1
|
Chen Z, Zhou Q, Droux J, Liu YH, Glück C, Gezginer I, Wyss M, Yoshihara HAI, Kindler DR, Weber B, Wegener S, El Amki M, Razansky D. Transcranial Cortex-Wide Imaging of Murine Ischemic Perfusion With Large-Field Multifocal Illumination Microscopy. Stroke 2025; 56:170-182. [PMID: 39705394 DOI: 10.1161/strokeaha.124.047996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Ischemic stroke is a common cause of death worldwide and a main cause of morbidity. Presently, laser speckle contrast imaging, x-ray computed tomography, and magnetic resonance imaging are the mainstay for stroke diagnosis and therapeutic monitoring in preclinical studies. These modalities are often limited in terms of their ability to map brain perfusion with sufficient spatial and temporal resolution, thus calling for development of new brain perfusion techniques featuring rapid imaging speed, cost-effectiveness, and ease of use. METHODS We report on a new preclinical high-resolution angiography technique for murine ischemic stroke imaging based on large-field high-speed multifocal illumination fluorescence microscopy. We subsequently showcase the proposed method by monitoring therapeutic effects of thrombolysis in stroke (n=6), further performing cross-strain comparison of perfusion dynamics (n=6) and monitoring the therapeutic effects of sensory stimulation-based treatment (n=11). RESULTS Quantitative readings of hemodynamic and structural changes in cerebral vascular network and pial vessels were attained with 14.4-µm spatial resolution at 80-Hz frame rate fully transcranially. The in vivo perfusion maps accurately delineated the ischemic core and penumbra, further exhibiting a strong correlation (86.1±4.5%) with ex vivo triphenyl tetrazolium chloride staining, significantly higher than for the conventional laser speckle contrast imaging method. Monitoring of therapeutic effects of thrombolysis confirmed that early recanalization could effectively save the penumbra while reducing the infarct area. Cross-strain comparison of perfusion dynamics affirmed that C57BL/6 mice feature a larger penumbra and smaller infarct core as compared with BALB/c mice, which have few or no collaterals. Sensory stimulation-based treatment could effectively enhance blood flow and abolish perfusion deficits in the ischemic core and penumbra regions. CONCLUSIONS A high-speed fluorescence-based angiography method for transcranial stroke imaging in mice is introduced, which is capable of localizing brain perfusion changes and accurately assessing the ischemic penumbra. Compared with the whole-brain x-ray computed tomography and magnetic resonance imaging methods, which are conventionally used for stroke diagnosis and therapeutic monitoring, the new approach is simple and cost-effective, further offering high resolution and speed for in vivo studies. It thus opens new venues for brain perfusion research under various disease conditions such as stroke, neurodegeneration, or epileptic seizures.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, ETH Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., I.G., H.A.I.Y., D.R.K., D.R.)
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, China (Z.C.)
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, ETH Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., I.G., H.A.I.Y., D.R.K., D.R.)
| | - Jeanne Droux
- Department of Neurology, University Hospital and University of Zurich, Switzerland (J.D., S.W., M.E.A.)
- Zurich Neuroscience Center, Switzerland (J.D., C.G., M.W., B.W., S.W., M.E.A., D.R.)
| | - Yu-Hang Liu
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, ETH Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., I.G., H.A.I.Y., D.R.K., D.R.)
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Zurich Neuroscience Center, Switzerland (J.D., C.G., M.W., B.W., S.W., M.E.A., D.R.)
| | - Irmak Gezginer
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, ETH Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., I.G., H.A.I.Y., D.R.K., D.R.)
| | - Matthias Wyss
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Zurich Neuroscience Center, Switzerland (J.D., C.G., M.W., B.W., S.W., M.E.A., D.R.)
| | - Hikari A I Yoshihara
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, ETH Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., I.G., H.A.I.Y., D.R.K., D.R.)
| | - Diana Rita Kindler
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, ETH Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., I.G., H.A.I.Y., D.R.K., D.R.)
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Zurich Neuroscience Center, Switzerland (J.D., C.G., M.W., B.W., S.W., M.E.A., D.R.)
| | - Susanne Wegener
- Department of Neurology, University Hospital and University of Zurich, Switzerland (J.D., S.W., M.E.A.)
- Zurich Neuroscience Center, Switzerland (J.D., C.G., M.W., B.W., S.W., M.E.A., D.R.)
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, Switzerland (J.D., S.W., M.E.A.)
- Zurich Neuroscience Center, Switzerland (J.D., C.G., M.W., B.W., S.W., M.E.A., D.R.)
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.)
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, ETH Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., I.G., H.A.I.Y., D.R.K., D.R.)
- Zurich Neuroscience Center, Switzerland (J.D., C.G., M.W., B.W., S.W., M.E.A., D.R.)
| |
Collapse
|
2
|
Fritsch B, Mayer M, Reis J, Gellner AK. Safety of ipsilesional anodal transcranial direct current stimulation in acute photothrombotic stroke: implications for early neurorehabilitation. Sci Rep 2024; 14:2501. [PMID: 38291061 PMCID: PMC10827716 DOI: 10.1038/s41598-024-51839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Early rehabilitation in the acute phase of stroke, that bears unique neuroplastic properties, is the current standard to reduce disability. Anodal transcranial direct current stimulation can augment neurorehabilitation in chronic stroke. Studies in the acute phase are sparse and held back by inconclusive preclinical data pointing towards potential negative interaction of the excitability increasing tDCS modality with stroke-induced glutamate toxicity. In this present study, we aimed to evaluate structural and behavioral safety of anodal tDCS applied in the acute phase of stroke. Photothrombotic stroke including the right primary motor cortex was induced in rats. 24 h after stroke anodal tDCS was applied for 20 min ipsilesionally at one of four different current densities in freely moving animals. Effects on the infarct volume and on stroke induced neuroinflammation were assessed. Behavioral consequences were monitored. Infarct volume and the modified Neurological Severity Score were not affected by anodal tDCS. Pasta handling, a more sensitive task for sensorimotor deficits, and microglia reactivity indicated potentially harmful effects at the highest tDCS current density tested (47.8 A/m2), which is more than 60 times higher than intensities commonly used in humans. Compared to published safety limits of anodal tDCS in healthy rats, recent stroke does not increase the sensitivity of the brain to anodal tDCS, as assessed by lesion size and neuroinflammatory response. Behavioral deficits only occurred at the highest intensity, which was associated with increased neuroinflammation. When safety limits of commonly used clinical tDCS are met, augmentation of early neurorehabilitation after stroke by anodal tDCS appears to be feasible.
