1
|
Greco F, D’Andrea V, Buoso A, Cea L, Bernetti C, Beomonte Zobel B, Mallio CA. Advancements in Radiogenomics for Clear Cell Renal Cell Carcinoma: Understanding the Impact of BAP1 Mutation. J Clin Med 2024; 13:3960. [PMID: 38999524 PMCID: PMC11242378 DOI: 10.3390/jcm13133960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Recent advancements in understanding clear cell renal cell carcinoma (ccRCC) have underscored the critical role of the BAP1 gene in its pathogenesis and prognosis. While the von Hippel-Lindau (VHL) mutation has been extensively studied, emerging evidence suggests that mutations in BAP1 and other genes significantly impact patient outcomes. Radiogenomics with and without texture analysis based on CT imaging holds promise in predicting BAP1 mutation status and overall survival outcomes. However, prospective studies with larger cohorts and standardized imaging protocols are needed to validate these findings and translate them into clinical practice effectively, paving the way for personalized treatment strategies in ccRCC. This review aims to summarize the current knowledge on the role of BAP1 mutation in ccRCC pathogenesis and prognosis, as well as the potential of radiogenomics in predicting mutation status and clinical outcomes.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella della Salute, Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
| | - Valerio D’Andrea
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Andrea Buoso
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Laura Cea
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Caterina Bernetti
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Bruno Beomonte Zobel
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
2
|
Lennerz JK, Salgado R, Kim GE, Sirintrapun SJ, Thierauf JC, Singh A, Indave I, Bard A, Weissinger SE, Heher YK, de Baca ME, Cree IA, Bennett S, Carobene A, Ozben T, Ritterhouse LL. Diagnostic quality model (DQM): an integrated framework for the assessment of diagnostic quality when using AI/ML. Clin Chem Lab Med 2023; 61:544-557. [PMID: 36696602 DOI: 10.1515/cclm-2022-1151] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Laboratory medicine has reached the era where promises of artificial intelligence and machine learning (AI/ML) seem palpable. Currently, the primary responsibility for risk-benefit assessment in clinical practice resides with the medical director. Unfortunately, there is no tool or concept that enables diagnostic quality assessment for the various potential AI/ML applications. Specifically, we noted that an operational definition of laboratory diagnostic quality - for the specific purpose of assessing AI/ML improvements - is currently missing. METHODS A session at the 3rd Strategic Conference of the European Federation of Laboratory Medicine in 2022 on "AI in the Laboratory of the Future" prompted an expert roundtable discussion. Here we present a conceptual diagnostic quality framework for the specific purpose of assessing AI/ML implementations. RESULTS The presented framework is termed diagnostic quality model (DQM) and distinguishes AI/ML improvements at the test, procedure, laboratory, or healthcare ecosystem level. The operational definition illustrates the nested relationship among these levels. The model can help to define relevant objectives for implementation and how levels come together to form coherent diagnostics. The affected levels are referred to as scope and we provide a rubric to quantify AI/ML improvements while complying with existing, mandated regulatory standards. We present 4 relevant clinical scenarios including multi-modal diagnostics and compare the model to existing quality management systems. CONCLUSIONS A diagnostic quality model is essential to navigate the complexities of clinical AI/ML implementations. The presented diagnostic quality framework can help to specify and communicate the key implications of AI/ML solutions in laboratory diagnostics.
Collapse
Affiliation(s)
- Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital/Harvard Medical, Boston, MA, USA
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
| | - Grace E Kim
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | | | - Julia C Thierauf
- Department of Pathology, Massachusetts General Hospital/Harvard Medical, Boston, MA, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, German Cancer Research Center (DKFZ), Heidelberg University Hospital and Research Group Molecular Mechanisms of Head and Neck Tumors, Heidelberg, Germany
| | - Ankit Singh
- Department of Pathology, Massachusetts General Hospital/Harvard Medical, Boston, MA, USA
| | - Iciar Indave
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), Lisbon, Portugal
| | - Adam Bard
- Department of Pathology, Massachusetts General Hospital/Harvard Medical, Boston, MA, USA
| | | | - Yael K Heher
- Department of Pathology, Massachusetts General Hospital/Harvard Medical, Boston, MA, USA
| | | | - Ian A Cree
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Shannon Bennett
- Department of Laboratory Medicine and Pathology (DLMP), Mayo Clinic, Rochester, MN, USA
| | - Anna Carobene
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tomris Ozben
- Medical Faculty, Dept. of Clinical Biochemistry, Akdeniz University, Antalya, Türkiye
- Medical Faculty, Clinical and Experimental Medicine, Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren L Ritterhouse
- Department of Pathology, Massachusetts General Hospital/Harvard Medical, Boston, MA, USA
| |
Collapse
|
3
|
Ferro M, Musi G, Marchioni M, Maggi M, Veccia A, Del Giudice F, Barone B, Crocetto F, Lasorsa F, Antonelli A, Schips L, Autorino R, Busetto GM, Terracciano D, Lucarelli G, Tataru OS. Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects. Int J Mol Sci 2023; 24:4615. [PMID: 36902045 PMCID: PMC10003020 DOI: 10.3390/ijms24054615] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Renal cancer management is challenging from diagnosis to treatment and follow-up. In cases of small renal masses and cystic lesions the differential diagnosis of benign or malignant tissues has potential pitfalls when imaging or even renal biopsy is applied. The recent artificial intelligence, imaging techniques, and genomics advancements have the ability to help clinicians set the stratification risk, treatment selection, follow-up strategy, and prognosis of the disease. The combination of radiomics features and genomics data has achieved good results but is currently limited by the retrospective design and the small number of patients included in clinical trials. The road ahead for radiogenomics is open to new, well-designed prospective studies, with large cohorts of patients required to validate previously obtained results and enter clinical practice.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Alessandro Veccia
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Antonelli
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | | | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
4
|
Liu J, Lin Z, Wang K, Fang D, Zhang Y, Wang X, Zhang X, Wang H, Wang X. A preliminary radiomics model for predicting perirenal fat invasion on renal cell carcinoma with contrast-enhanced CT images. Abdom Radiol (NY) 2023; 48:649-658. [PMID: 36414745 DOI: 10.1007/s00261-022-03699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim is to develop a radiomics model based on contrast-enhanced CT scans for preoperative prediction of perirenal fat invasion (PFI) in patients with renal cell carcinoma (RCC). METHODS The CT data of 131 patients with pathology-confirmed PFI status (64 positives) were retrospectively collected and randomly assigned to the training and test datasets. The kidneys and the masses were annotated by semi-automatic segmentation. Eight types of regions of interest (ROI) were chosen for the training of the radiomics models. The areas under the curves (AUCs) from the receiver operating characteristic (ROC) curve analysis were used to analyze the diagnostic performance. Eight types of models with different ROIs have been developed. The models with the highest AUC in the test dataset were used for construction of the corresponding final model, and comparison with radiologists' diagnosis. RESULTS The AUCs of the models for each ROI was 0.783-0.926, and there was no statistically significant difference between them (P > 0.05). Model 4 was using the ROI of the outer half-ring which extended along the edge of the mass at the outer edge of the kidney into the perirenal fat space with a thickness of 3 mm. It yielded the highest AUC (0.926) and its diagnostic accuracy was higher than the radiologists' diagnosis. CONCLUSION We have developed and validated a radiomics model for prediction of PFI on RCC with contrast-enhanced CT scans. The model proved to be more accurate than the radiologists' diagnosis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhiyong Lin
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Kexin Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Yaofeng Zhang
- Beijing Smart Tree Medical Technology Co. Ltd, Beijing, 100011, China
| | - Xiangpeng Wang
- Beijing Smart Tree Medical Technology Co. Ltd, Beijing, 100011, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - He Wang
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| |
Collapse
|
5
|
Ferro M, Crocetto F, Barone B, del Giudice F, Maggi M, Lucarelli G, Busetto GM, Autorino R, Marchioni M, Cantiello F, Crocerossa F, Luzzago S, Piccinelli M, Mistretta FA, Tozzi M, Schips L, Falagario UG, Veccia A, Vartolomei MD, Musi G, de Cobelli O, Montanari E, Tătaru OS. Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review. Ther Adv Urol 2023; 15:17562872231164803. [PMID: 37113657 PMCID: PMC10126666 DOI: 10.1177/17562872231164803] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/04/2023] [Indexed: 04/29/2023] Open
Abstract
Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.
