1
|
Zhang Y, Bai W, Dong Y, Dan M, Liu D, Gao F. Deep-learning approach to stratified reconstructions of tissue absorption and scattering in time-domain spatial frequency domain imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:036002. [PMID: 38476220 PMCID: PMC10929733 DOI: 10.1117/1.jbo.29.3.036002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Significance The conventional optical properties (OPs) reconstruction in spatial frequency domain (SFD) imaging, like the lookup table (LUT) method, causes OPs aliasing and yields only average OPs without depth resolution. Integrating SFD imaging with time-resolved (TR) measurements enhances space-TR information, enabling improved reconstruction of absorption (μ a ) and reduced scattering (μ s ' ) coefficients at various depths. Aim To achieve the stratified reconstruction of OPs and the separation between μ a and μ s ' , using deep learning workflow based on the temporal and spatial information provided by time-domain SFD imaging technique, while enhancing the reconstruction accuracy. Approach Two data processing methods are employed for the OPs reconstruction with TR-SFD imaging, one is full TR data, and the other is the featured data extracted from the full TR data (E , continuous-wave component, ⟨ t ⟩ , mean time of flight). We compared their performance using a series of simulation and phantom validations. Results Compared to the LUT approach, utilizing full TR, E and ⟨ t ⟩ datasets yield high-resolution OPs reconstruction results. Among the three datasets employed, full TR demonstrates the optimal accuracy. Conclusions Utilizing the data obtained from SFD and TR measurement techniques allows for achieving high-resolution separation reconstruction of μ a and μ s ' at different depths within 5 mm.
Collapse
Affiliation(s)
- Yaru Zhang
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
| | - Wenxing Bai
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
| | - Yihan Dong
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
| | - Mai Dan
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
| | - Dongyuan Liu
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin, China
| | - Feng Gao
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin, China
| |
Collapse
|
2
|
Wang Y, Kang X, Zhang Y, Shi Z, Ren H, Wang Q, Chen M, Zhang Y. Wavelength and frequency optimization in spatial frequency domain imaging for two-layer tissue. BIOMEDICAL OPTICS EXPRESS 2022; 13:3224-3242. [PMID: 35781948 PMCID: PMC9208585 DOI: 10.1364/boe.455386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Spatial frequency domain imaging is a non-contact, wide-field, fast-diffusion optical imaging technique, which in principle uses steady-state spatially modulated light to irradiate biological tissue, reconstruct two-dimensional or three-dimensional tissue optical characteristic map through optical transmission model, and further quantify the spatial distribution of tissue physiological parameters by multispectral imaging technique. The selection of light source wavelength and light field spatial modulation frequency is directly related to the accuracy of tissue optical properties and tissue physiological parameters extraction. For improvement of the measurement accuracy of optical properties and physiological parameters in the two-layer tissue, a multispectral spatial frequency domain imaging system is built based on liquid crystal tunable filter, and a data mapping table of spatially resolved diffuse reflectance and optical properties of two-layer tissue is established based on scaling Monte Carlo method. Combined with the dispersion effect and window effect of light-tissue interaction, the study applies numerical simulation to optimize the wavelength in the 650-850 nm range with spectral resolution of 10 nm. In order to minimize the uncertainty of the optical properties, Cramér-Rao bound is used to optimize the optical field spatial modulation frequency by transmitting the uncertainty of optical properties. The results showed that in order to realize the detection of melanin, oxyhemoglobin, deoxyhemoglobin, water and other physiological parameters in two-layer tissue, the best wavelength combination was determined as 720, 730, 760 and 810 nm according to the condition number. The findings of the Cramér-Rao bound analysis reveal that the uncertainty of optical characteristics for the frequency combinations [0, 0.3] mm-1, [0, 0.2] mm-1, and [0, 0.1] mm-1 increases successively. Under the optimal combination of wavelength and frequency, the diffuse reflectance of the gradient gray-scale plate measured by the multi-spectral spatial frequency domain imaging system is linearly correlated with the calibration value. The error between the measured liquid phantom absorption coefficient and the collimation projection system based on colorimetric dish is less than 2%. The experimental results of human brachial artery occlusion indicate that under the optimal wavelength combination, the change of the second layer absorption coefficient captured by the three frequency combinations decreases in turn, so as the change of oxygen saturation.
Collapse
Affiliation(s)
- Yikun Wang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
- These authors contributed equally to this work and should be considered co-first authors
| | - Xu Kang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- These authors contributed equally to this work and should be considered co-first authors
| | - Yang Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
| | - Zhiguo Shi
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230009, China
| | - Huiming Ren
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Quanfu Wang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuanzhi Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei 230031, China
| |
Collapse
|