Collapse
Affiliation(s)
- Brita Fritsch
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Marleen Mayer
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Janine Reis
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Anne-Kathrin Gellner
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Yamada Y, Sumiyoshi T. Preclinical Evidence for the Mechanisms of Transcranial Direct Current Stimulation in the Treatment of Psychiatric Disorders; A Systematic Review. Clin EEG Neurosci 2023; 54:601-610. [PMID: 34898301 PMCID: PMC10625720 DOI: 10.1177/15500594211066151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/15/2022]
Abstract
Backgrounds. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique for the treatment of several psychiatric disorders, eg, mood disorders and schizophrenia. Although tDCS provides a promising approach, its neurobiological mechanisms remain to be explored. Objectives. To provide a systematic review of animal studies, and consider how tDCS ameliorates psychiatric conditions. Methods. A literature search was conducted on English articles identified by PubMed. We defined the inclusion criteria as follows: (1) articles published from the original data; (2) experimental studies in animals; (3) studies delivering direct current transcranially, ie, positioning electrodes onto the skull. Results. 138 papers met the inclusion criteria. 62 papers deal with model animals without any dysfunctions, followed by 52 papers for neurological disorder models, and 12 for psychiatric disorder models. The most studied category of functional areas is neurocognition, followed by motor functions and pain. These studies overall suggest the role for the late long-term potentiation (LTP) via anodal stimulation in the therapeutic effects of tDCS. Conclusions. tDCS Anodal stimulation may provide a novel therapeutic strategy to particularly enhance neurocognition in psychiatric disorders. Its mechanisms are likely to involve facilitation of the late LTP.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
4
|
Wang Y, Tsytsarev V, Liao LD. In vivo laser speckle contrast imaging of 4-aminopyridine- or pentylenetetrazole-induced seizures. APL Bioeng 2023; 7:036119. [PMID: 37781728 PMCID: PMC10541235 DOI: 10.1063/5.0158791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Clinical and preclinical studies on epileptic seizures are closely linked to the study of neurovascular coupling. Obtaining reliable information about cerebral blood flow (CBF) in the area of epileptic activity through minimally invasive techniques is crucial for research in this field. In our studies, we used laser speckle contrast imaging (LSCI) to gather information about the local blood circulation in the area of epileptic activity. We used two models of epileptic seizures: one based on 4-aminopyridine (4-AP) and another based on pentylenetetrazole (PTZ). We verified the duration of an epileptic seizure using electrocorticography (ECoG). We applied the antiepileptic drug topiramate (TPM) to both models, but its effect was different in each case. However, in both models, TPM had an effect on neurovascular coupling in the area of epileptic activity, as shown by both LSCI and ECoG data. We demonstrated that TPM significantly reduced the amplitude of 4-AP-induced epileptic seizures (4-AP+TPM: 0.61 ± 0.13 mV vs 4-AP: 1.08 ± 0.19 mV; p < 0.05), and it also reduced gamma power in ECoG in PTZ-induced epileptic seizures (PTZ+TPM: 38.5% ± 11.9% of the peak value vs PTZ: 59.2% ± 3.0% of peak value; p < 0.05). We also captured the pattern of CBF changes during focal epileptic seizures induced by 4-AP. Our data confirm that the system of simultaneous cortical LSCI and registration of ECoG makes it possible to evaluate the effectiveness of pharmacological agents in various types of epileptic seizures in in vivo models and provides spatial and temporal information on the process of ictogenesis.
Collapse
Affiliation(s)
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Baltimore, Maryland 21201, USA
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County 350, Taiwan
| |
Collapse
|
5
|
Ni R, Straumann N, Fazio S, Dean-Ben XL, Louloudis G, Keller C, Razansky D, Ametamey S, Mu L, Nombela-Arrieta C, Klohs J. Imaging increased metabolism in the spinal cord in mice after middle cerebral artery occlusion. PHOTOACOUSTICS 2023; 32:100532. [PMID: 37645255 PMCID: PMC10461215 DOI: 10.1016/j.pacs.2023.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Emerging evidence indicates crosstalk between the brain and hematopoietic system following cerebral ischemia. Here, we investigated metabolism and oxygenation in the spleen and spinal cord in a transient middle cerebral artery occlusion (tMCAO) model. Sham-operated and tMCAO mice underwent [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess glucose metabolism. Naïve, sham-operated and tMCAO mice underwent multispectral optoacoustic tomography (MSOT) assisted by quantitative model-based reconstruction and unmixing algorithms for accurate mapping of oxygenation patterns in peripheral tissues at 24 h after reperfusion. We found increased [18F]FDG uptake and reduced MSOT oxygen saturation, indicating hypoxia in the thoracic spinal cord of tMCAO mice compared with sham-operated mice but not in the spleen. Reduced spleen size was observed in tMCAO mice compared with sham-operated mice ex vivo. tMCAO led to an increase in the numbers of mature T cells in femoral bone marrow tissues, concomitant with a stark reduction in these cell subsets in the spleen and peripheral blood. The combination of quantitative PET and MSOT thus enabled observation of hypoxia and increased metabolic activity in the spinal cord of tMCAO mice at 24 h after occlusion compared to sham-operated mice.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Nadja Straumann
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Serana Fazio
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Georgios Louloudis
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Soldozy S, Dalzell C, Skaff A, Ali Y, Norat P, Yagmurlu K, Park MS, Kalani MYS. Reperfusion injury in acute ischemic stroke: Tackling the irony of revascularization. Clin Neurol Neurosurg 2023; 225:107574. [PMID: 36696846 DOI: 10.1016/j.clineuro.2022.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Reperfusion injury is an unfortunate consequence of restoring blood flow to tissue after a period of ischemia. This phenomenon can occur in any organ, although it has been best studied in cardiac cells. Based on cardiovascular studies, neuroprotective strategies have been developed. The molecular biology of reperfusion injury remains to be fully elucidated involving several mechanisms, however these mechanisms all converge on a similar final common pathway: blood brain barrier disruption. This results in an inflammatory cascade that ultimately leads to a loss of cerebral autoregulation and clinical worsening. In this article, the authors present an overview of these mechanisms and the current strategies being employed to minimize injury after restoration of blood flow to compromised cerebral territories.
