1
|
Hosseini MS, Bejnordi BE, Trinh VQH, Chan L, Hasan D, Li X, Yang S, Kim T, Zhang H, Wu T, Chinniah K, Maghsoudlou S, Zhang R, Zhu J, Khaki S, Buin A, Chaji F, Salehi A, Nguyen BN, Samaras D, Plataniotis KN. Computational pathology: A survey review and the way forward. J Pathol Inform 2024; 15:100357. [PMID: 38420608 PMCID: PMC10900832 DOI: 10.1016/j.jpi.2023.100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 03/02/2024] Open
Abstract
Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath. For updated information on this survey review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this draft can also be found from arXiv.
Collapse
Affiliation(s)
- Mahdi S. Hosseini
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | | | - Vincent Quoc-Huy Trinh
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Lyndon Chan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Danial Hasan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Xingwen Li
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Stephen Yang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Taehyo Kim
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Haochen Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Theodore Wu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Kajanan Chinniah
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Sina Maghsoudlou
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ryan Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jiadai Zhu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Samir Khaki
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Andrei Buin
- Huron Digitial Pathology, St. Jacobs, ON N0B 2N0, Canada
| | - Fatemeh Chaji
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ala Salehi
- Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Bich Ngoc Nguyen
- University of Montreal Hospital Center, Montreal, QC H2X 0C2, Canada
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, United States
| | - Konstantinos N. Plataniotis
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
2
|
Erjefält JS, de Souza Xavier Costa N, Jönsson J, Cozzolino O, Dantas KC, Clausson CM, Siddhuraj P, Lindö C, Alyamani M, Lombardi SCFS, Mendroni Júnior A, Antonangelo L, Faria CS, Duarte-Neto AN, de Almeida Monteiro RA, Rebello Pinho JR, Gomes-Gouvêa MS, Verciano Pereira R, Monteiro JS, Setubal JC, de Oliveira EP, Theodoro Filho J, Sanden C, Orengo JM, Sleeman MA, da Silva LFF, Saldiva PHN, Dolhnikoff M, Mauad T. Diffuse alveolar damage patterns reflect the immunological and molecular heterogeneity in fatal COVID-19. EBioMedicine 2022; 83:104229. [PMID: 36027872 PMCID: PMC9398470 DOI: 10.1016/j.ebiom.2022.104229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19. Methods We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed. Findings Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with disease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production. Interpretation Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments. Funding CNPq, Bill and Melinda Gates Foundation, HC-Convida, FAPESP, Regeneron Pharmaceuticals, and the Swedish Heart & Lung Foundation.
Collapse
Affiliation(s)
- Jonas S Erjefält
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden; Department of Allergology and Respiratory Medicine, Lund University, Sweden
| | - Natália de Souza Xavier Costa
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Olga Cozzolino
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden
| | - Katia Cristina Dantas
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carl-Magnus Clausson
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden
| | - Premkumar Siddhuraj
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden
| | | | - Manar Alyamani
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden
| | - Suzete Cleusa Ferreira Spina Lombardi
- Divisão de Pesquisa & Medicina Transfusional, Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil; Laboratório Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alfredo Mendroni Júnior
- Divisão de Pesquisa & Medicina Transfusional, Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil; Laboratório Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Leila Antonangelo
- Laboratório de Investigação Médica (LIM03), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Divisão de Patologia Clínica - Departamento de Patologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Silvério Faria
- Laboratório de Investigação Médica (LIM03), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Amaro Nunes Duarte-Neto
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - João Renato Rebello Pinho
- Laboratório de Investigação Médica (LIM03), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michele Soares Gomes-Gouvêa
- Departamento de Gastroenterologia (LIM-07), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberta Verciano Pereira
- Laboratório de Investigação Médica (LIM03), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química Universidade de São Paulo, São Paulo, Brazil
| | - Ellen Pierre de Oliveira
- Departamento de Cardiopneumologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jair Theodoro Filho
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Luiz Fernando Ferraz da Silva
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Serviço de Verificação de Óbitos da Capital, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Sarzani R, Spannella F, Giulietti F, Di Pentima C, Giordano P, Giacometti A. Possible harm from glucocorticoid drugs misuse in the early phase of SARS-CoV-2 infection: a narrative review of the evidence. Intern Emerg Med 2022; 17:329-338. [PMID: 34718937 PMCID: PMC8557262 DOI: 10.1007/s11739-021-02860-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Since the publication of the RECOVERY trial, the use of glucocorticoid drugs (GC) has spread for the treatment of severe COVID-19 worldwide. However, the benefit of dexamethasone was largest in patients who received mechanical ventilation or supplemental oxygen therapy, while no benefit was found among patients without hypoxemia. In addition, a positive outcome was found in patients who received dexamethasone after several days of symptoms, while possible harm could exist if administered early. The right time interval for GC administration is still a matter of debate. Previous studies showed that an early GC use during the first phase of the disease, when viral replication peaks, may negatively affect the innate immune response through several mechanisms, such as the inhibition of pro-inflammatory and antiviral cytokine production and signaling pathway, including type I interferon, that is fundamental to counteract the virus and that was found to be impaired in several patients with life-threatening COVID-19. The GC misuse can lead to a more severe disease even in patients who do not have the established risk factors, such as obesity and cardiovascular diseases. In our focused review, we describe the role of immune response in viral infections, especially SARS-CoV-2, and discuss the potential harms of GC misuse in COVID-19.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy.
- Department of Clinical and Molecular Sciences, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy.
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
- Department of Clinical and Molecular Sciences, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
- Department of Clinical and Molecular Sciences, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
- Department of Clinical and Molecular Sciences, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy
| | - Piero Giordano
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Andrea Giacometti
- Department of Biological Sciences and Public Health, Infectious Diseases Clinic, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy
| |
Collapse
|