1
|
Leadley G, Austin T, Bale G. Review of measurements and imaging of cytochrome-c-oxidase in humans using near-infrared spectroscopy: an update. BIOMEDICAL OPTICS EXPRESS 2024; 15:162-184. [PMID: 38223181 PMCID: PMC10783912 DOI: 10.1364/boe.501915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
This review examines advancements in the measurement and imaging of oxidized cytochrome-c-oxidase (oxCCO) using near-infrared spectroscopy (NIRS) in humans since 2016. A total of 34 published papers were identified, with a focus on both adult and neonate populations. The NIRS-derived oxCCO signal has been demonstrated to correlate with physiological parameters and hemodynamics. New instrumentation, such as systems that allow the imaging of changes of oxCCO with diffuse optical tomography or combine the oxCCO measurement with diffuse correlation spectroscopy measures of blood flow, have advanced the field in the past decade. However, variability in its response across different populations and paradigms and lack of standardization limit its potential as a reliable and valuable indicator of brain health. Future studies should address these issues to fulfill the vision of oxCCO as a clinical biomarker.
Collapse
Affiliation(s)
- Georgina Leadley
- Department of Paediatrics, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, UK
| | - Gemma Bale
- Department of Engineering, University of Cambridge, UK
- Department of Physics, University of Cambridge, UK
| |
Collapse
|
2
|
Li NC, Ioussoufovitch S, Diop M. HyperTRCSS: A hyperspectral time-resolved compressive sensing spectrometer for depth-sensitive monitoring of cytochrome-c-oxidase and blood oxygenation. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:015002. [PMID: 38269084 PMCID: PMC10807872 DOI: 10.1117/1.jbo.29.1.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Significance Hyperspectral time-resolved (TR) near-infrared spectroscopy offers the potential to monitor cytochrome-c-oxidase (oxCCO) and blood oxygenation in the adult brain with minimal scalp/skull contamination. We introduce a hyperspectral TR spectrometer that uses compressive sensing to minimize acquisition time without compromising spectral range or resolution and demonstrate oxCCO and blood oxygenation monitoring in deep tissue. Aim Develop a hyperspectral TR compressive sensing spectrometer and use it to monitor oxCCO and blood oxygenation in deep tissue. Approach Homogeneous tissue-mimicking phantom experiments were conducted to confirm the spectrometer's sensitivity to oxCCO and blood oxygenation. Two-layer phantoms were used to evaluate the spectrometer's sensitivity to oxCCO and blood oxygenation in the bottom layer through a 10 mm thick static top layer. Results The spectrometer was sensitive to oxCCO and blood oxygenation changes in the bottom layer of the two-layer phantoms, as confirmed by concomitant measurements acquired directly from the bottom layer. Measures of oxCCO and blood oxygenation by the spectrometer were highly correlated with "gold standard" measures in the homogeneous and two-layer phantom experiments. Conclusions The results show that the hyperspectral TR compressive sensing spectrometer is sensitive to changes in oxCCO and blood oxygenation in deep tissue through a thick static top layer.
Collapse
Affiliation(s)
- Natalie C. Li
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
| | - Seva Ioussoufovitch
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
| | - Mamadou Diop
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
- Western University, Schulich School of Medicine and Dentistry, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| |
Collapse
|
3
|
Lozano-Vicario L, Zambom-Ferraresi F, Zambom-Ferraresi F, de la Casa-Marín A, Ollo-Martínez I, Sáez de Asteasu ML, Cedeño-Veloz BA, Fernández-Irigoyen J, Santamaría E, Romero-Ortuno R, Izquierdo M, Martínez-Velilla N. Effectiveness of a multicomponent exercise training program for the management of delirium in hospitalized older adults using near-infrared spectroscopy as a biomarker of brain perfusion: Study protocol for a randomized controlled trial. Front Aging Neurosci 2022; 14:1013631. [PMID: 36589545 PMCID: PMC9797855 DOI: 10.3389/fnagi.2022.1013631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Delirium is an important cause of morbidity and mortality in older adults admitted to hospital. Multicomponent interventions targeting delirium risk factors, including physical exercise and mobilization, have been shown to reduce delirium incidence by 30-40% in acute care settings. However, little is known about its role in the evolution of delirium, once established. This study is a randomized clinical trial conducted in the Acute Geriatric Unit of Hospital Universitario de Navarra (Pamplona, Spain). Hospitalized patients with delirium who meet the inclusion criteria will be randomly assigned to the intervention or the control group. The intervention will consist of a multicomponent exercise training program, which will be composed of supervised progressive resistance and strength exercise over 3 consecutive days. Functional Near-Infrared Spectroscopy (NIRS) will be used for assessing cerebral and muscle tissue blood flow. The objective is to assess the effectiveness of this intervention in modifying the following primary outcomes: duration and severity of delirium and functional status. This study will contribute to determine the effectiveness of physical exercise in the management of delirium. It will be the first study to evaluate the impact of a multicomponent intervention based on physical exercise in the evolution of delirium. Clinical trial registration ClinicalTrials.gov. identifier: NCT05442892 (date of registration June 26, 2022).
