1
|
Meijs S, Andreis FR, Janjua TAM, Graven-Nielsen T, Jensen W. High-frequency electrical stimulation increases cortical excitability and mechanical sensitivity in a chronic large animal model. Pain 2025; 166:e18-e26. [PMID: 39133034 DOI: 10.1097/j.pain.0000000000003354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/12/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT Translational models of the sensitized pain system are needed to progress the understanding of involved mechanisms. In this study, long-term potentiation was used to develop a mechanism-based large-animal pain model. Event-related potentials to electrical stimulation of the ulnar nerve were recorded by intracranial recordings in pigs, 3 weeks before, immediately before and after, and 3 weeks after peripheral high-frequency stimulation (HFS) applied to the ulnar nerve in the right forelimb (7 pigs) or in control animals (5 pigs). Event-related potential recordings and peripheral HFS were done during anesthesia. Two weeks before and after the HFS, behavioral responses reflecting mechanical and thermal sensitivity were collected using brush, noxious limb-mounted pressure algometer, and noxious laser stimuli. The HFS intervention limb was progressively sensitized to noxious mechanical stimulation in week 1 and 2 compared with baseline ( P = 0.045) and the control group ( P < 0.034) but not significantly to laser or brush stimulation. The first negative (N1) peak of the event-related potential was increased 30 minutes after HFS compared with before ( P < 0.05). The N1 peak was also larger compared with control pigs 20 to 40 minutes after HFS ( P < 0.031) but not significantly increased 3 weeks after. The relative increase in N1 30 minutes after HFS and the degree of mechanical hyperalgesia 2 weeks post-HFS was correlated ( P < 0.033). These results show for the first time that the pig HFS model resembles the human HFS model closely where the profile of sensitization is comparable. Interestingly, the degree of sensitization was associated with the cortical signs of hyperexcitability at HFS induction.
Collapse
Affiliation(s)
- Suzan Meijs
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | | | | | | | | |
Collapse
|
2
|
Shi L, Mastracchio C, Saytashev I, Ye M. Low frequency ultrasound elicits broad cortical responses inhibited by ketamine in mice. COMMUNICATIONS ENGINEERING 2024; 3:120. [PMID: 39192002 DOI: 10.1038/s44172-024-00269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
The neuromodulatory effects of >250 kHz ultrasound have been well-demonstrated, but the impact of lower-frequency ultrasound, which can transmit better through air and the skull, on the brain is unclear. This study investigates the biological impact of 40 kHz pulsed ultrasound on the brain using calcium imaging and electrophysiology in mice. Our findings reveal burst duration-dependent neural responses in somatosensory and auditory cortices, resembling responses to 12 kHz audible tone, in vivo. In vitro brain slice experiments show no neural responses to 300 kPa 40 kHz ultrasound, implying indirect network effects. Ketamine fully blocks neural responses to ultrasound in both cortices but only partially affects 12 kHz audible tone responses in the somatosensory cortex and has no impact on auditory cortex 12 kHz responses. This suggests that low-frequency ultrasound's cortical effects rely heavily on NMDA receptors and may involve mechanisms beyond indirect auditory cortex activation. This research uncovers potential low-frequency ultrasound effects and mechanisms in the brain, offering a path for future neuromodulation.
Collapse
Affiliation(s)
- Linli Shi
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Christina Mastracchio
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Ilyas Saytashev
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
3
|
Wu GK, Ardeshirpour Y, Mastracchio C, Kent J, Caiola M, Ye M. Amplitude- and frequency-dependent activation of layer II/III neurons by intracortical microstimulation. iScience 2023; 26:108140. [PMID: 37915592 PMCID: PMC10616374 DOI: 10.1016/j.isci.2023.108140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/27/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Intracortical microstimulation (ICMS) has been used for the development of brain machine interfaces. However, further understanding about the spatiotemporal responses of neurons to different electrical stimulation parameters is necessary to inform the design of optimal therapies. In this study, we employed in vivo electrophysiological recording, two-photon calcium imaging, and electric field simulation to evaluate the acute effect of ICMS on layer II/III neurons. Our results show that stimulation frequency non-linearly modulates neuronal responses, whereas the magnitude of responses is linearly correlated to the electric field strength and stimulation amplitude before reaching a steady state. Temporal dynamics of neurons' responses depends more on stimulation frequency and their distance to the stimulation electrode. In addition, amplitude-dependent post-stimulation suppression was observed within ∼500 μm of the stimulation electrode, as evidenced by both calcium imaging and local field potentials. These findings provide insights for selecting stimulation parameters to achieve desirable spatiotemporal specificity of ICMS.