Collapse
Affiliation(s)
| | - Felice Crocetto
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Francesco del Giudice
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation
Unit, Department of Emergency and Organ Transplantation, University of Bari,
Bari, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ
Transplantation, University of Foggia, Foggia, Italy
| | | | - Michele Marchioni
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti,
Italy
| | - Francesco Cantiello
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Fabio Crocerossa
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Stefano Luzzago
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Mattia Piccinelli
- Cancer Prognostics and Health Outcomes Unit,
Division of Urology, University of Montréal Health Center, Montréal, QC,
Canada
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Tozzi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Luigi Schips
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
| | | | - Alessandro Veccia
- Urology Unit, Azienda Ospedaliera
Universitaria Integrata Verona, University of Verona, Verona, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology,
George Emil Palade University of Medicine, Pharmacy, Science and Technology
of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of
Vienna, Vienna, Austria
| | - Gennaro Musi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Montanari
- Department of Urology, Foundation IRCCS Ca’
Granda – Ospedale Maggiore Policlinico, Department of Clinical Sciences and
Community Health, University of Milan, Milan, Italy
| | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral
Studies (IOSUD), George Emil Palade University of Medicine, Pharmacy,
Science and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
6
|
Roussel E, Capitanio U, Kutikov A, Oosterwijk E, Pedrosa I, Rowe SP, Gorin MA. Novel Imaging Methods for Renal Mass Characterization: A Collaborative Review. Eur Urol 2022; 81:476-488. [PMID: 35216855 PMCID: PMC9844544 DOI: 10.1016/j.eururo.2022.01.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 01/19/2023]
Abstract
CONTEXT The incidental detection of localized renal masses has been rising steadily, but a significant proportion of these tumors are benign or indolent and, in most cases, do not require treatment. At the present time, a majority of patients with an incidentally detected renal tumor undergo treatment for the presumption of cancer, leading to a significant number of unnecessary surgical interventions that can result in complications including loss of renal function. Thus, there exists a clinical need for improved tools to aid in the pretreatment characterization of renal tumors to inform patient management. OBJECTIVE To systematically review the evidence on noninvasive, imaging-based tools for solid renal mass characterization. EVIDENCE ACQUISITION The MEDLINE database was systematically searched for relevant studies on novel imaging techniques and interpretative tools for the characterization of solid renal masses, published in the past 10 yr. EVIDENCE SYNTHESIS Over the past decade, several novel imaging tools have offered promise for the improved characterization of indeterminate renal masses. Technologies of particular note include multiparametric magnetic resonance imaging of the kidney, molecular imaging with targeted radiopharmaceutical agents, and use of radiomics as well as artificial intelligence to enhance the interpretation of imaging studies. Among these, 99mTc-sestamibi single photon emission computed tomography/computed tomography (CT) for the identification of benign renal oncocytomas and hybrid oncocytic chromophobe tumors, and positron emission tomography/CT imaging with radiolabeled girentuximab for the identification of clear cell renal cell carcinoma, are likely to be closest to implementation in clinical practice. CONCLUSIONS A number of novel imaging tools stand poised to aid in the noninvasive characterization of indeterminate renal masses. In the future, these tools may aid in patient management by providing a comprehensive virtual biopsy, complete with information on tumor histology, underlying molecular abnormalities, and ultimately disease prognosis. PATIENT SUMMARY Not all renal tumors require treatment, as a significant proportion are either benign or have limited metastatic potential. Several innovative imaging tools have shown promise for their ability to improve the characterization of renal tumors and provide guidance in terms of patient management.
Collapse
Affiliation(s)
- Eduard Roussel
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Umberto Capitanio
- Department of Urology, University Vita-Salute, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology, URI, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alexander Kutikov
- Division of Urology, Department of Surgery, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center. University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Gorin
- Urology Associates and UPMC Western Maryland, Cumberland, MD, USA; Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Khaleel S, Katims A, Cumarasamy S, Rosenzweig S, Attalla K, Hakimi AA, Mehrazin R. Radiogenomics in Clear Cell Renal Cell Carcinoma: A Review of the Current Status and Future Directions. Cancers (Basel) 2022; 14:2085. [PMID: 35565216 PMCID: PMC9100795 DOI: 10.3390/cancers14092085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/30/2022] Open
Abstract
Radiogenomics is a field of translational radiology that aims to associate a disease's radiologic phenotype with its underlying genotype, thus offering a novel class of non-invasive biomarkers with diagnostic, prognostic, and therapeutic potential. We herein review current radiogenomics literature in clear cell renal cell carcinoma (ccRCC), the most common renal malignancy. A literature review was performed by querying PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science databases, identifying all relevant articles using the following search terms: "radiogenomics", "renal cell carcinoma", and "clear cell renal cell carcinoma". Articles included were limited to the English language and published between 2009-2021. Of 141 retrieved articles, 16 fit our inclusion criteria. Most studies used computed tomography (CT) images from open-source and institutional databases to extract radiomic features that were then modeled against common genomic mutations in ccRCC using a variety of machine learning algorithms. In more recent studies, we noted a shift towards the prediction of transcriptomic and/or epigenetic disease profiles, as well as downstream clinical outcomes. Radiogenomics offers a platform for the development of non-invasive biomarkers for ccRCC, with promising results in small-scale retrospective studies. However, more research is needed to identify and validate robust radiogenomic biomarkers before integration into clinical practice.