Collapse
Affiliation(s)
- Lucía Lozano-Vicario
- Department of Geriatric Medicine, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | - Fabiola Zambom-Ferraresi
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Fabricio Zambom-Ferraresi
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Antón de la Casa-Marín
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Iranzu Ollo-Martínez
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Mikel L. Sáez de Asteasu
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Nicolás Martínez-Velilla
- Department of Geriatric Medicine, Hospital Universitario de Navarra (HUN), Pamplona, Spain
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| |
Collapse
|
4
|
Milej D, Rajaram A, Suwalski M, Morrison LB, Shoemaker LN, St. Lawrence K. Assessing the relationship between the cerebral metabolic rate of oxygen and the oxidation state of cytochrome-c-oxidase. NEUROPHOTONICS 2022; 9:035001. [PMID: 35874144 PMCID: PMC9298853 DOI: 10.1117/1.nph.9.3.035001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2022] [Indexed: 05/07/2023]
Abstract
Significance: Hyperspectral near-infrared spectroscopy (hsNIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), the cerebral metabolic rate of oxygen ( CMRO 2 ) and the oxidation state of cytochrome-c-oxidase (oxCCO). CMRO 2 is calculated by combining tissue oxygen saturation ( S t O 2 ) with CBF, whereas oxCCO can be measured directly by hsNIRS. Although both reflect oxygen metabolism, a direct comparison has yet to be studied. Aim: We aim to investigate the relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand. Approach: A hybrid hsNIRS/DCS system was used to measure hemodynamic and metabolic responses in piglets exposed to cerebral ischemia and anesthetic-induced reductions in brain activity. Results: Although a linear relationship was observed between CMRO 2 and oxCCO during ischemia, both exhibited a nonlinear relationship with respect to CBF. In contrast, linear correlation was sufficient to characterize the relationships between CMRO 2 and CBF and between the two metabolic markers during reduced metabolic demand. Conclusions: The observed relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand indicates that the two metabolic markers are strongly correlated.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Address all correspondence to Daniel Milej,
| | - Ajay Rajaram
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Marianne Suwalski
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Laura B. Morrison
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Leena N. Shoemaker
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Western University, Department of Kinesiology, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
5
|
Wu Y, Xu Z, Yang W, Ning Z, Dong H. Review on the Application of Hyperspectral Imaging Technology of the Exposed Cortex in Cerebral Surgery. Front Bioeng Biotechnol 2022; 10:906728. [PMID: 35711634 PMCID: PMC9196632 DOI: 10.3389/fbioe.2022.906728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The study of brain science is vital to human health. The application of hyperspectral imaging in biomedical fields has grown dramatically in recent years due to their unique optical imaging method and multidimensional information acquisition. Hyperspectral imaging technology can acquire two-dimensional spatial information and one-dimensional spectral information of biological samples simultaneously, covering the ultraviolet, visible and infrared spectral ranges with high spectral resolution, which can provide diagnostic information about the physiological, morphological and biochemical components of tissues and organs. This technology also presents finer spectral features for brain imaging studies, and further provides more auxiliary information for cerebral disease research. This paper reviews the recent advance of hyperspectral imaging in cerebral diagnosis. Firstly, the experimental setup, image acquisition and pre-processing, and analysis methods of hyperspectral technology were introduced. Secondly, the latest research progress and applications of hyperspectral imaging in brain tissue metabolism, hemodynamics, and brain cancer diagnosis in recent years were summarized briefly. Finally, the limitations of the application of hyperspectral imaging in cerebral disease diagnosis field were analyzed, and the future development direction was proposed.
