1
|
Suriyanto, Ng EYK, Kumar SD. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Biomed Eng Online 2017; 16:36. [PMID: 28335790 PMCID: PMC5364696 DOI: 10.1186/s12938-017-0327-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/14/2017] [Indexed: 11/10/2022] Open
Abstract
Current clinically accepted technologies for cancer treatment still have limitations which lead to the exploration of new therapeutic methods. Since the past few decades, the hyperthermia treatment has attracted the attention of investigators owing to its strong biological rationales in applying hyperthermia as a cancer treatment modality. Advancement of nanotechnology offers a potential new heating method for hyperthermia by using nanoparticles which is termed as magnetic fluid hyperthermia (MFH). In MFH, superparamagnetic nanoparticles dissipate heat through Néelian and Brownian relaxation in the presence of an alternating magnetic field. The heating power of these particles is dependent on particle properties and treatment settings. A number of pre-clinical and clinical trials were performed to test the feasibility of this novel treatment modality. There are still issues yet to be solved for the successful transition of this technology from bench to bedside. These issues include the planning, execution, monitoring and optimization of treatment. The modeling and simulation play crucial roles in solving some of these issues. Thus, this review paper provides a basic understanding of the fundamental and rationales of hyperthermia and recent development in the modeling and simulation applied to depict the heat generation and transfer phenomena in the MFH.
Collapse
Affiliation(s)
- Suriyanto
- Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School, Nanyang Technological University, Research Techno Plaza, #02-07, 50 Nanyang Drive, Singapore, 637553, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, Yunnan Garden Campus, 59 Nanyang Drive, Singapore, 636921, Singapore. .,School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - E Y K Ng
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - S D Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, Yunnan Garden Campus, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
2
|
Pearce J, Giustini A, Stigliano R, Jack Hoopes P. Magnetic Heating of Nanoparticles: The Importance of Particle Clustering to Achieve Therapeutic Temperatures. J Nanotechnol Eng Med 2013; 4:110071-1100714. [PMID: 23919112 PMCID: PMC3732028 DOI: 10.1115/1.4024904] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 06/10/2013] [Indexed: 11/08/2022]
Abstract
Hyperthermia therapy for cancer treatment seeks to destroy tumors through heating alone or combined with other therapies at elevated temperatures between 41.8 and 48 °C. Various forms of cell death including apoptosis and necrosis occur depending on temperature and heating time. Effective tumoricidal effects can also be produced by inducing damage to the tissue vasculature and stroma; however, surrounding normal tissue must be spared to a large extent. Magnetic nanoparticles have been under experimental investigation in recent years as a means to provide a favorable therapeutic ratio for local hyperthermia; however, practical numerical models that can be used to study the underlying mechanisms in realistic geometries have not previously appeared to our knowledge. Useful numerical modeling of these experiments is made extremely difficult by the many orders of magnitude in the geometries: from nanometers to centimeters. What has been missing is a practical numerical modeling approach that can be used to more deeply understand the experiments. We develop and present numerical models that reveal the extent and dominance of the local heat transfer boundary conditions, and provide a new approach that may simplify the numerical problem sufficiently to make ordinary computing machinery capable of generating useful predictions. The objectives of this paper are to place the discussion in a convenient interchangeable classical electromagnetic formulation, and to develop useful engineering approximations to the larger multiscale numerical modeling problem that can potentially be used in experiment evaluation; and eventually, may prove useful in treatment planning. We cast the basic heating mechanisms in the framework of classical electromagnetic field theory and provide calibrating analytical calculations and preliminary experimental results on BNF-Starch® nanoparticles in a mouse tumor model for perspective.
Collapse
Affiliation(s)
- John Pearce
- Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, TX 78712 e-mail:
| | | | | | | |
Collapse
|