1
|
Cai R, Kolabas ZI, Pan C, Mai H, Zhao S, Kaltenecker D, Voigt FF, Molbay M, Ohn TL, Vincke C, Todorov MI, Helmchen F, Van Ginderachter JA, Ertürk A. Whole-mouse clearing and imaging at the cellular level with vDISCO. Nat Protoc 2023; 18:1197-1242. [PMID: 36697871 DOI: 10.1038/s41596-022-00788-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/20/2022] [Indexed: 01/26/2023]
Abstract
Homeostatic and pathological phenomena often affect multiple organs across the whole organism. Tissue clearing methods, together with recent advances in microscopy, have made holistic examinations of biological samples feasible. Here, we report the detailed protocol for nanobody(VHH)-boosted 3D imaging of solvent-cleared organs (vDISCO), a pressure-driven, nanobody-based whole-body immunolabeling and clearing method that renders whole mice transparent in 3 weeks, consistently enhancing the signal of fluorescent proteins, stabilizing them for years. This allows the reliable detection and quantification of fluorescent signal in intact rodents enabling the analysis of an entire body at cellular resolution. Here, we show the high versatility of vDISCO applied to boost the fluorescence signal of genetically expressed reporters and clear multiple dissected organs and tissues, as well as how to image processed samples using multiple fluorescence microscopy systems. The entire protocol is accessible to laboratories with limited expertise in tissue clearing. In addition to its applications in obtaining a whole-mouse neuronal projection map, detecting single-cell metastases in whole mice and identifying previously undescribed anatomical structures, we further show the visualization of the entire mouse lymphatic system, the application for virus tracing and the visualization of all pericytes in the brain. Taken together, our vDISCO pipeline allows systematic and comprehensive studies of cellular phenomena and connectivity in whole bodies.
Collapse
Affiliation(s)
- Ruiyao Cai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Chenchen Pan
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Shan Zhao
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Doris Kaltenecker
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany.,Institute for Diabetes and Cancer, Helmholtz Munich, Munich, Germany
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Muge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Tzu-Lun Ohn
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Mihail I Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany. .,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
2
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
3
|
Saadatifard L, Abbott LC, Montier L, Ziburkus J, Mayerich D. Robust Cell Detection for Large-Scale 3D Microscopy Using GPU-Accelerated Iterative Voting. Front Neuroanat 2018; 12:28. [PMID: 29755325 PMCID: PMC5932171 DOI: 10.3389/fnana.2018.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
High-throughput imaging techniques, such as Knife-Edge Scanning Microscopy (KESM),are capable of acquiring three-dimensional whole-organ images at sub-micrometer resolution. These images are challenging to segment since they can exceed several terabytes (TB) in size, requiring extremely fast and fully automated algorithms. Staining techniques are limited to contrast agents that can be applied to large samples and imaged in a single pass. This requires maximizing the number of structures labeled in a single channel, resulting in images that are densely packed with spatial features. In this paper, we propose a three-dimensional approach for locating cells based on iterative voting. Due to the computational complexity of this algorithm, a highly efficient GPU implementation is required to make it practical on large data sets. The proposed algorithm has a limited number of input parameters and is highly parallel.
Collapse
Affiliation(s)
- Leila Saadatifard
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| | - Louise C Abbott
- College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, United States
| | - Laura Montier
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Jokubas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|