1
|
Corradini NA, Vite C, Urso P. Performance of binary MLC using real-time optical sensor feedback system. J Appl Clin Med Phys 2024:e14506. [PMID: 39250633 DOI: 10.1002/acm2.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
The Radixact system (Accuray Inc., Sunnyvale, CA) is the latest platform release based on the TomoTherapy technology. The most recent system does not apply a leaf latency model correction after plan optimization to ensure the correct MLC leaf-open time (LOT) agreement between the TPS and machine delivery. The MLC uses optical sensors to measure the delivered LOTs in real-time and individual leaf-specific latency corrections are made to ensure agreement. The aim of this study was to assess the performance of the Radixact MLC with leaf-specific latency correction using the optical sensor's real-time feedback. Specifically, the study statistically evaluated the MLC LOT errors observed from 290 plan-specific quality assurance (PSQA) measurements. Repeatability testing was performed to quantify the uncertainty in the MLC feedback system delivery by analyzing > 1300 delivered treatment fractions throughout the course of radiotherapy. The clinical impact was evaluated by estimating the resulting dose difference in the patient targets due to the measured plan latencies. Our study measured an average plan latency equal to 2.0 ± 0.4 ms (0.6% ± 0.2%) for 290 PSQAs. Repeatability tests showed a mean standard deviation in plan latencies measuring 0.05 ms (0.02%). The deviation from the TPS in the mean target dose due to the plan latencies was estimated to be 0.0% ± 0.2% (range: -0.7%-1.1%). The current MLC system with real-time optical sensor feedback is capable of accurately delivering the TPS-generated sinograms. Repeatability test results showed that the system allows for high reliability in daily sinogram delivery. The MLC latency deviations were shown to have minimal clinical impact on the overall target dosimetry.
Collapse
Affiliation(s)
- Nathan A Corradini
- Radiotherapy Center, Gruppo Ospedaliero Moncucco, Clinica Moncucco, Lugano, Switzerland
| | - Cristina Vite
- Radiotherapy Center, Gruppo Ospedaliero Moncucco, Clinica Moncucco, Lugano, Switzerland
| | - Patrizia Urso
- Radiotherapy Center, Gruppo Ospedaliero Moncucco, Clinica Moncucco, Lugano, Switzerland
| |
Collapse
|
2
|
Seravalli E, Bosman ME, Han C, Losert C, Pazos M, Engström PE, Engellau J, Fulcheri CPL, Zucchetti C, Saldi S, Ferrer C, Ocanto A, Hiniker SM, Clark CH, Hussein M, Misson-Yates S, Kobyzeva DA, Loginova AA, Hoeben BAW. Technical recommendations for implementation of Volumetric Modulated Arc Therapy and Helical Tomotherapy Total Body Irradiation. Radiother Oncol 2024; 197:110366. [PMID: 38830537 DOI: 10.1016/j.radonc.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
As a component of myeloablative conditioning before allogeneic hematopoietic stem cell transplantation (HSCT), Total Body Irradiation (TBI) is employed in radiotherapy centers all over the world. In recent and coming years, many centers are changing their technical setup from a conventional TBI technique to multi-isocenter conformal arc therapy techniques such as Volumetric Modulated Arc Therapy (VMAT) or Helical Tomotherapy (HT). These techniques allow better homogeneity and control of the target prescription dose, and provide more freedom for individualized organ-at-risk sparing. The technical design of multi-isocenter/multi-plan conformal TBI is complex and should be developed carefully. A group of early adopters with conformal TBI experience using different treatment machines and treatment planning systems came together to develop technical recommendations and share experiences, in order to assist departments wishing to implement conformal TBI, and to provide ideas for standardization of practices.