Collapse
Affiliation(s)
- Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA; Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | - Christina Dalzell
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Anthony Skaff
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Yusuf Ali
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Kaan Yagmurlu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - M Yashar S Kalani
- Department of Surgery, University of Oklahoma, and St. John's Neuroscience Institute, Tulsa, OK, USA.
| |
Collapse
|
7
|
Wang Y, Chen YL, Huang CM, Chen LT, Liao LD. Visible CCD Camera-Guided Photoacoustic Imaging System for Precise Navigation during Functional Rat Brain Imaging. BIOSENSORS 2023; 13:107. [PMID: 36671941 PMCID: PMC9856069 DOI: 10.3390/bios13010107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In photoacoustic (PA) imaging, tissue absorbs specific wavelengths of light. The absorbed energy results in thermal expansion that generates ultrasound waves that are reconstructed into images. Existing commercial PA imaging systems for preclinical brain imaging are limited by imprecise positioning capabilities and inflexible user interfaces. We introduce a new visible charge-coupled device (CCD) camera-guided photoacoustic imaging (ViCPAI) system that integrates an ultrasound (US) transducer and a data acquisition platform with a CCD camera for positioning. The CCD camera accurately positions the US probe at the measurement location. The programmable MATLAB-based platform has an intuitive user interface. In vitro carbon fiber and in vivo animal experiments were performed to investigate the precise positioning and imaging capabilities of the ViCPAI system. We demonstrated real-time capturing of bilateral cerebral hemodynamic changes during (1) forelimb electrical stimulation under normal conditions, (2) forelimb stimulation after right brain focal photothrombotic ischemia (PTI) stroke, and (3) progression of KCl-induced cortical spreading depression (CSD). The ViCPAI system accurately located target areas and achieved reproducible positioning, which is crucial in animal and clinical experiments. In animal experiments, the ViCPAI system was used to investigate bilateral cerebral cortex responses to left forelimb electrical stimulation before and after stroke, showing that the CBV and SO2 in the right primary somatosensory cortex of the forelimb (S1FL) region were significantly changed by left forelimb electrical stimulation before stroke. No CBV or SO2 changes were observed in the bilateral cortex in the S1FL area in response to left forelimb electrical stimulation after stroke. While monitoring CSD progression, the ViCPAI system accurately locates the S1FL area and returns to the same position after the probe moves, demonstrating reproducible positioning and reducing positioning errors. The ViCPAI system utilizes the real-time precise positioning capability of CCD cameras to overcome various challenges in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yu-Lin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, No.75 Po-Ai St., Hsinchu 300, Taiwan
| | - Li-Tzong Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital and Center for Cancer Research, Kaohsiung Medical University, No.100, Tzyou 1st Road, Sanmin Dist., Kaohsiung City 80756, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
8
|
Kaviannejad R, Karimian SM, Riahi E, Ashabi G. Using dual polarities of transcranial direct current stimulation in global cerebral ischemia and its following reperfusion period attenuates neuronal injury. Metab Brain Dis 2022; 37:1503-1516. [PMID: 35499797 DOI: 10.1007/s11011-022-00985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Multiple neuronal injury pathways are activated during cerebral ischemia and reperfusion (I/R). This study was designed to decrease potential neuronal injuries by using both transcranial direct current stimulation (tDCS) polarities in cerebral ischemia and its following reperfusion period. Ninety rats were randomly divided into six groups. In the sham group, rats were intact. In the I/R group, global cerebral I/R was only induced. In the I/R + c-tDCS and I/R + a-tDCS groups, cathodal and anodal currents were applied, respectively. In the I/R + c/a-tDCS, cathodal current was used in the cerebral ischemia and anodal in the reperfusion. In the I/R + a/c-tDCS group, cathodal and anodal currents were applied in the I/R, respectively. Hippocampal tissue was used to determine the levels of IL-1β, TNF-α, NOS, SOD, MDA, and NMDAR. Hot plate and open field tests evaluated sensory and locomotor performances. The cerebral edema was also measured. Histological assessment was assessed by H/E and Nissl staining of the hippocampal CA1 region. All tDCS modes significantly decreased IL-1β and TNF-α levels, especially in the c/a-tDCS. All tDCS caused a significant decrease in MDA and NOS levels while increasing SOD activity compared to the I/R group, especially in the c/a-tDCS mode. In the c-tDCS and a/c-tDCS groups, the NMDAR level was significantly decreased. The c/a-tDCS group improved sensory and locomotor performances more than other groups receiving tDCS. Furthermore, the least neuronal death was observed in the c/a-tDCS mode. Using two different polarities of tDCS could induce more neuroprotective versus pathophysiological pathways in cerebral I/R, especially in c/a-tDCS mode. HIGHLIGHTS: Multiple pathways of neuronal injury are activated in cerebral ischemia and reperfusion (I/R). Using tDCS could modulate neuroinflammation and oxidative stress pathways in global cerebral I/R. Using c/a-tDCS mode during cerebral I/R causes more neuroprotective effects against neuronal injuries of cerebral I/R.
