1
|
Noël C, Settembre N. Near-wall hemodynamic parameters of finger arteries altered by hand-transmitted vibration. Comput Biol Med 2024; 168:107709. [PMID: 37992469 DOI: 10.1016/j.compbiomed.2023.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Sustained exposure to high-level hand-transmitted vibrations may result in angioneurotic disorders, which partly originate from vibration-altered hemodynamics in the finger arteries when repeating these disturbances throughout working life. Hence, the aim of this study is to assess the most relevant hemodynamic descriptors in the digital arteries, determine the relationship between the latter and vibration features, and gain better understanding of the physiological mechanisms involved. METHODS An experimental setup, mainly comprised of an ultra-high frequency ultrasound scanner and a vibration shaker, was used to image the digital proper volar arteries of the forefinger. Raw ultrasound data were post-processed by custom-made numerical routines to supply a pulsatile fluid mechanics model for computing the hemodynamic descriptors. Twenty-four healthy volunteers participated in the measurement campaign. Classical statistical methods were then applied to the dataset and also the wavelet transform for calculating the signal power in the frequency bands matching cardiac, respiratory, myogenic and neurogenic activities. RESULTS The artery diameter, the wall shear stress - WSS - and the WSS temporal gradient - WSSTG - were found to be the most relevant descriptors. Vibration-induced WSS was divided by three compared to its basal value whatever the vibration frequency and it was proportional to log2 of the acceleration level. Marked increases in WSSTG when stopping vibration might also lead to adverse health effects. Vibration caused a drop in WSS power for the frequency band associated with the neurogenic activity of the sympathetic nervous system. CONCLUSION This study may pave the way for a new framework to prevent vibration-induced vascular risk.
Collapse
Affiliation(s)
- Christophe Noël
- Electromagnetism, Vibration, Optics laboratory, Institut national de recherche et de sécurité (INRS), Vandœuvre-lès-Nancy, France.
| | - Nicla Settembre
- Department of Vascular Surgery, Nancy University Hospital, University of Lorraine, France.
| |
Collapse
|
2
|
Singaram S, Ramakrishnan K, Periyasamy S. Electrodermal signal analysis using continuous wavelet transform as a tool for quantification of sweat gland activity in diabetic kidney disease. Proc Inst Mech Eng H 2023; 237:919-927. [PMID: 37401150 DOI: 10.1177/09544119231184113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Sympathetic innervation of the sweat gland (SG) manifests itself electrically as electrodermal activity (EDA), which can be utilized to measure sudomotor function. Since SG exhibits similarities in structure and function with kidneys, quantification of SG activity is attempted through EDA signals. A methodology is developed with electrical stimulation, sampling frequency and signal processing algorithm. One hundred twenty volunteers participated in this study belonging to controls, diabetes, diabetic nephropathy, and diabetic neuropathy. The magnitude and time duration of stimuli is arrived by trial and error in such a way it does not influence controls but triggers SG activity in other Groups. This methodology leads to a distinct EDA signal pattern with changes in frequency and amplitude. The continuous wavelet transform depicts a scalogram to retrieve this information. Further, to distinguish between Groups, time average spectrums are plotted and mean relative energy (MRE) is computed. Results demonstrate high energy value in controls, and it gradually decreases in other Groups indicating a decline in SG activity on diabetes prognosis. The correlation for the acquired results was determined to be 0.99 when compared to the standard lab procedure. Furthermore, Cohen's d value, which is less than 0.25 for all Groups indicating the minimal effect size. Hence the obtained result is validated and statistically analyzed for individual variations. Thus this has the potential to get transformed into a device and could prevent diabetic kidney disease.
Collapse
Affiliation(s)
- Sudha Singaram
- Department of Biomedical Engineering, Rajalakshmi Engineering College, Chennai, India
| | - Kalpana Ramakrishnan
- Department of Biomedical Engineering, Rajalakshmi Engineering College, Chennai, India
| | | |
Collapse
|
3
|
Fredriksson I, Larsson M, Strömberg T, Iredahl F. Vasomotion analysis of speed resolved perfusion, oxygen saturation, red blood cell tissue fraction, and vessel diameter: Novel microvascular perspectives. Skin Res Technol 2021; 28:142-152. [PMID: 34758168 PMCID: PMC9907591 DOI: 10.1111/srt.13106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Vasomotion is the spontaneous oscillation in vascular tone in the microcirculation and is believed to be a physiological mechanism facilitating the transport of blood gases and nutrients to and from tissues. So far, Laser Doppler flowmetry has constituted the gold standard for in vivo vasomotion analysis. MATERIALS AND METHODS We applied vasomotion analysis to speed-resolved perfusion, oxygen saturation, red blood cell tissue (RBC) tissue fraction, and average vessel diameter from five healthy individuals at rest measured by the newly developed Periflux 6000 EPOS system over 10 minutes. Magnitude scalogram and the time-averaged wavelet spectra were divided into frequency intervals reflecting endothelial, neurogenic, myogenic, respiratory, and cardiac function. RESULTS Recurrent high-intensity periods of the myogenic, neurogenic, and endothelial frequency intervals were found. The neurogenic activity was considerably more pronounced for the oxygen saturation, RBC tissue fraction, and vessel diameter signals, than for the perfusion signals. In a correlation analysis we found that changes in perfusion in the myogenic, neurogenic, and endothelial frequency intervals precede changes in the other signals. Furthermore, changes in average vessel diameter were in general negatively correlated to the other signals in the same frequency intervals, indicating the importance of capillary recruitment. CONCLUSION We conclude that vasomotion can be observed in signals reflecting speed resolved perfusion, oxygen saturation, RBC tissue fraction, and vessel diameter. The new parameters enable new aspects of the microcirculation to be observed.