Collapse
Affiliation(s)
- Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mirjam E Bosman
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chunhui Han
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Christoph Losert
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Montserrat Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Per E Engström
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jacob Engellau
- Department of Radiation Oncology, Skåne University Hospital, Lund, Sweden
| | | | - Claudio Zucchetti
- Section of Medical Physics, Perugia General Hospital, Perugia, Italy
| | - Simonetta Saldi
- Section of Radiation Oncology, Perugia General Hospital, Perugia, Italy
| | - Carlos Ferrer
- Department of Medical Physics and Radiation Protection, La Paz University Hospital, Madrid, Spain
| | - Abrahams Ocanto
- Department of Radiation Oncology, San Francisco de Asís University Hospital, GenesisCare, Madrid, Spain
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Catharine H Clark
- Radiotherapy Physics, National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Cancer Centre, Northwood, UK; Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK; Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Medical Physics and Bioengineering Department, University College London, London, UK
| | - Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | - Sarah Misson-Yates
- Medical Physics Department, Guy's and St Thomas' Hospital, London, UK; UK School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; National Physical Laboratory, Metrology for Medical Physics Centre, London, UK
| | - Daria A Kobyzeva
- Deptartment of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna A Loginova
- Deptartment of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Bianca A W Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Zhang Y, Rong L, Wang Z, Zhao H. The top 100 most cited articles in helical tomotherapy: a scoping review. Front Oncol 2023; 13:1274290. [PMID: 37916164 PMCID: PMC10616822 DOI: 10.3389/fonc.2023.1274290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Objective The purpose of this scoping review was to explore the top 100 most cited articles in helical tomotherapy (HT) through bibliometric analysis and visualization tools, help researchers comprehensively understand the research hotspots of HT, and provide clear and intuitive network visualization. Methods The Web of Science Core Collection and the search strategy of "Title (TI)=(tomotherapy)" were used to search for articles related to HT as of 27 May 2023. The top 100 most cited articles were obtained by sorting "citations: highest first". From these top 100 most cited articles, the following information was extracted: journals, years and months, countries, authors, types of tumor treated, and topics. The VOSviewer software was introduced for visualizing all the articles related to HT. Results The top 100 most cited articles in HT were published between 1999 and 2019. The citation counts of these articles ranges from 326 to 45, with a total of 8,422 citations at the time of searching. The index of citations per year (CPY) ranges from 22.32 to 2.45. These articles originated from 17 countries, with most publications from the United States (n=50), followed by Canada (n=12), Italy (n=10), Germany (n=7) and Belgium (n=5). The International Journal of Radiation Oncology, Biology, Physics published the highest number of articles (n=31), followed by Radiotherapy and Oncology (n=20), Medical Physics (n=13) and Strahlentherapie und Onkologie (n=12). In terms of specific tumor types, head and neck cancer (n=15) is the most common disease, followed by cancers with complex target structures (n=14), breast cancer (n=12), prostate cancer (n=10) and lung cancer (n=8). The most common research topics also include dosimetric comparison (n = 44), quality assurance (n = 12) and Megavoltage CT (n = 8). Conclusion This scoping review provides a comprehensive list of the 100 most cited articles in HT. This analysis offers valuable insights into the current research directions of HT that can be utilized by researchers, clinicians, and policy-makers.
Collapse
Affiliation(s)
| | | | | | - Hongfu Zhao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Chen Q, Rong Y, Burmeister JW, Chao EH, Corradini NA, Followill DS, Li XA, Liu A, Qi XS, Shi H, Smilowitz JB. AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148. Med Phys 2023; 50:e25-e52. [PMID: 36512742 DOI: 10.1002/mp.16150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.