Collapse
Affiliation(s)
- Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, China
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, China
| | - Zhiqiang Ning
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Hefei, China.,Science Island Branch, Graduate School of USTC, Hefei, China
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
6
|
Rajaram A, Milej D, Suwalski M, Yip LCM, Guo LR, Chu MWA, Chui J, Diop M, Murkin JM, St. Lawrence K. Optical monitoring of cerebral perfusion and metabolism in adults during cardiac surgery with cardiopulmonary bypass. BIOMEDICAL OPTICS EXPRESS 2020; 11:5967-5981. [PMID: 33149999 PMCID: PMC7587277 DOI: 10.1364/boe.404101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
During cardiac surgery with cardiopulmonary bypass (CPB), adequate maintenance of cerebral blood flow (CBF) is vital in preventing postoperative neurological injury - i.e. stroke, delirium, cognitive impairment. Reductions in CBF large enough to impact cerebral energy metabolism can lead to tissue damage and subsequent brain injury. Current methods for neuromonitoring during surgery are limited. This study presents the clinical translation of a hybrid optical neuromonitor for continuous intraoperative monitoring of cerebral perfusion and metabolism in ten patients undergoing non-emergent cardiac surgery with non-pulsatile CPB. The optical system combines broadband near-infrared spectroscopy (B-NIRS) to measure changes in the oxidation state of cytochrome c oxidase (oxCCO) - a direct marker of cellular energy metabolism - and diffuse correlation spectroscopy (DCS) to provide an index of cerebral blood flow (CBFi). As the heart was arrested and the CPB-pump started, increases in CBFi (88.5 ± 125.7%) and significant decreases in oxCCO (-0.5 ± 0.2 µM) were observed; no changes were noted during transitions off CPB. Fifteen hypoperfusion events, defined as large and sustained reductions in CPB-pump flow rate, were identified across all patients and resulted in significant decreases in perfusion and metabolism when mean arterial pressure dropped to 30 mmHg or below. The maximum reduction in cerebral blood flow preceded the corresponding metabolic reduction by 18.2 ± 15.0 s. Optical neuromonitoring provides a safe and non-invasive approach for assessing intraoperative perfusion and metabolism and has potential in guiding patient management to prevent adverse clinical outcomes.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Lawrence C. M. Yip
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Linrui R. Guo
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Michael W. A. Chu
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Jason Chui
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - John M. Murkin
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| |
Collapse
|
7
|
Kaynezhad P, Mitra S, Bale G, Bauer C, Lingam I, Meehan C, Avdic-Belltheus A, Martinello KA, Bainbridge A, Robertson NJ, Tachtsidis I. Quantification of the severity of hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system. NEUROPHOTONICS 2019; 6:045009. [PMID: 31737744 PMCID: PMC6855218 DOI: 10.1117/1.nph.6.4.045009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 05/05/2023]
Abstract
We describe the development of a miniaturized broadband near-infrared spectroscopy system (bNIRS), which measures changes in cerebral tissue oxyhemoglobin ( [ HbO 2 ] ) and deoxyhemoglobin ([HHb]) plus tissue metabolism via changes in the oxidation state of cytochrome-c-oxidase ([oxCCO]). The system is based on a small light source and a customized mini-spectrometer. We assessed the instrument in a preclinical study in 27 newborn piglets undergoing transient cerebral hypoxia-ischemia (HI). We aimed to quantify the recovery of the HI insult and estimate the severity of the injury. The recovery in brain oxygenation ( Δ [ HbDiff ] = Δ [ HbO 2 ] - Δ [ HHb ] ), blood volume ( Δ [ HbT ] = Δ [ HbO 2 ] + Δ [ HHb ] ), and metabolism ( Δ [ oxCCO ] ) for up to 30 min after the end of HI were quantified in percentages using the recovery fraction (RF) algorithm, which quantifies the recovery of a signal with respect to baseline. The receiver operating characteristic analysis was performed on bNIRS-RF measurements compared to proton ( H 1 ) magnetic resonance spectroscopic (MRS)-derived thalamic lactate/N-acetylaspartate (Lac/NAA) measured at 24-h post HI insult; Lac/NAA peak area ratio is an accurate surrogate marker of neurodevelopmental outcome in babies with neonatal HI encephalopathy. The Δ [ oxCCO ] -RF cut-off threshold of 79% within 30 min of HI predicted injury severity based on Lac/NAA with high sensitivity (100%) and specificity (93%). A significant difference in thalamic Lac/NAA was noticed ( p < 0.0001 ) between the two groups based on this cut-off threshold of 79% Δ [ oxCCO ] -RF. The severe injury group ( n = 13 ) had ∼ 30 % smaller recovery in Δ [ HbDiff ] -RF ( p = 0.0001 ) and no significant difference was observed in Δ [ HbT ] -RF between groups. At 48 h post HI, significantly higher P 31 -MRS-measured inorganic phosphate/exchangeable phosphate pool (epp) ( p = 0.01 ) and reduced phosphocreatine/epp ( p = 0.003 ) were observed in the severe injury group indicating persistent cerebral energy depletion. Based on these results, the bNIRS measurement of the oxCCO recovery fraction offers a noninvasive real-time biomarker of brain injury severity within 30 min following HI insult.
Collapse
Affiliation(s)
- Pardis Kaynezhad
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Address all correspondence to Ilias Tachtsidis, E-mail:
| | - Subhabrata Mitra
- University College London, Institute for Women’s Health, London, United Kingdom
| | - Gemma Bale
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Cornelius Bauer
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Ingran Lingam
- University College London, Institute for Women’s Health, London, United Kingdom
| | - Christopher Meehan
- University College London, Institute for Women’s Health, London, United Kingdom
| | | | | | - Alan Bainbridge
- University College London Hospital, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Nicola J. Robertson
- University College London, Institute for Women’s Health, London, United Kingdom
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|