Collapse
Affiliation(s)
- Sari Khaleel
- Memorial Sloan Kettering Cancer Center, Department of Urology, New York, NY 10065, USA; (S.K.); (A.A.H.)
| | - Andrew Katims
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| | - Shivaram Cumarasamy
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| | - Shoshana Rosenzweig
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| | - Kyrollis Attalla
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| | - A Ari Hakimi
- Memorial Sloan Kettering Cancer Center, Department of Urology, New York, NY 10065, USA; (S.K.); (A.A.H.)
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| |
Collapse
|
8
|
The Next Paradigm Shift in the Management of Clear Cell Renal Cancer: Radiogenomics—Definition, Current Advances, and Future Directions. Cancers (Basel) 2022; 14:cancers14030793. [PMID: 35159060 PMCID: PMC8833879 DOI: 10.3390/cancers14030793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
With improved molecular characterization of clear cell renal cancer and advances in texture analysis as well as machine learning, diagnostic radiology is primed to enter personalized medicine with radiogenomics: the identification of relationships between tumor image features and underlying genomic expression. By developing surrogate image biomarkers, clinicians can augment their ability to non-invasively characterize a tumor and predict clinically relevant outcomes (i.e., overall survival; metastasis-free survival; or complete/partial response to treatment). It is thus important for clinicians to have a basic understanding of this nascent field, which can be difficult due to the technical complexity of many of the studies. We conducted a review of the existing literature for radiogenomics in clear cell kidney cancer, including original full-text articles until September 2021. We provide a basic description of radiogenomics in diagnostic radiology; summarize existing literature on relationships between image features and gene expression patterns, either computationally or by radiologists; and propose future directions to facilitate integration of this field into the clinical setting.
Collapse
|
9
|
The application of radiomics in predicting gene mutations in cancer. Eur Radiol 2022; 32:4014-4024. [DOI: 10.1007/s00330-021-08520-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
|
10
|
刘 琨, 张 明, 李 浩, 王 向, 李 冬, 刘 爽, 杨 昆, 孙 振, 薛 林, 崔 振. [Research status and prospect of artificial intelligence technology in the diagnosis of urinary system tumors]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:1219-1228. [PMID: 34970906 PMCID: PMC9927132 DOI: 10.7507/1001-5515.202103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
With the rapid development of artificial intelligence technology, researchers have applied it to the diagnosis of various tumors in the urinary system in recent years, and have obtained many valuable research results. The article sorted the research status of artificial intelligence technology in the fields of renal tumors, bladder tumors and prostate tumors from three aspects: the number of papers, image data, and clinical tasks. The purpose is to summarize and analyze the research status and find new valuable research ideas in the future. The results show that the artificial intelligence model based on medical data such as digital imaging and pathological images is effective in completing basic diagnosis of urinary system tumors, image segmentation of tumor infiltration areas or specific organs, gene mutation prediction and prognostic effect prediction, but most of the models for the requirement of clinical application still need to be improved. On the one hand, it is necessary to further improve the detection, classification, segmentation and other performance of the core algorithm. On the other hand, it is necessary to integrate more standardized medical databases to effectively improve the diagnostic accuracy of artificial intelligence models and make it play greater clinical value.
Collapse
Affiliation(s)
- 琨 刘
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
- 河北大学附属医院 泌尿外科(河北保定 071000)Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R.China
- 河北大学 光学工程博士后科研流动站(河北保定 071002)Postdoctoral Research Station of Optical Engineering, Hebei University, Baoding, Hebei 071002, P.R.China
| | - 明洋 张
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
| | - 浩然 李
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
| | - 向辉 王
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
| | - 冬明 李
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
| | - 爽 刘
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
- 河北大学附属医院 泌尿外科(河北保定 071000)Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R.China
- 河北大学 光学工程博士后科研流动站(河北保定 071002)Postdoctoral Research Station of Optical Engineering, Hebei University, Baoding, Hebei 071002, P.R.China
| | - 昆 杨
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
| | - 振铎 孙
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
- 河北大学附属医院 泌尿外科(河北保定 071000)Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R.China
| | - 林雁 薛
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
- 河北大学附属医院 泌尿外科(河北保定 071000)Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R.China
| | - 振宇 崔
- 河北大学 质量技术监督学院(河北保定 071002)School of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, P.R.China
| |
Collapse
|
11
|
Kuusk T, Neves JB, Tran M, Bex A. Radiomics to better characterize small renal masses. World J Urol 2021; 39:2861-2868. [PMID: 33495866 DOI: 10.1007/s00345-021-03602-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Radiomics is a specific field of medical research that uses programmable recognition tools to extract objective information from standard images to combine with clinical data, with the aim of improving diagnostic, prognostic, and predictive accuracy beyond standard visual interpretation. We performed a narrative review of radiomic applications that may support improved characterization of small renal masses (SRM). The main focus of the review was to identify and discuss methods which may accurately differentiate benign from malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat (fat-poor AML) and oncocytoma. Furthermore, prediction of grade, sarcomatoid features, and gene mutations would be of importance in terms of potential clinical utility in prognostic stratification and selecting personalised patient management strategies. METHODS A detailed search of original articles was performed using the PubMed-MEDLINE database until 20 September 2020 to identify the English literature relevant to radiomics applications in renal tumour assessment. In total, 42 articles were included in the analysis in 3 main categories related to SRM: prediction of benign versus malignant SRM, subtypes, and nuclear grade, and other features of aggressiveness. CONCLUSION Overall, studies reported the superiority of radiomics over expert radiological assessment, but were mainly of retrospective design and therefore of low-quality evidence. However, it is clear that radiomics is an attractive modality that has the potential to improve the non-invasive diagnostic accuracy of SRM imaging and prediction of its natural behaviour. Further prospective validation studies of radiomics are needed to augment management algorithms of SRM.
Collapse
Affiliation(s)
- Teele Kuusk
- Urology Department, Darent Valley Hospital, Dartford and Gravesham NHS Trust, Dartford, UK
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK
| | - Joana B Neves
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK
| | - Maxine Tran
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK
- UCL Division of Surgery and Interventional Science, London, UK
| | - Axel Bex
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK.
- UCL Division of Surgery and Interventional Science, London, UK.