Collapse
Affiliation(s)
- Guangying K. Wu
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yasaman Ardeshirpour
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Christina Mastracchio
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jordan Kent
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
- Scientific Publications Department, Society for Neuroscience, Washington DC, USA
| | - Michael Caiola
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
4
|
Monroy GL, Erfanzadeh M, Tao M, DePaoli DT, Saytashev I, Nam SA, Rafi H, Kwong KC, Shea K, Vakoc BJ, Vasudevan S, Hammer DX. Development of polarization-sensitive optical coherence tomography imaging platform and metrics to quantify electrostimulation-induced peripheral nerve injury in vivo in a small animal model. NEUROPHOTONICS 2023; 10:025004. [PMID: 37077218 PMCID: PMC10109528 DOI: 10.1117/1.nph.10.2.025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Significance Neuromodulation devices are rapidly evolving for the treatment of neurological diseases and conditions. Injury from implantation or long-term use without obvious functional losses is often only detectable through terminal histology. New technologies are needed that assess the peripheral nervous system (PNS) under normal and diseased or injured conditions. Aim We aim to demonstrate an imaging and stimulation platform that can elucidate the biological mechanisms and impacts of neurostimulation in the PNS and apply it to the sciatic nerve to extract imaging metrics indicating electrical overstimulation. Approach A sciatic nerve injury model in a 15-rat cohort was observed using a newly developed imaging and stimulation platform that can detect electrical overstimulation effects with polarization-sensitive optical coherence tomography. The sciatic nerve was electrically stimulated using a custom-developed nerve holder with embedded electrodes for 1 h, followed by a 1-h recovery period, delivered at above-threshold Shannon model k -values in experimental groups: sham control (SC, n = 5 , 0.0 mA / 0 Hz ), stimulation level 1 (SL1, n = 5 , 3.4 mA / 50 Hz , and k = 2.57 ), and stimulation level 2 (SL2, n = 5 , 6.8 mA / 100 Hz , and k = 3.17 ). Results The stimulation and imaging system successfully captured study data across the cohort. When compared to a SC after a 1-week recovery, the fascicle closest to the stimulation lead showed an average change of + 4 % / - 309 % (SL1/SL2) in phase retardation and - 79 % / - 148 % in optical attenuation relative to SC. Analysis of immunohistochemistry (IHC) shows a + 1 % / - 36 % difference in myelin pixel counts and - 13 % / + 29 % difference in axon pixel counts, and an overall increase in cell nuclei pixel count of + 20 % / + 35 % . These metrics were consistent with IHC and hematoxylin/eosin tissue section analysis. Conclusions The poststimulation changes observed in our study are manifestations of nerve injury and repair, specifically degeneration and angiogenesis. Optical imaging metrics quantify these processes and may help evaluate the safety and efficacy of neuromodulation devices.