Collapse
Affiliation(s)
- Rasoul Kaviannejad
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran.
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran
| |
Collapse
|
9
|
Preliminary Study on Safety Assessment of 10 Hz Transcranial Alternating Current Stimulation in Rat Brain. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assessment of the safety of transcranial electrical stimulation devices that contact the scalp and apply electrical stimulations to brain tissues is essential for the prevention of unexpected brain damage caused by electromagnetic fields. In particular, safety studies on transcranial alternating current stimulation (tACS) are needed for active applications to treat brain diseases and for the development of medical devices, because there is a lack of research on the safety of tACS, in contrast to transcranial direct current stimulation. In this study, the safety of tACS with selected parameters, i.e., a stimulation intensity of 1.0 to 2.0 mA, a frequency of 10 Hz, and a treatment time of 20 min, was examined at a preclinical stage using small animals (rats). The results of magnetic resonance imaging and histopathological imaging indicated that the conditions applied in this study provided safe tACS without damaging brain tissues or neuronal components in the acute phase. In addition, the temperature did not increase above 41 °C, which is a temperature limitation for contact-type medical devices, even after 20 min of tACS application.
Collapse
|
10
|
Yang X, Chen YH, Xia F, Sawan M. Photoacoustic imaging for monitoring of stroke diseases: A review. PHOTOACOUSTICS 2021; 23:100287. [PMID: 34401324 PMCID: PMC8353507 DOI: 10.1016/j.pacs.2021.100287] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Stroke is the leading cause of death and disability after ischemic heart disease. However, there is lacking a non-invasive long-time monitoring technique for stroke diagnosis and therapy. The photoacoustic imaging approach reconstructs images of an object based on the energy excitation by optical absorption and its conversion to acoustic waves, due to corresponding thermoelastic expansion, which has optical resolution and acoustic propagation. This emerging functional imaging method is a non-invasive technique. Due to its precision, this method is particularly attractive for stroke monitoring purpose. In this paper, we review the achievements of this technology and its applications on stroke, as well as the development status in both animal and human applications. Also, various photoacoustic systems and multi-modality photoacoustic imaging are introduced as for potential clinical applications. Finally, the challenges of photoacoustic imaging for monitoring stroke are discussed.
Collapse
Affiliation(s)
- Xi Yang
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yun-Hsuan Chen
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Fen Xia
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Mohamad Sawan
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
- Corresponding author at: CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
11
|
Storch S, Samantzis M, Balbi M. Driving Oscillatory Dynamics: Neuromodulation for Recovery After Stroke. Front Syst Neurosci 2021; 15:712664. [PMID: 34366801 PMCID: PMC8339272 DOI: 10.3389/fnsys.2021.712664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of death and disability worldwide, with limited treatments being available. However, advances in optic methods in neuroscience are providing new insights into the damaged brain and potential avenues for recovery. Direct brain stimulation has revealed close associations between mental states and neuroprotective processes in health and disease, and activity-dependent calcium indicators are being used to decode brain dynamics to understand the mechanisms underlying these associations. Evoked neural oscillations have recently shown the ability to restore and maintain intrinsic homeostatic processes in the brain and could be rapidly deployed during emergency care or shortly after admission into the clinic, making them a promising, non-invasive therapeutic option. We present an overview of the most relevant descriptions of brain injury after stroke, with a focus on disruptions to neural oscillations. We discuss the optical technologies that are currently used and lay out a roadmap for future studies needed to inform the next generation of strategies to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Sven Storch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Neurovascular-modulation: A review of primary vascular responses to transcranial electrical stimulation as a mechanism of action. Brain Stimul 2021; 14:837-847. [PMID: 33962079 DOI: 10.1016/j.brs.2021.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The ubiquitous vascular response to transcranial electrical stimulation (tES) has been attributed to the secondary effect of neuronal activity forming the classic neurovascular coupling. However, the current density delivered transcranially concentrates in: A) the cerebrospinal fluid of subarachnoid space where cerebral vasculature resides after reaching the dural and pial surfaces and B) across the blood-brain-barrier after reaching the brain parenchyma. Therefore, it is anticipated that tES has a primary vascular influence. OBJECTIVES Focused review of studies that demonstrated the direct vascular response to electrical stimulation and studies demonstrating evidence for tES-induced vascular effect in coupled neurovascular systems. RESULTS tES induces both primary and secondary vascular phenomena originating from four cellular elements; the first two mediating a primary vascular phenomenon mainly in the form of an immediate vasodilatory response and the latter two leading to secondary vascular effects and as parts of classic neurovascular coupling: 1) The perivascular nerves of more superficially located dural and pial arteries and medium-sized arterioles with multilayered smooth muscle cells; and 2) The endothelial lining of all vessels including microvasculature of blood-brain barrier; 3) Astrocytes; and 4) Neurons of neurovascular units. CONCLUSION A primary vascular effect of tES is highly suggested based on various preclinical and clinical studies. We explain how the nature of vascular response can depend on vessel anatomy (size) and physiology and be controlled by stimulation waveform. Further studies are warranted to investigate the mechanisms underlying the vascular response and its contribution to neural activity in both healthy brain and pathological conditions - recognizing many brain diseases are associated with alteration of cerebral hemodynamics and decoupling of neurovascular units.