- Surgical Oncology Division, Urology Department, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Gao R, Qin H, Lin P, Ma C, Li C, Wen R, Huang J, Wan D, Wen D, Liang Y, Huang J, Li X, Wang X, Chen G, He Y, Yang H. Development and Validation of a Radiomic Nomogram for Predicting the Prognosis of Kidney Renal Clear Cell Carcinoma. Front Oncol 2021; 11:613668. [PMID: 34295804 PMCID: PMC8290524 DOI: 10.3389/fonc.2021.613668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose The present study aims to comprehensively investigate the prognostic value of a radiomic nomogram that integrates contrast-enhanced computed tomography (CECT) radiomic signature and clinicopathological parameters in kidney renal clear cell carcinoma (KIRC). Methods A total of 136 and 78 KIRC patients from the training and validation cohorts were included in the retrospective study. The intraclass correlation coefficient (ICC) was used to assess reproducibility of radiomic feature extraction. Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) as well as multivariate Cox analysis were utilized to construct radiomic signature and clinical signature in the training cohort. A prognostic nomogram was established containing a radiomic signature and clinicopathological parameters by using a multivariate Cox analysis. The predictive ability of the nomogram [relative operating characteristic curve (ROC), concordance index (C-index), Hosmer–Lemeshow test, and calibration curve] was evaluated in the training cohort and validated in the validation cohort. Patients were split into high- and low-risk groups, and the Kaplan–Meier (KM) method was conducted to identify the forecasting ability of the established models. In addition, genes related with the radiomic risk score were determined by weighted correlation network analysis (WGCNA) and were used to conduct functional analysis. Results A total of 2,944 radiomic features were acquired from the tumor volumes of interest (VOIs) of CECT images. The radiomic signature, including ten selected features, and the clinical signature, including three selected clinical variables, showed good performance in the training and validation cohorts [area under the curve (AUC), 0.897 and 0.712 for the radiomic signature; 0.827 and 0.822 for the clinical signature, respectively]. The radiomic prognostic nomogram showed favorable performance and calibration in the training cohort (AUC, 0.896, C-index, 0.846), which was verified in the validation cohort (AUC, 0.768). KM curves indicated that the progression-free interval (PFI) time was dramatically shorter in the high-risk group than in the low-risk group. The functional analysis indicated that radiomic signature was significantly associated with T cell activation. Conclusions The nomogram combined with CECT radiomic and clinicopathological signatures exhibits excellent power in predicting the PFI of KIRC patients, which may aid in clinical management and prognostic evaluation of cancer patients.
Collapse
Affiliation(s)
- Ruizhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Qin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenjun Ma
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengyang Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Huang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Da Wan
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongyue Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiqiong Liang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiang Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Li
- GE Healthcare Global Research, GE, Shanghai, China
| | - Xinrong Wang
- GE Healthcare Global Research, GE, Shanghai, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Frank V, Shariati S, Budai BK, Fejér B, Tóth A, Orbán V, Bérczi V, Kaposi PN. CT texture analysis of abdominal lesions – Part II: Tumors of the Kidney and Pancreas. IMAGING 2021; 13:25-36. [DOI: 10.1556/1647.2021.00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractIt has been proven in a few early studies that radiomic analysis offers a promising opportunity to detect or differentiate between organ lesions based on their unique texture parameters. Recently, the utilization of CT texture analysis (CTTA) has been receiving significant attention, especially for response evaluation and prognostication of different oncological diagnoses. In this review article, we discuss the unique ability of radiomics and its subfield CTTA to diagnose lesions in the pancreas and kidney. We review studies in which CTTA was used for the classification of histology grades in pancreas and kidney tumors. We also review the role of radiogenomics in the prediction of the molecular and genetic subtypes of pancreatic tumors. Furthermore, we provide a short report on recent advancements of radiomic analysis in predicting prognosis and survival of patients with pancreatic and renal cancers.
Collapse
Affiliation(s)
- Veronica Frank
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Sonaz Shariati
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Bettina Katalin Budai
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Bence Fejér
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Ambrus Tóth
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Vince Orbán
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Viktor Bérczi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Pál Novák Kaposi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| |
Collapse
|
14
|
Ganeshan B, Miles K, Afaq A, Punwani S, Rodriguez M, Wan S, Walls D, Hoy L, Khan S, Endozo R, Shortman R, Hoath J, Bhargava A, Hanson M, Francis D, Arulampalam T, Dindyal S, Chen SH, Ng T, Groves A. Texture Analysis of Fractional Water Content Images Acquired during PET/MRI: Initial Evidence for an Association with Total Lesion Glycolysis, Survival and Gene Mutation Profile in Primary Colorectal Cancer. Cancers (Basel) 2021; 13:2715. [PMID: 34072712 PMCID: PMC8199380 DOI: 10.3390/cancers13112715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023] Open
Abstract
To assess the capability of fractional water content (FWC) texture analysis (TA) to generate biologically relevant information from routine PET/MRI acquisitions for colorectal cancer (CRC) patients. Thirty consecutive primary CRC patients (mean age 63.9, range 42-83 years) prospectively underwent FDG-PET/MRI. FWC tumor parametric images generated from Dixon MR sequences underwent TA using commercially available research software (TexRAD). Data analysis comprised (1) identification of functional imaging correlates for texture features (TF) with low inter-observer variability (intraclass correlation coefficient: ICC > 0.75), (2) evaluation of prognostic performance for FWC-TF, and (3) correlation of prognostic imaging signatures with gene mutation (GM) profile. Of 32 FWC-TF with ICC > 0.75, 18 correlated with total lesion glycolysis (TLG, highest: rs = -0.547, p = 0.002). Using optimized cut-off values, five MR FWC-TF identified a good prognostic group with zero mortality (lowest: p = 0.017). For the most statistically significant prognostic marker, favorable prognosis was significantly associated with a higher number of GM per patient (medians: 7 vs. 1.5, p = 0.009). FWC-TA derived from routine PET/MRI Dixon acquisitions shows good inter-operator agreement, generates biological relevant information related to TLG, GM count, and provides prognostic information that can unlock new clinical applications for CRC patients.
Collapse
Affiliation(s)
- Balaji Ganeshan
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Kenneth Miles
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Asim Afaq
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shonit Punwani
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Manuel Rodriguez
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Simon Wan
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Darren Walls
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Luke Hoy
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Saif Khan
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Raymond Endozo
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Robert Shortman
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - John Hoath
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Aman Bhargava
- Institute of Health Barts and London Medical School, Queen Mary University of London (QMUL), London E1 2AD, UK;
| | - Matthew Hanson
- Division of Cancer and Clinical Support, Barking, Havering and Redbridge University Hospitals NHS Trust, Queens and King George Hospitals, Essex IG3 8YB, UK;
| | - Daren Francis
- Department of Colorectal Surgery, Royal Free London NHS Foundation Trust, Barnet and Chase Farm Hospitals, London NW3 2QG, UK;
| | - Tan Arulampalam
- Department of Surgery, East Suffolk and North Essex NHS Foundation Trust, Colchester General Hospital, Colchester CO4 5JL, UK;
| | - Sanjay Dindyal
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Shih-Hsin Chen
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Tony Ng
- School of Cancer & Pharmaceutical Sciences, King’s College London (KCL), London WC2R 2LS, UK;
| | - Ashley Groves
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| |
Collapse
|
15
|
Brodie A, Dai N, Teoh JYC, Decaestecker K, Dasgupta P, Vasdev N. Artificial intelligence in urological oncology: An update and future applications. Urol Oncol 2021; 39:379-399. [PMID: 34024704 DOI: 10.1016/j.urolonc.2021.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/20/2020] [Accepted: 03/21/2021] [Indexed: 01/16/2023]
Abstract
There continues to be rapid developments and research in the field of Artificial Intelligence (AI) in Urological Oncology worldwide. In this review we discuss the basics of AI, application of AI per tumour group (Renal, Prostate and Bladder Cancer) and application of AI in Robotic Urological Surgery. We also discuss future applications of AI being developed with the benefits to patients with Urological Oncology.