Collapse
Affiliation(s)
- Quan Chen
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Hospitals, Phoenix, Arizona, USA
| | - Jay W Burmeister
- Karmanos Cancer Center, Gershenson R.O.C., Detroit, Michigan, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | - David S Followill
- Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - X Allen Li
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Liu
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - X Sharon Qi
- Radiation Oncology, UCLA School of Medicine, Los Angeles, California, USA
| | - Hairong Shi
- Radiation Oncology, Oklahoma Cancer Specialists and Research Institute, Tulsa, Oklahoma, USA
| | - Jennifer B Smilowitz
- Human Oncology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Cavinato S, Fusella M, Paiusco M, Scaggion A. Quantitative assessment of helical tomotherapy plans complexity. J Appl Clin Med Phys 2022; 24:e13781. [PMID: 36523156 PMCID: PMC9860001 DOI: 10.1002/acm2.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE An unnecessary amount of complexity in radiotherapy plans affects the efficiency of the treatments, increasing the uncertainty of dose deposition and its susceptibility to anatomical changes or setup errors. To date, tools for quantitatively assessing the complexity of tomotherapy plans are still limited. In this study, new metrics were developed to characterize different aspects of helical tomotherapy (HT) plans, and their actual effectiveness was investigated. METHODS The complexity of 464 HT plans delivered on a Radixact platform was evaluated. A new set of metrics was devised to assess beam geometry, leaf opening time (LOT) variability, and modulation over space and time. Sixty-five complexity metrics were extracted from the dataset using the newly in-house developed software library TCoMX: 29 metrics already proposed in the literature and 36 newly developed metrics. Their reciprocal relation is discussed. Their effectiveness was evaluated through correlation analyses with patient-specific quality assurance (PSQA) results. RESULTS An inverse linear relation was found between the average number of closed leaves and the average number of MLC openings and closures as well as between the choice of the modulation factor and the discontinuity of the field, suggesting some intrinsic link between the LOT distribution and the geometrical complexity of the MLC openings. The newly proposed metrics were at least as correlated as the existing ones to the PSQA results. Metrics describing the geometrical complexity of the MLC openings showed the strongest connection to the PSQA results. Significant correlations were found between at least one of the new metrics and the γ index passing rate P R γ % ( 3 % G , 2 mm ) $P{R}_{\gamma}\%(3\%G,2\textit{mm})$ for six out of seven groups of plans considered. CONCLUSION The new metrics proposed were shown to be effective to characterize more comprehensively the complexity of HT plans. A software library for their automatic extraction is described and made available.
Collapse
Affiliation(s)
- Samuele Cavinato
- Medical Physics DepartmentVeneto Institute of Oncology IOV‐IRCCSPadovaItaly,Dipartimento di Fisica e Astronomia “G. Galilei”Università degli Studi di PadovaPadovaItaly
| | - Marco Fusella
- Medical Physics DepartmentVeneto Institute of Oncology IOV‐IRCCSPadovaItaly
| | - Marta Paiusco
- Medical Physics DepartmentVeneto Institute of Oncology IOV‐IRCCSPadovaItaly
| | | |
Collapse
|
6
|
Evaluation of the Dose Delivery Consistency and Its Dependence on Imaging Modality and Deformable Image Registration Algorithm in Prostate Cancer Patients. J Med Biol Eng 2021. [DOI: 10.1007/s40846-021-00673-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Thiyagarajan R, Sharma DS, Kaushik S, Sawant M, Ganapathy K, Nambi Raj NA, Chilukuri S, Sundar SC, Patro KC, Manikandan A, Noufal MP, Sivaraman R, Easow J, Jalali R. Leaf open time sinogram (LOTS): a novel approach for patient specific quality assurance of total marrow irradiation. Radiat Oncol 2020; 15:236. [PMID: 33054792 PMCID: PMC7557063 DOI: 10.1186/s13014-020-01669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
