1
|
Zhong Y, Liu Z, Zhang X, Liang Z, Chen W, Dai C, Qi L. Unsupervised adversarial neural network for enhancing vasculature in photoacoustic tomography images using optical coherence tomography angiography. Comput Med Imaging Graph 2024; 117:102425. [PMID: 39216343 DOI: 10.1016/j.compmedimag.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Photoacoustic tomography (PAT) is a powerful imaging modality for visualizing tissue physiology and exogenous contrast agents. However, PAT faces challenges in visualizing deep-seated vascular structures due to light scattering, absorption, and reduced signal intensity with depth. Optical coherence tomography angiography (OCTA) offers high-contrast visualization of vasculature networks, yet its imaging depth is limited to a millimeter scale. Herein, we propose OCPA-Net, a novel unsupervised deep learning method that utilizes the rich vascular feature of OCTA to enhance PAT images. Trained on unpaired OCTA and PAT images, OCPA-Net incorporates a vessel-aware attention module to enhance deep-seated vessel details captured from OCTA. It leverages a domain-adversarial loss function to enforce structural consistency and a novel identity invariant loss to mitigate excessive image content generation. We validate the structural fidelity of OCPA-Net on simulation experiments, and then demonstrate its vascular enhancement performance on in vivo imaging experiments of tumor-bearing mice and contrast-enhanced pregnant mice. The results show the promise of our method for comprehensive vessel-related image analysis in preclinical research applications.
Collapse
Affiliation(s)
- Yutian Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Zhenyang Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China; Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Xiaoming Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoyong Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Cuixia Dai
- College of Science, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Wang Z, Tao W, Zhao H. Extractor-attention-predictor network for quantitative photoacoustic tomography. PHOTOACOUSTICS 2024; 38:100609. [PMID: 38745884 PMCID: PMC11091525 DOI: 10.1016/j.pacs.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Quantitative photoacoustic tomography (qPAT) holds great potential in estimating chromophore concentrations, whereas the involved optical inverse problem, aiming to recover absorption coefficient distributions from photoacoustic images, remains challenging. To address this problem, we propose an extractor-attention-predictor network architecture (EAPNet), which employs a contracting-expanding structure to capture contextual information alongside a multilayer perceptron to enhance nonlinear modeling capability. A spatial attention module is introduced to facilitate the utilization of important information. We also use a balanced loss function to prevent network parameter updates from being biased towards specific regions. Our method obtains satisfactory quantitative metrics in simulated and real-world validations. Moreover, it demonstrates superior robustness to target properties and yields reliable results for targets with small size, deep location, or relatively low absorption intensity, indicating its broader applicability. The EAPNet, compared to the conventional UNet, exhibits improved efficiency, which significantly enhances performance while maintaining similar network size and computational complexity.
Collapse
Affiliation(s)
- Zeqi Wang
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Tao
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Zhao
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Zhang S, Miao J, Li LS. Challenges and advances in two-dimensional photoacoustic computed tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:070901. [PMID: 39006312 PMCID: PMC11245175 DOI: 10.1117/1.jbo.29.7.070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Significance Photoacoustic computed tomography (PACT), a hybrid imaging modality combining optical excitation with acoustic detection, has rapidly emerged as a prominent biomedical imaging technique. Aim We review the challenges and advances of PACT, including (1) limited view, (2) anisotropy resolution, (3) spatial aliasing, (4) acoustic heterogeneity (speed of sound mismatch), and (5) fluence correction of spectral unmixing. Approach We performed a comprehensive literature review to summarize the key challenges in PACT toward practical applications and discuss various solutions. Results There is a wide range of contributions from both industry and academic spaces. Various approaches, including emerging deep learning methods, are proposed to improve the performance of PACT further. Conclusions We outline contemporary technologies aimed at tackling the challenges in PACT applications.
Collapse
Affiliation(s)
- Shunyao Zhang
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Jingyi Miao
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Lei S. Li
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| |
Collapse
|
4
|
Liang Z, Zhang S, Liang Z, Mo Z, Zhang X, Zhong Y, Chen W, Qi L. Deep learning acceleration of iterative model-based light fluence correction for photoacoustic tomography. PHOTOACOUSTICS 2024; 37:100601. [PMID: 38516295 PMCID: PMC10955667 DOI: 10.1016/j.pacs.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Photoacoustic tomography (PAT) is a promising imaging technique that can visualize the distribution of chromophores within biological tissue. However, the accuracy of PAT imaging is compromised by light fluence (LF), which hinders the quantification of light absorbers. Currently, model-based iterative methods are used for LF correction, but they require extensive computational resources due to repeated LF estimation based on differential light transport models. To improve LF correction efficiency, we propose to use Fourier neural operator (FNO), a neural network specially designed for estimating partial differential equations, to learn the forward projection of light transport in PAT. Trained using paired finite-element-based LF simulation data, our FNO model replaces the traditional computational heavy LF estimator during iterative correction, such that the correction procedure is considerably accelerated. Simulation and experimental results demonstrate that our method achieves comparable LF correction quality to traditional iterative methods while reducing the correction time by over 30 times.