Collapse
Affiliation(s)
- Andrew Brodie
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Nick Dai
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Prokar Dasgupta
- Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Nikhil Vasdev
- Hertfordshire and Bedfordshire Urological Cancer Centre, Department of Urology, Lister Hospital, Stevenage, United Kingdom; School of Medicine and Life Sciences, University of Hertfordshire, Hatfield, United Kingdom.
| |
Collapse
|
16
|
Liu L, Yi X, Lu C, Pang Y, Zu X, Chen M, Guan X. Background, applications and challenges of radiogenomics in genitourinary tumor. Am J Cancer Res 2021; 11:1936-1945. [PMID: 34094662 PMCID: PMC8167692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023] Open
Abstract
Genitourinary tumors are groups of tumors with high complexity and heterogeneity. For long-term monitoring, biomarkers that can be used in detection, grading and treatment response assessment are needed. With rapid development in imaging technology and cancer genomics, radiogenomics, the combination of "radiology" and "genomics", has emerged as a powerful tool in oncology practice in recent years because imaging can provide some information that genomic test cannot as gene expression and mutation status are usually evaluated on a small portion of the tumor and are usually not powerful enough to reflect tumor heterogeneity. Radiogenomics investigates the correlations between imaging features and gene expression of a disease, especially in oncologic diseases. It aims to detect the disease's mutation status and supplement genomic analysis based on imaging analysis, providing additional findings for diagnosis, treatment decisions, evaluation of treatment response and prognosis prediction of the disease. Recent years have seen an increase in the number of studies investigating the application of radiogenomics in genitourinary tumors. Many studies have shown promising results. However, there still exist limitations and challenges. In this review, we will summarize recent applications of radiogenomics in genitourinary tumors and discuss limitiations, challenges and future directions of radiogenomics.
Collapse
Affiliation(s)
- Longfei Liu
- Department of Urology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Can Lu
- Department of Nephrology, The Second Xiangya Hospital of Central South UniversityChangsha 410000, Hunan, P. R. China
| | - Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Minfeng Chen
- Department of Urology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| | - Xiao Guan
- Department of Urology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
| |
Collapse
|
17
|
董 研, 张 奥, 张 金, 刘 良. [Advances in head and neck squamous cell cancer research based on radiomics]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:181-184. [PMID: 33541006 PMCID: PMC10127886 DOI: 10.13201/j.issn.2096-7993.2021.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 11/12/2022]
Abstract
Radiomics refers to extract advanced quantitative features in radiological images in a high-throughput way, to invert the features into extensible data with the help of mathematical algorithms, and to establish descriptive and predictive models of tumors. It has important value in the diagnosis, treatment and prognosis of tumors. As an entirely new field, radiomics becomes the research hotspot of clinical medicine and biomedical engineering because of its objective, holistic, non-invasive characteristics. Head and neck squamous cell cancer is one of the common malignant tumors. Radiomics is gradually applied to the study of head and neck squamous cell cancer. This article reviews the research progress of radiomics and its application in head and neck cancer.
Collapse
Affiliation(s)
- 研博 董
- 首都医科大学附属北京友谊医院耳鼻咽喉头颈外科(北京,100050)
| | - 奥博 张
- 首都医科大学附属北京友谊医院耳鼻咽喉头颈外科(北京,100050)
| | | | - 良发 刘
- 首都医科大学附属北京友谊医院耳鼻咽喉头颈外科(北京,100050)
| |
Collapse
|
18
|
Artificial Intelligence in Renal Mass Characterization: A Systematic Review of Methodologic Items Related to Modeling, Performance Evaluation, Clinical Utility, and Transparency. AJR Am J Roentgenol 2020; 215:1113-1122. [PMID: 32960663 DOI: 10.2214/ajr.20.22847] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE. The objective of our study was to systematically review the literature about the application of artificial intelligence (AI) to renal mass characterization with a focus on the methodologic quality items. MATERIALS AND METHODS. A systematic literature search was conducted using PubMed to identify original research studies about the application of AI to renal mass characterization. Besides baseline study characteristics, a total of 15 methodologic quality items were extracted and evaluated on the basis of the following four main categories: modeling, performance evaluation, clinical utility, and transparency items. The qualitative synthesis was presented using descriptive statistics with an accompanying narrative. RESULTS. Thirty studies were included in this systematic review. Overall, the methodologic quality items were mostly favorable for modeling (63%) and performance evaluation (63%). Even so, the studies (57%) more frequently constructed their work on nonrobust features. Furthermore, only a few studies (10%) had a generalizability assessment with independent or external validation. The studies were mostly unsuccessful in terms of clinical utility evaluation (89%) and transparency (97%) items. For clinical utility, the interesting findings were lack of comparisons with both radiologists' evaluation (87%) and traditional models (70%) in most of the studies. For transparency, most studies (97%) did not share their data with the public. CONCLUSION. To bring AI-based renal mass characterization from research to practice, future studies need to improve modeling and performance evaluation strategies and pay attention to clinical utility and transparency issues.
Collapse
|
19
|
Chekouo T, Mohammed S, Rao A. A Bayesian 2D functional linear model for gray-level co-occurrence matrices in texture analysis of lower grade gliomas. NEUROIMAGE-CLINICAL 2020; 28:102437. [PMID: 33035963 PMCID: PMC7554657 DOI: 10.1016/j.nicl.2020.102437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022]
Abstract
We treat gray-level co-occurrence matrices (GLCM) as two-dimensional functional data objects. We develop a Bayesian functional regression method that relates GLCMs to IDH mutation status. The method accounts for multiple imaging sequences. The method outperforms other competing methods that use only GLCM derived summary statistics.
In cancer radiomics, textural features evaluated from image intensity-derived gray-level co-occurrence matrices (GLCMs) have been studied to evaluate gray-level spatial dependence within the regions of interest in the brain. Most of these analysis work with summary statistics (or texture-based features) constructed using the GLCM entries, and potentially overlook other structural properties in the GLCM. In our proposed Bayesian framework, we treat each GLCM as a realization of a two-dimensional stochastic functional process observed with error at discrete time points. The latent process is then combined with the outcome model to evaluate the prediction performance. We use simulation studies to assess the performance of our method and apply it to data collected from individuals with lower grade gliomas. We found our approach to outperform competing methods that use only summary statistics to predict isocitrate dehydrogenase (IDH) mutation status.