There is no ideal detector-phantom combination to perform patient specific quality assurance (PSQA) for Total Marrow (TMI) and Lymphoid (TMLI) Irradiation plan. In this study, 3D dose reconstruction using mega voltage computed tomography detectors measured Leaf Open Time Sinogram (LOTS) was investigated for PSQA of TMI/TMLI patients in helical tomotherapy. The feasibility of this method was first validated for ten non-TMI/TMLI patients, by comparing reconstructed dose with (a) ion-chamber (IC) and helical detector array (ArcCheck) measurement and (b) planned dose distribution using 3Dγ analysis for 3%@3mm and dose to 98% (D98%) and 2% (D2%) of PTVs. Same comparison was extended for ten treatment plans from five TMI/TMLI patients. In all non-TMI/TMLI patients, reconstructed absolute dose was within ± 1.80% of planned and IC measurement. The planned dose distribution agreed with reconstructed and ArcCheck measured dose with mean (SD) 3Dγ of 98.70% (1.57%) and 2Dγ of 99.48% (0.81%). The deviation in D98% and D2% were within 1.71% and 4.10% respectively. In all 25 measurement locations from TMI/TMLI patients, planned and IC measured absolute dose agreed within ± 1.20%. Although sectorial fluence verification using ArcCHECK measurement for PTVs chest from the five upper body TMI/TMLI plans showed mean ± SD 2Dγ of 97.82% ± 1.27%, the reconstruction method resulted poor mean (SD) 3Dγ of 92.00% (± 5.83%), 64.80% (± 28.28%), 69.20% (± 30.46%), 60.80% (± 19.37%) and 73.2% (± 20.36%) for PTVs brain, chest, torso, limb and upper body respectively. The corresponding deviation in median D98% and D2% of all PTVs were < 3.80% and 9.50%. Re-optimization of all upper body TMI/TMLI plans with new pitch and modulation factor of 0.3 and 3 leads significant improvement with 3Dγ of 100% for all PTVs and median D98% and D2% < 1.6%. LOTS based PSQA for TMI/TMLI is accurate, robust and efficient. A field width, pitch and modulation factor of 5 cm, 0.3 and 3 for upper body TMI/TMLI plan is suggested for better dosimetric outcome and PSQA results.
Collapse
Affiliation(s)
- Rajesh Thiyagarajan
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India.,School of Advanced Sciences, VIT University, Vellore, 632014, India
| | | | - Suryakant Kaushik
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Mayur Sawant
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - K Ganapathy
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - N Arunai Nambi Raj
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, India
| | - Srinivas Chilukuri
- Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Sham C Sundar
- Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Kartikeswar Ch Patro
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Arjunan Manikandan
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - M P Noufal
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Rangasamy Sivaraman
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Jose Easow
- Department of Haematology, Blood and Marrow Transplantation, Apollo Speciality Hospital, Teynampet, Chennai, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| |
Collapse
|
8
|
Hammers JE, Pirozzi S, Lindsay D, Kaidar-Person O, Tan X, Chen RC, Das SK, Mavroidis P. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT. J Appl Clin Med Phys 2020; 21:14-25. [PMID: 32058663 PMCID: PMC7020979 DOI: 10.1002/acm2.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/08/2019] [Accepted: 08/06/2019] [Indexed: 11/12/2022] Open
Abstract
Purpose To assess the performance and limitations of contour propagation with three commercial deformable image registration (DIR) algorithms using fractional scans of CT‐on‐rails (CTOR) and Cone Beam CT (CBCT) in image guided prostate therapy patients treated with IMRT/VMAT. Methods Twenty prostate cancer patients treated with IMRT/VMAT were selected for analysis. A total of 453 fractions across those patients were analyzed. Image data were imported into MIM (MIM Software, Inc., Cleveland, OH) and three DIR algorithms (DIR Profile, normalized intensity‐based (NIB) and shadowed NIB DIR algorithms) were applied to deformably register each fraction with the planning CT. Manually drawn contours of bladder and rectum were utilized for comparison against the DIR propagated contours in each fraction. Four metrics were utilized in the evaluation of contour similarity, the Hausdorff Distance (HD), Mean Distance to Agreement (MDA), Dice Similarity Coefficient (DSC), and Jaccard indices. A subfactor analysis was performed per modality (CTOR vs. CBCT) and time (fraction). Point estimates and 95% confidence intervals were assessed via a Linear Mixed Effect model for the contour similarity metrics. Results No statistically significant differences were observed between the DIR Profile and NIB algorithms. However, statistically significant differences were observed between the shadowed NIB and NIB algorithms for some of the