Collapse
Affiliation(s)
- Zhaoyong Liang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
| | - Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
| | - Zhichao Liang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
| | - Zongxin Mo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
| | - Xiaoming Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
| | - Yutian Zhong
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Jiang D, Zhu L, Tong S, Shen Y, Gao F, Gao F. Photoacoustic imaging plus X: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11513. [PMID: 38156064 PMCID: PMC10753847 DOI: 10.1117/1.jbo.29.s1.s11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Significance Photoacoustic (PA) imaging (PAI) represents an emerging modality within the realm of biomedical imaging technology. It seamlessly blends the wealth of optical contrast with the remarkable depth of penetration offered by ultrasound. These distinctive features of PAI hold tremendous potential for various applications, including early cancer detection, functional imaging, hybrid imaging, monitoring ablation therapy, and providing guidance during surgical procedures. The synergy between PAI and other cutting-edge technologies not only enhances its capabilities but also propels it toward broader clinical applicability. Aim The integration of PAI with advanced technology for PA signal detection, signal processing, image reconstruction, hybrid imaging, and clinical applications has significantly bolstered the capabilities of PAI. This review endeavor contributes to a deeper comprehension of how the synergy between PAI and other advanced technologies can lead to improved applications. Approach An examination of the evolving research frontiers in PAI, integrated with other advanced technologies, reveals six key categories named "PAI plus X." These categories encompass a range of topics, including but not limited to PAI plus treatment, PAI plus circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. Results After conducting a comprehensive review of the existing literature and research on PAI integrated with other technologies, various proposals have emerged to advance the development of PAI plus X. These proposals aim to enhance system hardware, improve imaging quality, and address clinical challenges effectively. Conclusions The progression of innovative and sophisticated approaches within each category of PAI plus X is positioned to drive significant advancements in both the development of PAI technology and its clinical applications. Furthermore, PAI not only has the potential to integrate with the above-mentioned technologies but also to broaden its applications even further.
Collapse
Affiliation(s)
- Daohuai Jiang
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
- Fujian Normal University, College of Photonic and Electronic Engineering, Fuzhou, China
| | - Luyao Zhu
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Shangqing Tong
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Yuting Shen
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Feng Gao
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
| | - Fei Gao
- ShanghaiTech University, School of Information Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
6
|
Tarvainen T, Cox B. Quantitative photoacoustic tomography: modeling and inverse problems. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11509. [PMID: 38125717 PMCID: PMC10731766 DOI: 10.1117/1.jbo.29.s1.s11509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Significance Quantitative photoacoustic tomography (QPAT) exploits the photoacoustic effect with the aim of estimating images of clinically relevant quantities related to the tissue's optical absorption. The technique has two aspects: an acoustic part, where the initial acoustic pressure distribution is estimated from measured photoacoustic time-series, and an optical part, where the distributions of the optical parameters are estimated from the initial pressure. Aim Our study is focused on the optical part. In particular, computational modeling of light propagation (forward problem) and numerical solution methodologies of the image reconstruction (inverse problem) are discussed. Approach The commonly used mathematical models of how light and sound propagate in biological tissue are reviewed. A short overview of how the acoustic inverse problem is usually treated is given. The optical inverse problem and methods for its solution are reviewed. In addition, some limitations of real-life measurements and their effect on the inverse problems are discussed. Results An overview of QPAT with a focus on the optical part was given. Computational modeling and inverse problems of QPAT were addressed, and some key challenges were discussed. Furthermore, the developments for tackling these problems were reviewed. Although modeling of light transport is well-understood and there is a well-developed framework of inverse mathematics for approaching the inverse problem of QPAT, there are still challenges in taking these methodologies to practice. Conclusions Modeling and inverse problems of QPAT together were discussed. The scope was limited to the optical part, and the acoustic aspects were discussed only to the extent that they relate to the optical aspect.
Collapse
Affiliation(s)
- Tanja Tarvainen
- University of Eastern Finland, Department of Technical Physics, Kuopio, Finland
| | - Ben Cox
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
7
|
Huang C, Cheng Y, Zheng W, Bing RW, Zhang H, Komornicki I, Harris LM, Arany PR, Chakraborty S, Zhou Q, Xu W, Xia J. Dual-Scan Photoacoustic Tomography for the Imaging of Vascular Structure on Foot. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1703-1713. [PMID: 37276111 PMCID: PMC10809222 DOI: 10.1109/tuffc.2023.3283139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chronic leg ulcers are affecting approximately 6.5 million Americans, and they are associated with significant mortality, reduced quality of life, and high treatment costs. Since many chronic ulcers have underlying vascular insufficiency, accurate assessment of tissue perfusion is critical to treatment planning and monitoring. This study introduces a dual-scan photoacoustic (PA) tomography (PAT) system that can simultaneously image the dorsal and plantar sides of the foot to reduce imaging time. To account for the unique shape of the foot, the system employs height-adjustable and articulating baseball stages that can scan along the foot's contour. In vivo results from healthy volunteers demonstrate the system's ability to acquire clear images of foot vasculature, and results from patients indicate that the system can image patients with various ulcer conditions. We also investigated various PA features and examined their correlation with the foot condition. Our preliminary results indicate that vessel sharpness, occupancy, intensity, and density could all be used to assess tissue perfusion. This research demonstrated the potential of PAT for routine clinical tissue perfusion assessment.