Collapse
Affiliation(s)
- Ingemar Fredriksson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Marcus Larsson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Tomas Strömberg
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Fredrik Iredahl
- Department of Health, Medicine and Caring Sciences, Linköping University, Division of Community Medicine, Linköping, Sweden.,Department of Primary health care, Region Östergötland, Linköping, Sweden
| |
Collapse
|
4
|
Liu M, Song X, Wang B, Li Y, Li A, Zhang J, Zhang H, Xiu R. Pancreatic Microcirculation Profiles in the Progression of Hypertension in Spontaneously Hypertensive Rats. Am J Hypertens 2021; 34:100-109. [PMID: 33057586 PMCID: PMC7891252 DOI: 10.1093/ajh/hpaa164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emerging evidence indicates that the pancreas serves as a major source of degrading protease activities and that uncontrolled proteolytic receptor cleavage occurs under hypertensive conditions, which leading to systemic dysfunction and end-organic damage. However, changes in pancreatic microcirculation profiles during the progression of hypertension remain unknown. METHODS Pancreatic microcirculatory blood distribution patterns and microvascular vasomotion of spontaneously hypertensive rats (SHRs) and normotensive control Wistar Kyoto rats at 5, 8, 13, and 18 weeks of age were determined. Wavelet transform analysis was performed to convert pancreatic microhemodynamic signals into time-frequency domains and construct 3-dimensional spectral scalograms. The amplitudes of characteristic oscillators including endothelial, neurogenic, myogenic, respiratory, and cardiac oscillators were compared among groups. Plasma nitrite/nitrate levels were measured using a Griess reaction. Additionally, endothelin-1, malondialdehyde, superoxide dismutase, and interleukin-6 levels were determined by enzyme-linked immunosorbent assay. RESULTS SHRs exhibited a reduced blood distribution pattern with progressively decreased average blood perfusion, amplitude, and frequency of microvascular vasomotion. Wavelet transform spectral analysis revealed significantly reduced amplitudes of endothelial oscillators from 8- to 18-week-old SHRs. Additionally, the blood microcirculatory chemistry complements explained the microhemodynamic profiles partially, as demonstrated by an increase in plasma nitrite/nitrate, endothelin-1, malondialdehyde, and interleukin-6 levels and a decreased superoxide dismutase level in SHRs. CONCLUSIONS Pancreatic microcirculation profiles are abnormal in the progression of hypertension in SHRs, including a disarranged blood distribution pattern, impaired microvascular vasomotion, and reduced amplitudes of endothelial oscillators.
Collapse
Affiliation(s)
- Mingming Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Microcirculation, Ministry of Health, Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohong Song
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Microcirculation, Ministry of Health, Beijing, China
| | - Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Microcirculation, Ministry of Health, Beijing, China
| | - Yuan Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Microcirculation, Ministry of Health, Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Microcirculation, Ministry of Health, Beijing, China
| | - Jian Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Microcirculation, Ministry of Health, Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Microcirculation, Ministry of Health, Beijing, China
| | - Ruijuan Xiu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Microcirculation, Ministry of Health, Beijing, China
| |
Collapse
|
5
|
Shirazi BR, Valentine RJ, Lang JA. Reproducibility and normalization of reactive hyperemia using laser speckle contrast imaging. PLoS One 2021; 16:e0244795. [PMID: 33412561 PMCID: PMC7790538 DOI: 10.1371/journal.pone.0244795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background Impaired perfusion indices signal potential microvascular dysfunction preceding atherosclerosis and other cardiometabolic pathologies. Post-occlusive reactive hyperemia (PORH), a vasodilatory response following a mechanically induced ischemia, is a transient increase in perfusion and can assess microvascular function. The greatest blood flow change corresponding to the first minute of hyperemia (represented by time-to-peak, hyperemic velocity, AUC within 1st min) has been shown to indicate microvascular dysfunction. However, the reproducibility of these temporal kinetic indices of the PORH response is unknown. Our aim was to examine the inter- and intra-day reproducibility and standardization of reactive hyperemia, with emphasis on the kinetic indices of PORH, using laser speckle contrast imaging (LSCI) technique. Methods and results Seventeen healthy adults (age = 24 ± 3 years) completed three PORH bouts over two lab visits. LSCI region of interest was a standardized 10 cm region on the dominant ventral forearm. A 5-min brachial artery occlusion period induced by inflating an arm cuff to 200 mmHg, preceded a 4-min hyperemic period. Inter- and intra-day reliability and reproducibility of cutaneous vascular conductance (LSCI flux / mean arterial pressure) were determined using intraclass correlation (ICC) and coefficient of variation (CV%). Maximal flow and area under the curve standardized to zero perfusion showed intra- and inter-day reliability (ICC > 0.70). Time to maximal flow (TMF) was not reproducible (inter-day CV = 18%). However, alternative kinetic indices such as 1-min AUC and overshoot rate-of-change (ORC), represented as a piecewise function (at 5s, 10s, 15s, and 20s into hyperemia), were reproducible (CV< 11%). Biological zero was a reliable normalization point. Conclusion PORH measured with LSCI is a reliable assessment of microvascular function. However, TMF or its derived hyperemic velocity are not recommended for longitudinal assessment. Piecewise ORC and 1-min AUC are reliable alternatives to assess the kinetic response of PORH.