Collapse
Affiliation(s)
- Thierry Chekouo
- Department of Mathematics and Statistics, University of Calgary, Canada.
| | - Shariq Mohammed
- Department of Biostatistics, University of Michigan, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, USA.
| | - Arvind Rao
- Department of Biostatistics, University of Michigan, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, USA; Department of Biomedical Engineering, University of Michigan, USA; Department of Radiation Oncology, University of Michigan, USA.
| |
Collapse
|
20
|
Machine Learning in Radiomic Renal Mass Characterization: Fundamentals, Applications, Challenges, and Future Directions. AJR Am J Roentgenol 2020; 215:920-928. [PMID: 32783560 DOI: 10.2214/ajr.19.22608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE. The purpose of this study is to provide an overview of the traditional machine learning (ML)-based and deep learning-based radiomic approaches, with focus placed on renal mass characterization. CONCLUSION. ML currently has a very low barrier to entry into general medical practice because of the availability of many open-source, free, and easy-to-use toolboxes. Therefore, it should not be surprising to see its related applications in renal mass characterization. A wider picture of the previous works might be beneficial to move this field forward.
Collapse
|
21
|
Kocak B, Durmaz ES, Kaya OK, Kilickesmez O. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Acta Radiol 2020; 61:856-864. [PMID: 31635476 DOI: 10.1177/0284185119881742] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND BRCA1-associated protein 1 (BAP1) mutation is an unfavorable factor for overall survival in patients with clear cell renal cell carcinoma (ccRCC). Radiomics literature about BAP1 mutation lacks papers that consider the reliability of texture features in their workflow. PURPOSE Using texture features with a high inter-observer agreement, we aimed to develop and internally validate a machine learning-based radiomic model for predicting the BAP1 mutation status of ccRCCs. MATERIAL AND METHODS For this retrospective study, 65 ccRCCs were included from a public database. Texture features were extracted from unenhanced computed tomography (CT) images, using two-dimensional manual segmentation. Dimension reduction was done in three steps: (i) inter-observer agreement analysis; (ii) collinearity analysis; and (iii) feature selection. The machine learning classifier was random forest. The model was validated using 10-fold nested cross-validation. The reference standard was the BAP1 mutation status. RESULTS Out of 744 features, 468 had an excellent inter-observer agreement. After the collinearity analysis, the number of features decreased to 17. Finally, the wrapper-based algorithm selected six features. Using selected features, the random forest correctly classified 84.6% of the labelled slices regarding BAP1 mutation status with an area under the receiver operating characteristic curve of 0.897. For predicting ccRCCs with BAP1 mutation, the sensitivity, specificity, and precision were 90.4%, 78.8%, and 81%, respectively. For predicting ccRCCs without BAP1 mutation, the sensitivity, specificity, and precision were 78.8%, 90.4%, and 89.1%, respectively. CONCLUSION Machine learning-based unenhanced CT texture analysis might be a potential method for predicting the BAP1 mutation status of ccRCCs.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Emine Sebnem Durmaz
- Department of Radiology, Buyukcekmece Mimar Sinan State Hospital, Istanbul, Turkey
| | - Ozlem Korkmaz Kaya
- Department of Radiology, Koc University School of Medicine, Koc University Hospital, Istanbul, Turkey
| | - Ozgur Kilickesmez
- Department of Radiology, Istanbul Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
22
|
Radiomics Applications in Renal Tumor Assessment: A Comprehensive Review of the Literature. Cancers (Basel) 2020; 12:cancers12061387. [PMID: 32481542 PMCID: PMC7352711 DOI: 10.3390/cancers12061387] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Radiomics texture analysis offers objective image information that could otherwise not be obtained by radiologists′ subjective radiological interpretation. We investigated radiomics applications in renal tumor assessment and provide a comprehensive review. A detailed search of original articles was performed using the PubMed-MEDLINE database until 20 March 2020 to identify English literature relevant to radiomics applications in renal tumor assessment. In total, 42 articles were included in the analysis and divided into four main categories: renal mass differentiation, nuclear grade prediction, gene expression-based molecular signatures, and patient outcome prediction. The main area of research involves accurately differentiating benign and malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat and oncocytoma. Nuclear grade prediction may enhance proper patient selection for risk-stratified treatment. Radiomics-predicted gene mutations may serve as surrogate biomarkers for high-risk disease, while predicting patients’ responses to targeted therapies and their outcomes will help develop personalized treatment algorithms. Studies generally reported the superiority of radiomics over expert radiological interpretation. Radiomics provides an alternative to subjective image interpretation for improving renal tumor diagnostic accuracy. Further incorporation of clinical and imaging data into radiomics algorithms will augment tumor prediction accuracy and enhance individualized medicine.
Collapse
|
23
|
Feng Z, Zhang L, Qi Z, Shen Q, Hu Z, Chen F. Identifying BAP1 Mutations in Clear-Cell Renal Cell Carcinoma by CT Radiomics: Preliminary Findings. Front Oncol 2020; 10:279. [PMID: 32185138 PMCID: PMC7058626 DOI: 10.3389/fonc.2020.00279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/18/2020] [Indexed: 12/01/2022] Open
Abstract
To evaluate the potential application of computed tomography (CT) radiomics in the prediction of BRCA1-associated protein 1 (BAP1) mutation status in patients with clear-cell renal cell carcinoma (ccRCC). In this retrospective study, clinical and CT imaging data of 54 patients were retrieved from The Cancer Genome Atlas–Kidney Renal Clear Cell Carcinoma database. Among these, 45 patients had wild-type BAP1 and nine patients had BAP1 mutation. The texture features of tumor images were extracted using the Matlab-based IBEX package. To produce class-balanced data and improve the stability of prediction, we performed data augmentation for the BAP1 mutation group during cross validation. A model to predict BAP1 mutation status was constructed using Random Forest Classification algorithms, and was evaluated using leave-one-out-cross-validation. Random Forest model of predict BAP1 mutation status had an accuracy of 0.83, sensitivity of 0.72, specificity of 0.87, precision of 0.65, AUC of 0.77, F-score of 0.68. CT radiomics is a potential and feasible method for predicting BAP1 mutation status in patients with ccRCC.
