Mazier A, Bordas SPA. Breast simulation pipeline: From medical imaging to patient-specific simulations.
Clin Biomech (Bristol, Avon) 2024;
111:106153. [PMID:
38061204 DOI:
10.1016/j.clinbiomech.2023.106153]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND
Breast-conserving surgery is the most acceptable operation for breast cancer removal from an invasive and psychological point of view. Before the surgical procedure, a preoperative MRI is performed in the prone configuration, while the surgery is achieved in the supine position. This leads to a considerable movement of the breast, including the tumor, between the two poses, complicating the surgeon's task.
METHODS
In this work, a simulation pipeline allowing the computation of patient-specific geometry and the prediction of personalized breast material properties was put forward. Through image segmentation, a finite element model including the subject-specific geometry is established. By first computing an undeformed state of the breast, the geometrico-material model is calibrated by surface acquisition in the intra-operative stance.
FINDINGS
Using an elastic corotational formulation, the patient-specific mechanical properties of the breast and skin were identified to obtain the best estimates of the supine configuration. The final results are a shape-fitting closest point residual of 4.00 mm for the mechanical parameters Ebreast=0.32 kPa and Eskin=22.72 kPa, congruent with the current state-of-the-art. The Covariance Matrix Adaptation Evolution Strategy optimizer converges on average between 5 to 30 min depending on the initial parameters, reaching a simulation speed of 20 s. To our knowledge, our model offers one of the best compromises between accuracy and speed.
INTERPRETATION
Satisfactory results were obtained for the estimation of breast deformation from preoperative to intra-operative configuration. Furthermore, we have demonstrated the clinical feasibility of such applications using a simulation framework that aims at the smallest disturbance of the actual surgical pipeline.
Collapse