1
|
McClements ME, Elsayed MEAA, Major L, de la Camara CMF, MacLaren RE. Gene Therapies in Clinical Development to Treat Retinal Disorders. Mol Diagn Ther 2024; 28:575-591. [PMID: 38955952 PMCID: PMC11349810 DOI: 10.1007/s40291-024-00722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Gene therapies have emerged as promising treatments in clinical development for various retinal disorders, offering hope to patients with inherited degenerative eye conditions. Several gene therapies have already shown remarkable success in clinical trials, with significant improvements observed in visual acuity and the preservation of retinal function. A multitude of gene therapies have now been delivered safely in human clinical trials for a wide range of inherited retinal disorders but there are some gaps in the reported trial data. Some of the most exciting treatment options are not under peer review and information is only available in press release form. Whilst many trials appear to have delivered good outcomes of safety, others have failed to meet primary endpoints and therefore not proceeded to phase III. Despite this, such trials have enabled researchers to learn how best to assess and monitor patient outcomes, which will guide future trials to greater success. In this review, we consider recent and ongoing clinical trials for a variety of potential retinal gene therapy treatments and discuss the positive and negative issues related to these trials. We discuss the treatment potential following clinical trials as well as the potential risks of some treatments under investigation. As these therapies continue to advance through rigorous testing and regulatory approval processes, they hold the potential to revolutionise the landscape of retinal disorder treatments, providing renewed vision and enhancing the quality of life for countless individuals worldwide.
Collapse
Affiliation(s)
- Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK.
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK.
| | - Maram E A Abdalla Elsayed
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lauren Major
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
2
|
Abstract
In 2001, the first large animal was successfully treated with a gene therapy that restored its vision. Lancelot, the Briard dog that was treated, suffered from a human childhood blindness called Leber's congenital amaurosis type 2. Sixteen years later, the gene therapy was approved by the U.S. Food and Drug Administration. The success of this gene therapy in dogs led to a fast expansion of the ocular gene therapy field. By now every class of inherited retinal dystrophy has been treated in at least one animal model and many clinical trials have been initiated in humans. In this study, we review the status of viral gene therapies for the retina, with a focus on ongoing human clinical trials. It is likely that in the next decade we will see several new viral gene therapies approved.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- University of Massachusetts Medical School, Ophthalmology, Worcester, Massachusetts, United States;
| | - Claudio Punzo
- University of Massachusetts Medical School, Ophthalmology, 368 Plantation Street, Albert Sherman Center, AS6-2041, Worcester, Massachusetts, United States, 01605;
| |
Collapse
|
3
|
Narcisse D, Mustafi SM, Carlson M, Batabyal S, Kim S, Wright W, Kumar Mohanty S. Bioluminescent Multi-Characteristic Opsin for Simultaneous Optical Stimulation and Continuous Monitoring of Cortical Activities. Front Cell Neurosci 2021; 15:750663. [PMID: 34759801 PMCID: PMC8573050 DOI: 10.3389/fncel.2021.750663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 12/02/2022] Open
Abstract
Stimulation and continuous monitoring of neural activities at cellular resolution are required for the understanding of the sensory processing of stimuli and development of effective neuromodulation therapies. We present bioluminescence multi-characteristic opsin (bMCOII), a hybrid optogenetic actuator, and a bioluminescence Ca2+ sensor for excitation-free, continuous monitoring of neural activities in the visual cortex, with high spatiotemporal resolution. An exceptionally low intensity (10 μW/mm2) of light could elicit neural activation that could be detected by Ca2+ bioluminescence imaging. An uninterrupted (>14 h) recording of visually evoked neural activities in the cortex of mice enabled the determination of strength of sensory activation. Furthermore, an artificial intelligence-based neural activation parameter transformed Ca2+ bioluminescence signals to network activity patterns. During continuous Ca2+-bioluminescence recordings, visual cortical activity peaked at the seventh to eighth hour of anesthesia, coinciding with circadian rhythm. For both direct optogenetic stimulation in cortical slices and visually evoked activities in the visual cortex, we observed secondary delayed Ca2+-bioluminescence responses, suggesting the involvement of neuron-astrocyte-neuron pathway. Our approach will enable the development of a modular and scalable interface system capable of serving a multiplicity of applications to modulate and monitor large-scale activities in the brain.
Collapse
|
4
|
Tchedre KT, Batabyal S, Galicia M, Narcisse D, Mustafi SM, Ayyagari A, Chavala S, Mohanty SK. Biodistribution of adeno-associated virus type 2 carrying multi-characteristic opsin in dogs following intravitreal injection. J Cell Mol Med 2021; 25:8676-8686. [PMID: 34418301 PMCID: PMC8435460 DOI: 10.1111/jcmm.16823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy of retinal diseases using recombinant adeno-associated virus (rAAV) vector-based delivery has shown clinical success, and clinical trials based on rAAV-based optogenetic therapies are currently in progress. Recently, we have developed multi-characteristic opsin (MCO), which has been shown to effectively re-photosensitize photoreceptor-degenerated retina in mice leading to vision restoration at ambient light environment. Here, we report the biodistribution of the rAAV2 carried MCO (vMCO-I) in live samples and post-mortem organs following intraocular delivery in wild-type dogs. Immunohistochemistry showed that the intravitreal injection of vMCO-I resulted in gene transduction in the inner nuclear layer (INL) but did not induce detectable inflammatory or immune reaction in the dog retina. Vector DNA analysis of live body wastes and body fluids such as saliva and nasal secretions using quantitative polymerase chain reaction (qPCR) showed no correlative increase of vector copy in nasal secretions or saliva, minimal increase of vector copy in urine in the low-dose group 13 weeks after injection and in the faeces of the high-dose group at 3-13 weeks after injection suggesting clearance of the virus vector via urine and faeces. Further analysis of vector DNA extracted from faeces using PCR showed no transgene after 3 weeks post-injection. Intravitreal injection of vMCO-I resulted in few sporadic off-target presences of the vector in the mesenteric lymph node, liver, spleen and testis. This study showed that intravitreal rAAV2-based delivery of MCO-I for retinal gene therapy is safe.
Collapse
Affiliation(s)
- Kissaou T. Tchedre
- Nanoscope Technologies LLCArlingtonTexasUSA
- Nanoscope Therapeutics IncBedfordTexasUSA
| | | | | | | | | | - Ananta Ayyagari
- Nanoscope Technologies LLCArlingtonTexasUSA
- Nanoscope Therapeutics IncBedfordTexasUSA
| | | | - Samarendra K. Mohanty
- Nanoscope Technologies LLCArlingtonTexasUSA
- Nanoscope Therapeutics IncBedfordTexasUSA
| |
Collapse
|