Collapse
Affiliation(s)
- Zhan Feng
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lixia Zhang
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhong Qi
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qijun Shen
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China
| | - Zhengyu Hu
- Department of Radiology, Second People's Hospital of Yuhang District, Hangzhou, China
| | - Feng Chen
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
TCGA-TCIA Impact on Radiogenomics Cancer Research: A Systematic Review. Int J Mol Sci 2019; 20:ijms20236033. [PMID: 31795520 PMCID: PMC6929079 DOI: 10.3390/ijms20236033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, the development of radiogenomics research has produced a significant amount of papers describing relations between imaging features and several molecular 'omic signatures arising from next-generation sequencing technology and their potential role in the integrated diagnostic field. The most vulnerable point of many of these studies lies in the poor number of involved patients. In this scenario, a leading role is played by The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), which make available, respectively, molecular 'omic data and linked imaging data. In this review, we systematically collected and analyzed radiogenomic studies based on TCGA-TCIA data. We organized literature per tumor type and molecular 'omic data in order to discuss salient imaging genomic associations and limitations of each study. Finally, we outlined the potential clinical impact of radiogenomics to improve the accuracy of diagnosis and the prediction of patient outcomes in oncology.
Collapse
|
25
|
Gallivanone F, Cava C, Corsi F, Bertoli G, Castiglioni I. In Silico Approach for the Definition of radiomiRNomic Signatures for Breast Cancer Differential Diagnosis. Int J Mol Sci 2019; 20:E5825. [PMID: 31756987 PMCID: PMC6929037 DOI: 10.3390/ijms20235825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023] Open
Abstract
Personalized medicine relies on the integration and consideration of specific characteristics of the patient, such as tumor phenotypic and genotypic profiling. BACKGROUND Radiogenomics aim to integrate phenotypes from tumor imaging data with genomic data to discover genetic mechanisms underlying tumor development and phenotype. METHODS We describe a computational approach that correlates phenotype from magnetic resonance imaging (MRI) of breast cancer (BC) lesions with microRNAs (miRNAs), mRNAs, and regulatory networks, developing a radiomiRNomic map. We validated our approach to the relationships between MRI and miRNA expression data derived from BC patients. We obtained 16 radiomic features quantifying the tumor phenotype. We integrated the features with miRNAs regulating a network of pathways specific for a distinct BC subtype. RESULTS We found six miRNAs correlated with imaging features in Luminal A (miR-1537, -205, -335, -337, -452, and -99a), seven miRNAs (miR-142, -155, -190, -190b, -1910, -3617, and -429) in HER2+, and two miRNAs (miR-135b and -365-2) in Basal subtype. We demonstrate that the combination of correlated miRNAs and imaging features have better classification power of Luminal A versus the different BC subtypes than using miRNAs or imaging alone. CONCLUSION Our computational approach could be used to identify new radiomiRNomic profiles of multi-omics biomarkers for BC differential diagnosis and prognosis.
Collapse
Affiliation(s)
- Francesca Gallivanone
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F. Cervi 93, 20090 Segrate-Milan, Milan, Italy; (F.G.); (C.C.); (I.C.)
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F. Cervi 93, 20090 Segrate-Milan, Milan, Italy; (F.G.); (C.C.); (I.C.)
| | - Fabio Corsi
- Laboratory of Nanomedicine and Molecular Imaging, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy;
- Department of Biomedical and Clinical Sciences “L. Sacco”, Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy
- Breast Unit, Surgery Department, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F. Cervi 93, 20090 Segrate-Milan, Milan, Italy; (F.G.); (C.C.); (I.C.)
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F. Cervi 93, 20090 Segrate-Milan, Milan, Italy; (F.G.); (C.C.); (I.C.)
- Department of Physics “Giuseppe Occhialini”, University of Milan-Bicocca, 20126 Milan, Italy
| |
Collapse
|
26
|
Radiomics of Renal Masses: Systematic Review of Reproducibility and Validation Strategies. AJR Am J Roentgenol 2019; 214:129-136. [PMID: 31613661 DOI: 10.2214/ajr.19.21709] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE. The purpose of this study was to systematically review the radiomics literature on renal mass characterization in terms of reproducibility and validation strategies. MATERIALS AND METHODS. With use of PubMed and Google Scholar, a systematic literature search was performed to identify original research papers assessing the value of radiomics in characterization of renal masses. The data items were extracted on the basis of three main categories: baseline study characteristics, radiomic feature reproducibility strategies, and statistical model validation strategies. RESULTS. After screening and application of the eligibility criteria, a total of 41 papers were included in the study. Almost one-half of the papers (19 [46%]) presented at least one reproducibility analysis. Segmentation variability (18 [44%]) was the main theme of the analyses, outnumbering image acquisition or processing (3 [7%]). No single paper considered slice selection bias. The most commonly used statistical tool for analysis was intraclass correlation coefficient (14 of 19 [74%]), with no consensus on the threshold or cutoff values. Approximately one-half of the papers (22 [54%]) used at least one validation method, with a predominance of internal validation techniques (20 [49%]). The most frequently used internal validation technique was k-fold cross-validation (12 [29%]). Independent or external validation was used in only three papers (7%). CONCLUSION. Workflow characteristics described in the radiomics literature about renal mass characterization are heterogeneous. To bring radiomics from a mere research area to clinical use, the field needs many more papers that consider the reproducibility of radiomic features and include independent or external validation in their workflow.
Collapse
|
27
|
Lin C, Harmon S, Bradshaw T, Eickhoff J, Perlman S, Liu G, Jeraj R. Response-to-repeatability of quantitative imaging features for longitudinal response assessment. Phys Med Biol 2019; 64:025019. [PMID: 30566922 DOI: 10.1088/1361-6560/aafa0a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Quantitative imaging biomarkers (QIBs) are often selected and ranked based on their repeatability performance. In the context of treatment response assessment, however, one must also consider how sensitive a QIB is to measuring changes in the tumour. This work introduces response-to-repeatability ratio (R/R), which weighs the ability of a QIB to detect significant changes with respect to its measurement repeatability and applies it to the case of PET texture features. R/R is evaluated as the proportion of measurable changes from baseline to follow-up for each candidate QIB. We analyse 47 texture features extracted from lesions in bone-metastatic prostate cancer patients who received double baseline and/or baseline to treatment follow-up 18F-NaF PET/CT scans. R/R evaluates the proportion of follow-up changes outside of the 95% limits of agreement (LOA) defined by test-retest values. Intraclass correlation coefficient (ICC) and coefficient of variation (CV) are calculated for each feature. Relationship between ICC and R/R are evaluated with the Spearman's correlation coefficient. R/R varied significantly across texture features: 41/47 (87%) features demonstrated R/R > 5%; 21/47 (45%) features demonstrated R/R > 10%, and 11/47 (23%) features demonstrated R/R > 20%. LOA of features ranged from [0.998, 1.001] to [0.22, 4.86]. Repeatability alone did not qualify a feature for its efficacy at detecting measurable change at follow-up, as shown by weak correlations between R/R and both CV and ICC (ρ = 0.23 and ρ = 0.40, respectively). Three features demonstrated excellent ICC (ICC > 0.75) and R/R greater than that of SUVmax (R/R = 41.8%): skewness (ICC = 0.92, R/R = 75.4%), kurtosis (ICC = 0.88, R/R = 47.0%) and diagonal moment (ICC = 0.88, R/R = 45.5%). R/R characterizes the sensitivity of candidate QIBs to detect measurable changes at follow-up. R/R supplements existing precision performance metrics (e.g. CV, ICC, and LOA) as an index to assess the utility of QIBs for response assessment.
