Konovalov AB. Compressed-sensing-inspired reconstruction algorithms in low-dose computed tomography: A review.
Phys Med 2024;
124:104491. [PMID:
39079308 DOI:
10.1016/j.ejmp.2024.104491]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND
Optimization of the dose the patient receives during scanning is an important problem in modern medical X-ray computed tomography (CT). One of the basic ways to its solution is to reduce the number of views. Compressed sensing theory helped promote the development of a new class of effective reconstruction algorithms for limited data CT. These compressed-sensing-inspired (CSI) algorithms optimize the Lp (0 ≤ p ≤ 1) norm of images and can accurately reconstruct CT tomograms from a very few views. The paper presents a review of the CSI algorithms and discusses prospects for their further use in commercial low-dose CT.
METHODS
Many literature references with the CSI algorithms have been were searched. To structure the material collected the author gives a classification framework within which he describes Lp regularization methods, the basic CSI algorithms that are used most often in few-view CT, and some of their derivatives. Lots of examples are provided to illustrate the use of the CSI algorithms in few-view and low-dose CT.
RESULTS
A list of the CSI algorithms is compiled from the literature search. For better demonstrativeness they are summarized in a table. The inference is done that already today some of the algorithms are capable of reconstruction from 20 to 30 views with acceptable quality and dose reduction by a factor of 10.
DISCUSSION
In conclusion the author discusses how soon the CSI reconstruction algorithms can be introduced in the practice of medical diagnosis and used in commercial CT scanners.
Collapse