Marsh JF, VanMeter PD, Rajendran K, Leng S, McCollough CH.
Ex vivo coronary calcium volume quantification using a high-spatial-resolution clinical photon-counting-detector computed tomography.
J Med Imaging (Bellingham) 2023;
10:043501. [PMID:
37408984 PMCID:
PMC10319293 DOI:
10.1117/1.jmi.10.4.043501]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose
Coronary artery calcification (CAC) is an important indicator of coronary disease. Accurate volume quantification of CAC is challenging using computed tomography (CT) due to calcium blooming, which is a consequence of limited spatial resolution. Ex vivo coronary specimens were scanned on an ultra-high-resolution (UHR) clinical photon-counting detector (PCD) CT scanner, and the accuracy of CAC volume estimation was compared with a state-of-the-art conventional energy-integrating detector (EID) CT, a previous-generation investigational PCD-CT, and micro-CT.
Approach
CAC specimens (n = 13 ) were scanned on EID-CT and PCD-CT using matched parameters (120 kV, 9.3 mGy CTDI vol ). EID-CT images were reconstructed using our institutional routine clinical protocol for CAC quantification. UHR PCD-CT data were reconstructed using a sharper kernel. An image-based denoising algorithm was applied to the PCD-CT images to achieve similar noise levels as EID-CT. Micro-CT images served as the volume reference standard. Calcification images were segmented, and their volume estimates were compared. The CT data were further compared with previous work using an investigational PCD-CT.
Results
Compared with micro-CT, CT volume estimates had a mean absolute percent error of 24.1 % ± 25.6 % for clinical PCD-CT, 60.1 % ± 48.2 % for EID-CT, and 51.1 % ± 41.7 % for previous-generation PCD-CT. Clinical PCD-CT absolute percent error was significantly (p < 0.01 ) lower than both EID-CT and previous generation PCD-CT. The mean calcification CT number and contrast-to-noise ratio were both significantly (p < 0.01 ) higher in clinical PCD-CT relative to EID-CT.
Conclusions
UHR clinical PCD-CT showed reduced calcium blooming artifacts and further enabled improved accuracy of CAC quantification beyond that of conventional EID-CT and previous generation PCD-CT systems.
Collapse