Collapse
Affiliation(s)
- Christie Lin
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Precision medicine is increasingly pushed forward, also with respect to upcoming new targeted therapies. Individual characterization of diseases on the basis of biomarkers is a prerequisite for this development. So far, biomarkers are characterized clinically, histologically or on a molecular level. The implementation of broad screening methods (“Omics”) and the analysis of big data – in addition to single markers – allow to define biomarker signatures. Next to “Genomics”, “Proteomics”, and “Metabolicis”, “Radiomics” gained increasing interest during the last years. Based on radiologic imaging, multiple radiomic markers are extracted with the help of specific algorithms. These are correlated with clinical, (immuno-) histopathological, or genomic data. Underlying structural differences are based on the imaging metadata and are often not visible and therefore not detectable without specific software. Radiomics are depicted numerically or by graphs. The fact that radiomic information can be extracted from routinely performed imaging adds a specific appeal to this method. Radiomics could potentially replace biopsies and additional investigations. Alternatively, radiomics could complement other biomarkers and thus lead to a more precise, multimodal prediction. Until now, radiomics are primarily used to investigate solid tumors. Some promising studies in head and neck cancer have already been published.
Collapse
|
29
|
Sanduleanu S, Woodruff HC, de Jong EE, van Timmeren JE, Jochems A, Dubois L, Lambin P. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiother Oncol 2018; 127:349-360. [DOI: 10.1016/j.radonc.2018.03.033] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 03/02/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
|
30
|
Dextraze K, Saha A, Kim D, Narang S, Lehrer M, Rao A, Narang S, Rao D, Ahmed S, Madhugiri V, Fuller CD, Kim MM, Krishnan S, Rao G, Rao A. Spatial habitats from multiparametric MR imaging are associated with signaling pathway activities and survival in glioblastoma. Oncotarget 2017; 8:112992-113001. [PMID: 29348883 PMCID: PMC5762568 DOI: 10.18632/oncotarget.22947] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) show significant inter- and intra-tumoral heterogeneity, impacting response to treatment and overall survival time of 12-15 months. To study glioblastoma phenotypic heterogeneity, multi-parametric magnetic resonance images (MRI) of 85 glioblastoma patients from The Cancer Genome Atlas were analyzed to characterize tumor-derived spatial habitats for their relationship with outcome (overall survival) and to identify their molecular correlates (i.e., determine associated tumor signaling pathways correlated with imaging-derived habitat measurements). Tumor sub-regions based on four sequences (fluid attenuated inversion recovery, T1-weighted, post-contrast T1-weighted, and T2-weighted) were defined by automated segmentation. From relative intensity of pixels in the 3-dimensional tumor region, "imaging habitats" were identified and analyzed for their association to clinical and genetic data using survival modeling and Dirichlet regression, respectively. Sixteen distinct tumor sub-regions ("spatial imaging habitats") were derived, and those associated with overall survival (denoted "relevant" habitats) in glioblastoma patients were identified. Dirichlet regression implicated each relevant habitat with unique pathway alterations. Relevant habitats also had some pathways and cellular processes in common, including phosphorylation of STAT-1 and natural killer cell activity, consistent with cancer hallmarks. This work revealed clinical relevance of MRI-derived spatial habitats and their relationship with oncogenic molecular mechanisms in patients with GBM. Characterizing the associations between imaging-derived phenotypic measurements with the genomic and molecular characteristics of tumors can enable insights into tumor biology, further enabling the practice of personalized cancer treatment. The analytical framework and workflow demonstrated in this study are inherently scalable to multiple MR sequences.
Collapse
Affiliation(s)
- Katherine Dextraze
- Department of Medical Physics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abhijoy Saha
- Department of Statistics, The Ohio State University, Columbus, OH, USA
| | - Donnie Kim
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivali Narang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Lehrer
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita Rao
- Texas Academy of Math and Science, Denton, TX, USA.,School of Engineering and Applied Sciences, Columbia University, New York City, NY, USA
| | - Saphal Narang
- Debakey High School for Health Professions, Houston, TX, USA
| | - Dinesh Rao
- Radiology, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - Salmaan Ahmed
- Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Clifton David Fuller
- Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle M Kim
- Radiation Oncology, The University of Michigan, Ann Arbor, MI, USA
| | - Sunil Krishnan
- Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Rao
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Rao
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma. Oncotarget 2017; 8:101244-101254. [PMID: 29254160 PMCID: PMC5731870 DOI: 10.18632/oncotarget.20643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023] Open
Abstract
This study analyzed magnetic resonance imaging (MRI) scans of Glioblastoma (GB) patients to develop an imaging-derived predictive model for assessing the extent of intratumoral CD3 T-cell infiltration. Pre-surgical T1-weighted post-contrast and T2-weighted Fluid-Attenuated-Inversion-Recovery (FLAIR) MRI scans, with corresponding mRNA expression of CD3D/E/G were obtained through The Cancer Genome Atlas (TCGA) for 79 GB patients. The tumor region was contoured and 86 image-derived features were extracted across the T1-post contrast and FLAIR images. Six imaging features—kurtosis, contrast, small zone size emphasis, low gray level zone size emphasis, high gray level zone size emphasis, small zone high gray level emphasis—were found associated with CD3 activity and used to build a predictive model for CD3 infiltration in an independent data set of 69 GB patients (using a 50-50 split for training and testing). For the training set, the image-based prediction model for CD3 infiltration achieved accuracy of 97.1% and area under the curve (AUC) of 0.993. For the test set, the model achieved accuracy of 76.5% and AUC of 0.847. This suggests a relationship between image-derived textural features and CD3 T-cell infiltration enabling the non-invasive inference of intratumoral CD3 T-cell infiltration in GB patients, with potential value for the radiological assessment of response to immune therapeutics.
Collapse
|
32
|
Abstract
The domain of investigation of radiomics consists of large-scale radiological image analysis and association with biological or clinical endpoints. The purpose of the present study is to provide a recent update on the status of this rapidly emerging field by performing a systematic review of the literature on radiomics, with a primary focus on oncologic applications. The systematic literature search, performed in Pubmed using the keywords: "radiomics OR radiomic" provided 97 research papers. Based on the results of this search, we describe the methods used for building a model of prognostic value from quantitative analysis of patient images. Then, we provide an up-to-date overview of the results achieved in this field, and discuss the current challenges and future developments of radiomics for oncology.
Collapse
|
33
|
Lee G, Lee HY, Ko ES, Jeong WK. Radiomics and imaging genomics in precision medicine. PRECISION AND FUTURE MEDICINE 2017. [DOI: 10.23838/pfm.2017.00101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|