Collapse
Affiliation(s)
- Guillermo L. Monroy
- U. S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
| | - Mohsen Erfanzadeh
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Michael Tao
- U. S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
| | - Damon T. DePaoli
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Ilyas Saytashev
- U. S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
| | - Stephanie A. Nam
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Harmain Rafi
- U. S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
| | - Kasey C. Kwong
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Katherine Shea
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Clinical Pharmacology, Office of Translational Science, Division of Applied Regulatory Science, Silver Spring, Maryland, United States
| | - Benjamin J. Vakoc
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts Institute of Technology, Division of Health Science and Technology, Cambridge, Massachusetts, United States
| | - Srikanth Vasudevan
- U. S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
- Address all correspondence to Srikanth Vasudevan, ; Daniel X. Hammer,
| | - Daniel X. Hammer
- U. S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, Maryland, United States
- Address all correspondence to Srikanth Vasudevan, ; Daniel X. Hammer,
| |
Collapse
|
5
|
Szymanski LJ, Kellis S, Liu CY, Jones KT, Andersen RA, Commins D, Lee B, McCreery DB, Miller CA. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. J Neural Eng 2021; 18. [PMID: 34314384 DOI: 10.1088/1741-2552/ac127e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022]
Abstract
Objective.Intracortical microelectrode arrays (MEA) can be used as part of a brain-machine interface system to provide sensory feedback control of an artificial limb to assist persons with tetraplegia. Variability in functionality of electrodes has been reported but few studies in humans have examined the impact of chronic brain tissue responses revealed postmortem on electrode performancein vivo. Approach.In a tetraplegic man, recording MEAs were implanted into the anterior intraparietal area and Brodmann's area 5 (BA5) of the posterior parietal cortex and a recording and stimulation array was implanted in BA1 of the primary somatosensory cortex (S1). The participant expired from unrelated causes seven months after MEA implantation. The underlying tissue of two of the three devices was processed for histology and electrophysiological recordings were assessed.Main results.Recordings of neuronal activity were obtained from all three MEAs despite meningeal encapsulation. However, the S1 array had a greater encapsulation, yielded lower signal quality than the other arrays and failed to elicit somatosensory percepts with electrical stimulation. Histological examination of tissues underlying S1 and BA5 implant sites revealed localized leptomeningeal proliferation and fibrosis, lymphocytic infiltrates, astrogliosis, and foreign body reaction around the electrodes. The BA5 recording site showed focal cerebral microhemorrhages and leptomeningeal vascular ectasia. The S1 site showed focal tissue damage including vascular recanalization, neuronal loss, and extensive subcortical white matter necrosis. The tissue response at the S1 site included hemorrhagic-induced injury suggesting a likely mechanism for reduced function of the S1 implant.Significance.Our findings are similar to those from animal studies with chronic intracortical implants and suggest that vascular disruption and microhemorrhage during device implantation are important contributors to overall array and individual electrode performance and should be a topic for future device development to mitigate tissue responses. Neurosurgical considerations are also discussed.
Collapse
Affiliation(s)
- Linda J Szymanski
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America.,Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, United States of America
| | - Spencer Kellis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States of America.,Department of Neurosurgery, Keck USC School of Medicine, Los Angeles, CA, United States of America.,USC Neurorestoration Center, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Department of Neurosurgery, Keck USC School of Medicine, Los Angeles, CA, United States of America.,USC Neurorestoration Center, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Kymry T Jones
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States of America
| | - Deborah Commins
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Brian Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Department of Neurosurgery, Keck USC School of Medicine, Los Angeles, CA, United States of America.,USC Neurorestoration Center, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Douglas B McCreery
- Huntington Medical Research Institute, Pasadena, CA, United States of America
| | - Carol A Miller
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Jang JH, Solarana K, Hammer DX, Fisher JAN. Dissecting the microvascular contributions to diffuse correlation spectroscopy measurements of cerebral hemodynamics using optical coherence tomography angiography. NEUROPHOTONICS 2021; 8:025006. [PMID: 33912621 PMCID: PMC8071783 DOI: 10.1117/1.nph.8.2.025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Significance: Diffuse correlation spectroscopy (DCS) is an emerging noninvasive, diffuse optical modality that purportedly enables direct measurements of microvasculature blood flow. Functional optical coherence tomography angiography (OCT-A) can resolve blood flow in vessels as fine as capillaries and thus has the capability to validate key attributes of the DCS signal. Aim: To characterize activity in cortical vasculature within the spatial volume that is probed by DCS and to identify populations of blood vessels that are most representative of the DCS signals. Approach: We performed simultaneous measurements of somatosensory-evoked cerebral blood flow in mice in vivo using both DCS and OCT-A. Results: We resolved sensory-evoked blood flow in the somatosensory cortex with both modalities. Vessels with diameters smaller than 10 μ m featured higher peak flow rates during the initial poststimulus positive increase in flow, whereas larger vessels exhibited considerably larger magnitude of the subsequent undershoot. The simultaneously recorded DCS waveforms correlated most highly with flow in the smallest vessels, yet featured a more prominent undershoot. Conclusions: Our direct, multiscale, multimodal cross-validation measurements of functional blood flow support the assertion that the DCS signal preferentially represents flow in microvasculature. The significantly greater undershoot in DCS, however, suggests a more spatially complex relationship to flow in cortical vasculature during functional activation.
Collapse
Affiliation(s)
- James H. Jang
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Krystyna Solarana
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Daniel X. Hammer
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jonathan A. N. Fisher
- New York Medical College, Department of Physiology, Valhalla, New York, United States
| |
Collapse
|