089/nat.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotides (ASOs), a novel paradigm in modern therapeutics, modulate cellular gene expression by binding to complementary messenger RNA (mRNA) sequences. While advances in ASO medicinal chemistry have greatly improved the efficiency of cellular uptake, selective uptake by specific cell types has been difficult to achieve. For more efficient and selective uptake, ASOs are often conjugated with molecules with high binding affinity for transmembrane receptors. Triantennary N-acetyl-galactosamine conjugated phosphorothioate ASOs (GalNAc-PS-ASOs) were developed to enhance targeted ASO delivery into liver through the hepatocyte-specific asialoglycoprotein receptor (ASGR). We assessed the kinetics of uptake and subsequent intracellular distribution of AlexaFluor 488 (AF488)-labeled PS-ASOs and GalNAc-PS-ASOs in J774A.1 mouse macrophages and primary mouse or rat hepatocytes using simultaneous coherent anti-Stokes Raman scattering (CARS) and two-photon fluorescence (2PF) imaging. The CARS modality captured the dynamic lipid distributions and overall morphology of the cells; two-photon fluorescence (2PF) measured the time- and dose-dependent localization of ASOs delivered by a modified treatment of suspension cells. Our results show that in macrophages, the uptake rate of PS-ASOs did not significantly differ from that of GalNAc-PS-ASOs. However, in hepatocytes, GalNAc-PS-ASOs exhibited a peripheral uptake distribution compared to a polar uptake distribution observed in macrophages. The peripheral distribution correlated with a significantly larger amount of internalized GalNAc-PS-ASOs compared to the PS-ASOs. This work demonstrates the relevance of multimodal imaging for elucidating the uptake mechanism, accumulation, and fate of different ASOs in liver cells that can be used further in complex in vitro models and liver tissues to evaluate ASO distribution and activity.
Collapse
Affiliation(s)
- Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Edita Aksamitiene
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,In vitro/In vivo Translation, Research, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Jindou Shi
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kajari Bera
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chi Zhang
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Fazio
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Punit P Seth
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Kendall Frazier
- In vitro/In vivo Translation, Research, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Steve R Hood
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,In vitro/In vivo Translation, Research, GlaxoSmithKline, Stevenage, United Kingdom
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021; 177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The biodistribution and pharmacokinetics of drugs are vital to the mechanistic understanding of their efficacy. Measuring antimicrobial drug efficacy has been challenging as plasma drug concentration is used as a surrogate for tissue drug concentration, yet typically does not reflect that at the intended site(s) of action. Utilizing an image-guided approach, it is feasible to accurately quantify the biodistribution and pharmacokinetics within the desired site(s) of action. We outline imaging modalities used in visualizing drug distribution with examples ranging from in vitro cellular drug uptake to clinical treatment of microbial infections. The imaging modalities of interest are: radio-labeling, magnetic resonance, mass spectrometry imaging, computed tomography, fluorescence, and Raman spectroscopy. We outline the progress, limitations, and future outlook for each methodology. Further advances in these optical approaches would benefit patients and researchers alike, as non-invasive imaging could yield more profound insights with a lower clinical burden than invasive measurement approaches used today.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Daniel A Greenfield
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|