1
|
Head T, Cady NC. Monitoring and modulation of the tumor microenvironment for enhanced cancer modeling. Exp Biol Med (Maywood) 2022; 247:598-613. [PMID: 35088603 PMCID: PMC9014523 DOI: 10.1177/15353702221074293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer treatments utilizing biologic or cytotoxic drugs compose the frontline of therapy, and though gains in treatment efficacy have been persistent in recent decades, much work remains in understanding cancer progression and treatment. Compounding this situation is the low rate of success when translating preclinical drug candidates to the clinic, which raises costs and development timelines. This underperformance is due in part to the poor recapitulation of the tumor microenvironment, a critical component of cancer biology, in cancer model systems. New technologies capable of both accurately observing and manipulating the tumor microenvironment are needed to effectively model cancer response to treatment. In this review, conventional cancer models are summarized, and a primer on emerging techniques for monitoring and modulating the tumor microenvironment is presented and discussed.
Collapse
Affiliation(s)
- Tristen Head
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| | - Nathaniel C Cady
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
2
|
DeClerck YA, Pienta KJ, Woodhouse EC, Singer DS, Mohla S. The Tumor Microenvironment at a Turning Point Knowledge Gained Over the Last Decade, and Challenges and Opportunities Ahead: A White Paper from the NCI TME Network. Cancer Res 2017; 77:1051-1059. [PMID: 28209610 DOI: 10.1158/0008-5472.can-16-1336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022]
Abstract
Over the past 10 years, the Tumor Microenvironment Network (TMEN), supported by the NCI (Bethesda, MD), has promoted collaborative research with the explicit goal of fostering multi-institutional and transdisciplinary groups that are capable of addressing complex issues involving the tumor microenvironment. The main goal of the TMEN was to generate novel information about the dynamic complexity of tumor-host interactions in different organ systems with emphasis on using human tissues and supplemented by experimental models. As this initiative comes to a close, members of the TMEN took time to examine what has been accomplished by the Network and importantly to identify the challenges and opportunities ahead. This consensus document summarizes for the broader scientific community discussions that occurred at the two final meetings of the TMEN in 2015 and 2016. Cancer Res; 77(5); 1051-9. ©2017 AACR.
Collapse
Affiliation(s)
- Yves A DeClerck
- Department of Pediatrics, University of Southern California and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California. .,Department of Biochemistry & Molecular Biology, University of Southern California, Los Angeles, California
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology & Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Dinah S Singer
- Division of Cancer Biology, NCI, NIH, Bethesda, Maryland.
| | - Suresh Mohla
- Division of Cancer Biology, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
3
|
Fluegen G, Avivar-Valderas A, Wang Y, Padgen MR, Williams JK, Nobre AR, Calvo V, Cheung JF, Bravo-Cordero JJ, Entenberg D, Castracane J, Verkhusha V, Keely PJ, Condeelis J, Aguirre-Ghiso JA. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol 2017; 19:120-132. [PMID: 28114271 DOI: 10.1038/ncb3465] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
Abstract
Hypoxia is a poor-prognosis microenvironmental hallmark of solid tumours, but it is unclear how it influences the fate of disseminated tumour cells (DTCs) in target organs. Here we report that hypoxic HNSCC and breast primary tumour microenvironments displayed upregulation of key dormancy (NR2F1, DEC2, p27) and hypoxia (GLUT1, HIF1α) genes. Analysis of solitary DTCs in PDX and transgenic mice revealed that post-hypoxic DTCs were frequently NR2F1hi/DEC2hi/p27hi/TGFβ2hi and dormant. NR2F1 and HIF1α were required for p27 induction in post-hypoxic dormant DTCs, but these DTCs did not display GLUT1hi expression. Post-hypoxic DTCs evaded chemotherapy and, unlike ER- breast cancer cells, post-hypoxic ER+ breast cancer cells were more prone to enter NR2F1-dependent dormancy. We propose that primary tumour hypoxic microenvironments give rise to a subpopulation of dormant DTCs that evade therapy. These post-hypoxic dormant DTCs may be the source of disease relapse and poor prognosis associated with hypoxia.
Collapse
Affiliation(s)
- Georg Fluegen
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA.,Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Alvaro Avivar-Valderas
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Michael R Padgen
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, USA
| | - James K Williams
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, USA
| | - Ana Rita Nobre
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Veronica Calvo
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Julie F Cheung
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - James Castracane
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, USA
| | - Vladislav Verkhusha
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, Wisconsin 53706, USA
| | - John Condeelis
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Julio A Aguirre-Ghiso
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| |
Collapse
|