Collapse
|
13
|
Kim Y, Lee YB, Bae SK, Oh SS, Choi JR. Development of a photochemical thrombosis investigation system to obtain a rabbit ischemic stroke model. Sci Rep 2021; 11:5787. [PMID: 33707580 PMCID: PMC7970995 DOI: 10.1038/s41598-021-85348-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
Photochemical thrombosis is a method for the induction of ischemic stroke in the cerebral cortex. It can generate localized ischemic infarcts in the desired region; therefore, it has been actively employed in establishing an ischemic stroke animal model and in vivo assays of diagnostic and therapeutic techniques for stroke. To establish a rabbit ischemic stroke model and overcome the shortcoming of previous studies that were difficult to build a standardized photothrombotic rabbit model, we developed a photochemical thrombosis induction system that can produce consistent brain damage on a specific area. To verify the generation of photothrombotic brain damage using the system, longitudinal magnetic resonance imaging, 2,3,5-triphenyltetrazolium chloride staining, and histological staining were applied. These analytical methods have a high correlation for ischemic infarction and are appropriate for analyzing photothrombotic brain damage in the rabbit brain. The results indicated that the photothrombosis induction system has a main advantage of being accurately controlled a targeted region of photothrombosis and can produce cerebral hemisphere lesions on the target region of the rabbit brain. In conjugation with brain atlas, it can induce photochemical ischemic stroke locally in the part of the brain that is responsible for a particular brain function and the system can be used to develop animal models with degraded specific functions. Also, the photochemical thrombosis induction system and a standardized rabbit ischemic stroke model that uses this system have the potential to be used for verifications of biomedical techniques for ischemic stroke at a preclinical stage in parallel with further performance improvements.
Collapse
Affiliation(s)
- Yoonhee Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Yoon Bum Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Seung Kuk Bae
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu, 41566, Korea
| | - Sung Suk Oh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea.
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea.
| |
Collapse
|
14
|
Bo B, Li Y, Li W, Wang Y, Tong S. Cortical Hemodynamic Response to Multi-afferent Stimulation: an optical imaging study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2913-2916. [PMID: 33018616 DOI: 10.1109/embc44109.2020.9175284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multisensory stimulation plays an important role in the recovery of ischemic stroke. However, little is known about the interactions between neuronal activities with multi-afferent stimulations and their effects on hemodynamic responses. Optogenetics has been a useful tool in neuroscience research to unravel the mechanisms of neurovascular coupling at cell-specific level. In this study, we applied laser speckle contrast imaging (LSCI) to map the cortical hemodynamic response with high spatiotemporal resolution. The results showed that optogenetic inhibition of pyramidal neurons in sensorimotor cortex induced both local and distant increases of cerebral blood flow (CBF) with dual peaks, and the full width at half maximum (FWHM) was significantly larger than that of the CBF response to optogenetic excitation. Furthermore, optogenetic excitation of pyramidal neurons could significantly increase the local CBF response to sensory stimulation, whereas optogenetic inhibition of pyramidal neurons decreased the local CBF response at the early stage after sensory stimulation and increased the distant CBF response during the recovery period. Our work provided useful insights into the mechanisms of brain stimulation, which might help in clinical neurological applications.
Collapse
|
15
|
Ferreira G, Silva-Filho E, de Oliveira A, de Lucena C, Lopes J, Pegado R. Transcranial direct current stimulation improves quality of life and physical fitness in diabetic polyneuropathy: a pilot double blind randomized controlled trial. J Diabetes Metab Disord 2020; 19:327-335. [PMID: 32550183 DOI: 10.1007/s40200-020-00513-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022]
Abstract
Purpose Diabetes Mellitus (DM) is a chronic disease which presents a big prevalence in the world and several patients with this condition fail to respond to the available treatments. There is a huge unmet clinical need for the development of new therapeutic approaches for this condition. This study aims to evaluate the effects of anodal tDCS on Quality of Life and physical fitness in patients with diabetic polyneuropathy. Methods A pilot, parallel, sham, randomized, double-blind trial was conducted with twenty patients. Five consecutive sessions of C3/Fp2 tDCS montage were performed. To assess the primary outcome Short Form 36 Health Survey (SF-36) was used. Physical fitness level, according to lower and upper body strength, flexibility, Time Up and Go Test (TUG) and Six-Minute Walking Test (6MWT) were measured as secondary outcomes. The measures were performed at 3 different times (baseline, 1st and 2nd weeks). Results SF-36 increased throughout the protocol, but no difference between groups were found. However, there was a significant difference between groups at 1st and 2nd weeks, which shows a permanent growth in the active-tDCS group. Physical health and functioning, functional capacity and bodily pain showed significant improvements in active-tDCS group in 1st and 2nd weeks during inter-group analysis. Emotional scores showed significant interaction group-time with interaction effects only for active-group in 1st and 2nd weeks. TUG and 6MWT showed significant improvements only in active-tDCS group. Conclusions It is suggested that five sessions of anodal M1 tDCS improves QoL and functionality of patients with diabetic polyneuropathy.