Collapse
Affiliation(s)
| | - Rudy J. Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States of America
| | - James A. Lang
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
6
|
|
7
|
Song X, Li Y, Wang B, Liu M, Zhang J, Li A, Zhang H, Xiu R. Comparison of pancreatic microcirculation profiles in spontaneously hypertensive rats and Wistar-kyoto rats by laser doppler and wavelet transform analysis. Physiol Res 2020; 69:1039-1049. [PMID: 33129246 DOI: 10.33549/physiolres.934448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic microcirculatory dysfunction emerged as a novel mechanism in the development of hypertension. However, the changes of pancreatic microcirculation profiles in hypertension remain unknown. Pancreatic microcirculatory blood distribution pattern and microvascular vasomotion of spontaneously hypertensive rats (SHRs) and Wistar Kyoto rats (WKYs) were determined by laser Doppler. Wavelet transform analysis was performed to convert micro-hemodynamic signals into time-frequency domains, based on which amplitude spectral scalograms were constructed. The amplitudes of characteristic oscillators were compared between SHRs and WKYs. The expression of eNOS was determined by immunohistochemistry, and plasma nitrite/nitrate levels were measured by Griess reaction. Additionally, endothelin-1, malondialdehyde, superoxide dismutase and interleukin-6 were determined by enzyme-linked immunosorbent assay. SHRs exhibited a lower scale blood distribution pattern with decreased average blood perfusion, frequency and amplitude. Wavelet transform spectral analysis revealed significantly reduced amplitudes of endothelial oscillators. Besides reduced expression of eNOS, the blood microcirculatory chemistry complements micro-hemodynamic profiles as demonstrated by an increase in plasma nitrite/nitrate, endothelin-1, malondialdehyde, interleukin-6 and a decrease of superoxide dismutase in SHRs. Here, we described abnormal pancreatic microcirculation profiles in SHRs, including disarranged blood distribution pattern, impaired microvascular vasomotion and reduced amplitudes of endothelial oscillators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, ,
| | | |
Collapse
|
8
|
In-vivo correlations between skin metabolic oscillations and vasomotion in wild-type mice and in a model of oxidative stress. Sci Rep 2019; 9:186. [PMID: 30655574 PMCID: PMC6336806 DOI: 10.1038/s41598-018-36970-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022] Open
Abstract
Arterioles in the cutaneous microcirculation frequently display an oscillatory phenomenon defined vasomotion, consistent with periodic diameter variations in the micro-vessels associated with particular physiological or abnormal conditions. The cellular mechanisms underlying vasomotion and its physiological role have not been completely elucidated. Various mechanisms were demonstrated, based on cell Ca2+ oscillations determined by the activity of channels in the plasma membrane or sarcoplasmic reticulum of vascular cells. However, the possible engagement in vasomotion of cell metabolic oscillations of mitochondrial or glycolytic origin has been poorly explored. Metabolic oscillations associated with the production of ATP energy were previously described in cells, while limited studies have investigated these fluctuations in-vivo. Here, we characterised a low-frequency metabolic oscillator (MO-1) in skin from live wild-type and Nrf2−/− mice, by combination of fluorescence spectroscopy and wavelet transform processing technique. Furthermore, the relationships between metabolic and microvascular oscillators were examined during phenylephrine-induced vasoconstriction. We found a significant interaction between MO-1 and the endothelial EDHF vasomotor mechanism that was reduced in the presence of oxidative stress (Nrf2−/− mice). Our findings suggest indirectly that metabolic oscillations may be involved in the mechanisms underlying endothelium-mediated skin vasomotion, which might be altered in the presence of metabolic disturbance.
Collapse
|