Collapse
|
8
|
Zheng W, Zhang H, Huang C, Shijo V, Xu C, Xu W, Xia J. Deep Learning Enhanced Volumetric Photoacoustic Imaging of Vasculature in Human. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301277. [PMID: 37530209 PMCID: PMC10582405 DOI: 10.1002/advs.202301277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/26/2023] [Indexed: 08/03/2023]
Abstract
The development of high-performance imaging processing algorithms is a core area of photoacoustic tomography. While various deep learning based image processing techniques have been developed in the area, their applications in 3D imaging are still limited due to challenges in computational cost and memory allocation. To address those limitations, this work implements a 3D fully-dense (3DFD) U-net to linear array based photoacoustic tomography and utilizes volumetric simulation and mixed precision training to increase efficiency and training size. Through numerical simulation, phantom imaging, and in vivo experiments, this work demonstrates that the trained network restores the true object size, reduces the noise level and artifacts, improves the contrast at deep regions, and reveals vessels subject to limited view distortion. With these enhancements, 3DFD U-net successfully produces clear 3D vascular images of the palm, arms, breasts, and feet of human subjects. These enhanced vascular images offer improved capabilities for biometric identification, foot ulcer evaluation, and breast cancer imaging. These results indicate that the new algorithm will have a significant impact on preclinical and clinical photoacoustic tomography.
Collapse
Affiliation(s)
- Wenhan Zheng
- Department of Biomedical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew YorkNY14260USA
| | - Huijuan Zhang
- Department of Biomedical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew YorkNY14260USA
| | - Chuqin Huang
- Department of Biomedical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew YorkNY14260USA
| | - Varun Shijo
- Department of Biomedical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew YorkNY14260USA
- Department of Computer Science and EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew YorkNY14260USA
| | - Chenhan Xu
- Department of Computer Science and EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew YorkNY14260USA
| | - Wenyao Xu
- Department of Computer Science and EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew YorkNY14260USA
| | - Jun Xia
- Department of Biomedical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew YorkNY14260USA
- Department of Computer Science and EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew YorkNY14260USA
| |
Collapse
|
9
|
Poplack SP, Park EY, Ferrara KW. Optical Breast Imaging: A Review of Physical Principles, Technologies, and Clinical Applications. JOURNAL OF BREAST IMAGING 2023; 5:520-537. [PMID: 37981994 PMCID: PMC10655724 DOI: 10.1093/jbi/wbad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Optical imaging involves the propagation of light through tissue. Current optical breast imaging technologies, including diffuse optical spectroscopy, diffuse optical tomography, and photoacoustic imaging, capitalize on the selective absorption of light in the near-infrared spectrum by deoxygenated and oxygenated hemoglobin. They provide information on the morphological and functional characteristics of different tissues based on their varied interactions with light, including physiologic information on lesion vascular content and anatomic information on tissue vascularity. Fluorescent contrast agents, such as indocyanine green, are used to visualize specific tissues, molecules, or proteins depending on how and where the agent accumulates. In this review, we describe the physical principles, spectrum of technologies, and clinical applications of the most common optical systems currently being used or developed for breast imaging. Most notably, US co-registered photoacoustic imaging and US-guided diffuse optical tomography have demonstrated efficacy in differentiating benign from malignant breast masses, thereby improving the specificity of diagnostic imaging. Diffuse optical tomography and diffuse optical spectroscopy have shown promise in assessing treatment response to preoperative systemic therapy, and photoacoustic imaging and diffuse optical tomography may help predict tumor phenotype. Lastly, fluorescent imaging using indocyanine green dye performs comparably to radioisotope mapping of sentinel lymph nodes and appears to improve the outcomes of autologous tissue flap breast reconstruction.
Collapse
Affiliation(s)
- Steven P. Poplack
- Stanford University School of Medicine, Department of Radiology, Palo Alto, CA, USA
| | - Eun-Yeong Park
- Stanford University School of Medicine, Department of Radiology, Palo Alto, CA, USA
| | - Katherine W. Ferrara
- Stanford University School of Medicine, Department of Radiology, Palo Alto, CA, USA
| |
Collapse
|