Collapse
Affiliation(s)
- Galeno Ferreira
- Graduate Program in Rehabilitation Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Edson Silva-Filho
- Graduate Program in Rehabilitation Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil.,Faculty of Health Science of Trairi, Federal University of Rio Grande do Norte, Trairi St, 59200- 000 Santa Cruz, RN Brazil
| | | | | | - Johnnatas Lopes
- Federal University Vale of São Francisco, Pernanbuco, Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| |
Collapse
|
16
|
Chuang YC, Chu CH, Cheng SH, Liao LD, Chu TS, Chen NT, Paldino A, Hsia Y, Chen CT, Lo LW. Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics. Theranostics 2020; 10:6758-6773. [PMID: 32550902 PMCID: PMC7295068 DOI: 10.7150/thno.41752] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/04/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT), which involves the generation of reactive oxygen species (ROS) through interactions of a photosensitizer (PS) with light and oxygen, has been applied in oncology. Over the years, PDT techniques have been developed for the treatment of deep-seated cancers. However, (1) the tissue penetration limitation of excitation photon, (2) suppressed efficiency of PS due to multiple energy transfers, and (3) insufficient oxygen source in hypoxic tumor microenvironment still constitute major challenges facing the clinical application of PDT for achieving effective treatment. We present herein a PS-independent, ionizing radiation-induced PDT agent composed of yttrium oxide nanoscintillators core and silica shell (Y2O3:Eu@SiO2) with an annealing process. Our results revealed that annealed Y2O3:Eu@SiO2 could directly induce comprehensive photodynamic effects under X-ray irradiation without the presence of PS molecules. The crystallinity of Y2O3:Eu@SiO2 was demonstrated to enable the generation of electron-hole (e--h+) pairs in Y2O3 under ionizing irradiation, giving rise to the formation of ROS including superoxide, hydroxyl radical and singlet oxygen. In particular, combining Y2O3:Eu@SiO2 with fractionated radiation therapy increased radio-resistant tumor cell damage. Furthermore, photoacoustic imaging of tumors showed re-distribution of oxygen saturation (SO2) and reoxygenation of the hypoxia region. The results of this study support applicability of the integration of fractionated radiation therapy with Y2O3:Eu@SiO2, achieving synchronously in-depth and oxygen-insensitive X-ray PDT. Furthermore, we demonstrate Y2O3:Eu@SiO2 exhibited radioluminescence (RL) under X-ray irradiation and observed the virtually linear correlation between X-ray-induced radioluminescence (X-RL) and the Y2O3:Eu@SiO2 concentration in vivo. With the pronounced X-RL for in-vivo imaging and dosimetry, it possesses significant potential for utilization as a precision theranostics producing highly efficient X-ray PDT for deep-seated tumors.
Collapse
|
17
|
Ito A, Kubo N, Liang N, Aoyama T, Kuroki H. Regenerative Rehabilitation for Stroke Recovery by Inducing Synergistic Effects of Cell Therapy and Neurorehabilitation on Motor Function: A Narrative Review of Pre-Clinical Studies. Int J Mol Sci 2020; 21:ijms21093135. [PMID: 32365542 PMCID: PMC7247676 DOI: 10.3390/ijms21093135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological diseases severely affect the quality of life of patients. Although existing treatments including rehabilitative therapy aim to facilitate the recovery of motor function, achieving complete recovery remains a challenge. In recent years, regenerative therapy has been considered as a potential candidate that could yield complete functional recovery. However, to achieve desirable results, integration of transplanted cells into neural networks and generation of appropriate microenvironments are essential. Furthermore, considering the nascent state of research in this area, we must understand certain aspects about regenerative therapy, including specific effects, nature of interaction when administered in combination with rehabilitative therapy (regenerative rehabilitation), and optimal conditions. Herein, we review the current status of research in the field of regenerative therapy, discuss the findings that could hold the key to resolving the challenges associated with regenerative rehabilitation, and outline the challenges to be addressed with future studies. The current state of research emphasizes the importance of determining the independent effect of regenerative and rehabilitative therapies before exploring their combined effects. Furthermore, the current review highlights the progression in the treatment perspective from a state of compensation of lost function to that of a possibility of complete functional recovery.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
- Correspondence:
| | - Naoko Kubo
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
| |
Collapse
|
18
|
Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia. Brain Stimul 2020; 13:881-890. [PMID: 32289721 DOI: 10.1016/j.brs.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intracellular acidosis in the ischemic penumbra can contribute to further cell death, effectively enlarging the infarct core. Restoring the acid-base balance may enhance tissue survivability after cerebral ischemia. OBJECTIVE This study investigated whether translocating protons out of penumbral neurons could mitigate tissue acidification and induce neuroprotection in a rodent model of acute cerebral ischemia. METHODS We modulated the penumbral neurons via a light-driven pump to translocate protons out (i.e., archaerhodopsin/ArchT group) or into (i.e., channelrhodopsin-2/ChR2 group) neurons after focal cerebral ischemia in rats. Intracellular pH values were imaged via neutral red (NR) fluorescence and cerebral blood flow (CBF) was monitored through laser speckle contrast imaging (LSCI). Global CBF responses to electrical stimulation of the hindlimbs were obtained 24 h and 48 h after ischemia to assess neurological function. Behavioral and histological outcomes were evaluated 48 h after ischemia. A control group without gene modification was included. RESULTS The reduction of relative pH (RpH), the amplitude of negative peak of hypoemic response (RNP) and the hemispheric lateralization index (LI) in ArchT group were significantly less than those of the ChR2 or control group. Moreover, RpH was strongly correlated with RNP (r = 0.60) and LI (r24h = 0.80, r48h = 0.59). In addition, behavioral and histological results supported a neuroprotective effect of countering neuronal acidosis in penumbra through optogenetic stimulation. CONCLUSION(S) These results indicate that countering intracellular acidosis by optogenetically translocating protons out of penumbral neurons during the acute ischemic stage could induce protection after ischemic brain injury.
Collapse
|
19
|
Memory and Cognition-Related Neuroplasticity Enhancement by Transcranial Direct Current Stimulation in Rodents: A Systematic Review. Neural Plast 2020; 2020:4795267. [PMID: 32211039 PMCID: PMC7061127 DOI: 10.1155/2020/4795267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Brain stimulation techniques, including transcranial direct current stimulation (tDCS), were identified as promising therapeutic tools to modulate synaptic plasticity abnormalities and minimize memory and learning deficits in many neuropsychiatric diseases. Here, we revised the effect of tDCS on the modulation of neuroplasticity and cognition in several animal disease models of brain diseases affecting plasticity and cognition. Studies included in this review were searched following the terms (“transcranial direct current stimulation”) AND (mice OR mouse OR animal) and according to the PRISMA statement requirements. Overall, the studies collected suggest that tDCS was able to modulate brain plasticity due to synaptic modifications within the stimulated area. Changes in plasticity-related mechanisms were achieved through induction of long-term potentiation (LTP) and upregulation of neuroplasticity-related proteins, such as c-fos, brain-derived neurotrophic factor (BDNF), or N-methyl-D-aspartate receptors (NMDARs). Taken into account all revised studies, tDCS is a safe, easy, and noninvasive brain stimulation technique, therapeutically reliable, and with promising potential to promote cognitive enhancement and neuroplasticity. Since the use of tDCS has increased as a novel therapeutic approach in humans, animal studies are important to better understand its mechanisms as well as to help improve the stimulation protocols and their potential role in different neuropathologies.
Collapse
|
20
|
Leprince S, Huberlant S, Allegre L, Warembourg S, Leteuff I, Bethry A, Paniagua C, Taillades H, De Tayrac R, Coudane J, Letouzey V, Garric X. Preliminary design of a new degradable medical device to prevent the formation and recurrence of intrauterine adhesions. Commun Biol 2019; 2:196. [PMID: 31123719 PMCID: PMC6531438 DOI: 10.1038/s42003-019-0447-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 01/22/2023] Open
Abstract
Intrauterine adhesions lead to partial or complete obliteration of the uterine cavity and have life-changing consequences for women. The leading cause of adhesions is believed to be loss of stroma resulting from trauma to the endometrium after surgery. Adhesions are formed when lost stroma is replaced by fibrous tissue that join the uterine walls. Few effective intrauterine anti-adhesion barriers for gynecological surgery exist. We designed a degradable anti-adhesion medical device prototype to prevent adhesion formation and recurrence and restore uterine morphology. We focused on ideal degradation time for complete uterine re-epithelialization for optimal anti-adhesion effect and clinical usability. We developed a triblock copolymer prototype [poly(lactide) combined with high molecular mass poly(ethylene oxide)]. Comparative pre-clinical studies demonstrated in vivo anti-adhesion efficacy. Ease of introduction and optimal deployment in a human uterus confirmed clinical usability. This article provides preliminary data to develop an intrauterine medical device and conduct a clinical trial.
Collapse
Affiliation(s)
- Salome Leprince
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
| | - Stéphanie Huberlant
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
- Department of Gynecology and Obstetrics, University Hospital, Nîmes, 30900 France
| | - Lucie Allegre
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
- Department of Gynecology and Obstetrics, University Hospital, Nîmes, 30900 France
| | - Sophie Warembourg
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
- Department of Gynecology and Obstetrics, University Hospital, Nîmes, 30900 France
| | - Isabelle Leteuff
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
- Department of Gynecology and Obstetrics, University Hospital, Nîmes, 30900 France
| | - Audrey Bethry
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
| | - Cedric Paniagua
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
| | - Hubert Taillades
- Experimental Department, University of Montpellier, Montpellier, 34000 France
| | - Renaud De Tayrac
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
- Department of Gynecology and Obstetrics, University Hospital, Nîmes, 30900 France
| | - Jean Coudane
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
| | - Vincent Letouzey
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
- Department of Gynecology and Obstetrics, University Hospital, Nîmes, 30900 France
| | - Xavier Garric
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Montpellier, 34093 France
| |
Collapse
|
21
|
Liu YH, Xu Y, Liao LD, Chan KC, Thakor NV. A Handheld Real-Time Photoacoustic Imaging System for Animal Neurological Disease Models: From Simulation to Realization. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4081. [PMID: 30469455 PMCID: PMC6263979 DOI: 10.3390/s18114081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
This article provides a guide to design and build a handheld, real-time photoacoustic (PA) imaging system from simulation to realization for animal neurological disease models. A pulsed laser and array-based ultrasound (US) platform were utilized to develop the system for evaluating vascular functions in rats with focal ischemia or subcutaneous tumors. To optimize the laser light delivery, finite element (FE)-based simulation models were developed to provide information regarding light propagation and PA wave generation in soft tissues. Besides, simulations were also conducted to evaluate the ideal imaging resolution of the US system. As a result, a PA C-scan image of a designed phantom in 1% Lipofundin was reconstructed with depth information. Performance of the handheld PA system was tested in an animal ischemia model, which revealed that cerebral blood volume (CBV) changes at the cortical surface could be monitored immediately after ischemia induction. Another experiment on subcutaneous tumors showed the anomalous distribution of the total hemoglobin concentration (HbT) and oxygen saturation (SO₂), while 3D and maximum intensity projection (MIP) PA images of the subcutaneous tumors are also presented in this article. Overall, this system shows promise for monitoring disease progression in vascular functional impairments.
Collapse
Affiliation(s)
- Yu-Hang Liu
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
| | - Yu Xu
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Lun-De Liao
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Kim Chuan Chan
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Boonzaier J, van Tilborg GAF, Neggers SFW, Dijkhuizen RM. Noninvasive Brain Stimulation to Enhance Functional Recovery After Stroke: Studies in Animal Models. Neurorehabil Neural Repair 2018; 32:927-940. [PMID: 30352528 PMCID: PMC6238175 DOI: 10.1177/1545968318804425] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Stroke is the leading cause of adult disability, but treatment options remain limited, leaving most patients with incomplete recovery. Patient and animal studies have shown potential of noninvasive brain stimulation (NIBS) strategies to improve function after stroke. However, mechanisms underlying therapeutic effects of NIBS are unclear and there is no consensus on which NIBS protocols are most effective. Objective. Provide a review of articles that assessed effects and mechanisms of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) in animal stroke models. Methods. Articles were searched in PubMed, including cross-references. Results. Nineteen eligible studies reporting effects of rTMS or tDCS after stroke in small rodents were identified. Seventeen of those described improved functional recovery or neuroprotection compared with untreated control or sham-stimulated groups. The effects of rTMS could be related to molecular mechanisms associated with ischemic tolerance, neuroprotection, anti-apoptosis, neurogenesis, angiogenesis, or neuroplasticity. Favorable outcome appeared most effectively when using high-frequency (>5 Hz) rTMS or intermittent theta burst stimulation of the ipsilesional hemisphere. tDCS effects were strongly dependent on stimulation polarity and onset time. Although these findings are promising, most studies did not meet Good Laboratory Practice assessment criteria. Conclusions. Despite limited data availability, animal stroke model studies demonstrate potential of NIBS to promote stroke recovery through different working mechanisms. Future studies in animal stroke models should adhere to Good Laboratory Practice guidelines and aim to further develop clinically applicable treatment protocols by identifying most favorable stimulation parameters, treatment onset, adjuvant therapies, and underlying modes of action.
Collapse
Affiliation(s)
- Julia Boonzaier
- 1 Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Geralda A F van Tilborg
- 1 Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Sebastiaan F W Neggers
- 2 Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Rick M Dijkhuizen
- 1 Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
Sánchez-León CA, Sánchez-López Á, Ammann C, Cordones I, Carretero-Guillén A, Márquez-Ruiz J. Exploring new transcranial electrical stimulation strategies to modulate brain function in animal models. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 8:7-13. [PMID: 30272042 DOI: 10.1016/j.cobme.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcranial electrical stimulation (tES) refers to a group of non-invasive brain stimulation techniques to induce changes in the excitability of cortical neurons in humans. In recent years, studies in animal models have been shown to be essential for disentangling the neuromodulatory effects of tES, defining safety limits, and exploring potential therapeutic applications in neurological and neuropsychiatric disorders. Testing in animal models is valuable for the development of new unconventional protocols intended to improve tES administration and optimize the desired effects by increasing its focality and enabling deep-brain stimulation. Successful and controlled application of tES in humans relies on the knowledge acquired from studies meticulously performed in animal models.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| | - Álvaro Sánchez-López
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| | - Claudia Ammann
- CINAC, University Hospital HM Puerta del Sur, CEU - San Pablo University, 28938-Móstoles, Madrid, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| | | | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| |
Collapse
|
24
|
Chronic Electrical Stimulation Promotes the Excitability and Plasticity of ESC-derived Neurons following Glutamate-induced Inhibition In vitro. Sci Rep 2018; 8:10957. [PMID: 30026496 PMCID: PMC6053382 DOI: 10.1038/s41598-018-29069-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023] Open
Abstract
Functional electrical stimulation (FES) is rapidly gaining traction as a therapeutic tool for mediating the repair and recovery of the injured central nervous system (CNS). However, the underlying mechanisms and impact of these stimulation paradigms at a molecular, cellular and network level remain largely unknown. In this study, we used embryonic stem cell (ESC)-derived neuron and glial co-cultures to investigate network maturation following acute administration of L-glutamate, which is a known mediator of excitotoxicity following CNS injury. We then modulated network maturation using chronic low frequency stimulation (LFS) and direct current stimulation (DCS) protocols. We demonstrated that L-glutamate impaired the rate of maturation of ESC-derived neurons and glia immediately and over a week following acute treatment. The administration of chronic LFS and DCS protocols individually following L-glutamate infusion significantly promoted the excitability of neurons as well as network synchrony, while the combination of LFS/DCS did not. qRT-PCR analysis revealed that LFS and DCS alone significantly up-regulated the expression of excitability and plasticity-related transcripts encoding N-methyl-D-aspartate (NMDA) receptor subunit (NR2A), brain-derived neurotrophic factor (BDNF) and Ras-related protein (RAB3A). In contrast, the simultaneous administration of LFS/DCS down-regulated BDNF and RAB3A expression. Our results demonstrate that LFS and DCS stimulation can modulate network maturation excitability and synchrony following the acute administration of an inhibitory dose of L-glutamate, and upregulate NR2A, BDNF and RAB3A gene expression. Our study also provides a novel framework for investigating the effects of electrical stimulation on neuronal responses and network formation and repair after traumatic brain injury.
Collapse
|
25
|
Sánchez-León CA, Ammann C, Medina JF, Márquez-Ruiz J. Using animal models to improve the design and application of transcranial electrical stimulation in humans. Curr Behav Neurosci Rep 2018; 5:125-135. [PMID: 30013890 DOI: 10.1007/s40473-018-0149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose of Review Transcranial electrical stimulation (tES) is a non-invasive stimulation technique used for modulating brain function in humans. To help tES reach its full therapeutic potential, it is necessary to address a number of critical gaps in our knowledge. Here, we review studies that have taken advantage of animal models to provide invaluable insight about the basic science behind tES. Recent Findings Animal studies are playing a key role in elucidating the mechanisms implicated in tES, defining safety limits, validating computational models, inspiring new stimulation protocols, enhancing brain function and exploring new therapeutic applications. Summary Animal models provide a wealth of information that can facilitate the successful utilization of tES for clinical interventions in human subjects. To this end, tES experiments in animals should be carefully designed to maximize opportunities for applying discoveries to the treatment of human disease.
Collapse
Affiliation(s)
| | - Claudia Ammann
- CINAC, University Hospital HM Puerta del Sur, CEU - San Pablo University, 28938-Móstoles, Madrid, Spain
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Javier Márquez-Ruiz
- Division of Neurosciences, Pablo de Olavide University, 41013-Seville, Spain
| |
Collapse
|