DIR evaluation metrics. The Hausdorff Distance calculation showed the NIB propagated contours vs. shadowed NIB propagated contours against the manual contours were 14.82 mm vs. 8.34 mm for bladder and 15.87 mm vs. 11 mm for rectum, respectively. Similarly, the Mean Distance to Agreement calculation comparing the NIB propagated contours vs. shadowed NIB propagated contours against the manual contours were 2.43 mm vs. 0.98 mm for bladder and 2.57 mm vs. 1.00 mm for rectum, respectively. The Dice Similarity Coefficients comparing the NIB propagated contours and shadowed NIB propagated contours against the manual contours were 0.844 against 0.936 for bladder and 0.772 against 0.907 for rectum, respectively. The Jaccard indices comparing the NIB propagated contours and shadowed NIB propagated contours against the manual contours were 0.749 against 0.884 for bladder and 0.637 against 0.831 for rectum, respectively. The shadowed NIB DIR, which showed the closest agreement with the manual contours performed significantly better than the DIR Profile in all the comparisons. The OAR with the greatest agreement varied substantially across patients and image guided radiation therapy (IGRT) modality. Intra‐patient variability of contour metric evaluation was insignificant across all the DIR algorithms. Statistical significance at α = 0.05 was observed for manual vs. deformably propagated contours for bladder for all the metrics except Hausdorff Distance (P = 0.01 for MDA, P = 0.02 for DSC, P = 0.01 for Jaccard), whereas the corresponding values for rectum were: P = 0.03 for HD, P = 0.01 for MDA, P < 0.01 for DSC, P < 0.01 for Jaccard. The performance of the different metrics varied slightly across the fractions of each patient, which indicates that weekly contour propagation models provide a reasonable approximation of the daily contour propagation models. Conclusion The high variance of Hausdorff Distance across all automated methods for bladder indicates widely variable agreement across fractions for all patients. Lower variance across all modalities, methods, and metrics were observed for rectum. The shadowed NIB propagated contours were substantially more similar to the manual contours than the DIR Profile or NIB contours for both the CTOR and CBCT imaging modalities. The relationship of each algorithm to similarity with manual contours is consistent across all observed metrics and organs. Screening of image guidance for substantial differences in bladder and rectal filling compared with the planning CT reference could aid in identifying fractions for which automated DIR would prove insufficient.
Collapse
Affiliation(s)
- Jacob E Hammers
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | | | - Daniel Lindsay
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | - Orit Kaidar-Person
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC
| | - Ronald C Chen
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | - Shiva K Das
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| |
Collapse
|
9
|
Schopfer M, Bochud FO, Bourhis J, Moeckli R. In air and in vivo measurement of the leaf open time in tomotherapy using the on-board detector pulse-by-pulse data. Med Phys 2019; 46:1963-1971. [PMID: 30810233 DOI: 10.1002/mp.13459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE We developed an algorithm to measure the leaf open times (LOT) from the on-board detector (OBD) pulse-by-pulse data in tomotherapy. We assessed the feasibility of measuring the LOTs in dynamic jaw mode and validated the algorithm on machine QA and clinical data. Knowledge of the actual LOTs is a basis toward calculating the delivered dose and performing efficient phantom-less delivery quality assurance (DQA) controls of the multileaf collimator (MLC). In tomotherapy, the quality of the delivered dose depends on the correct performance of the MLC, hence on the accuracy of the LOTs. MATERIALS AND METHODS In the detector signal, the period of time during which a leaf is open corresponds to a high intensity region. The algorithm described here locally normalizes the detector signal and measures the FWHM of the high intensity regions. The Daily QA module of the TomoTherapy Quality Assurance (TQA) tool measures LOT errors. The Daily QA detector data were collected during 9 days on two tomotherapy units. The errors yielded by the method were compared to these reported by the Daily QA module. In addition, clinical data were acquired on the two units (25 plans in total), in air without attenuation material in the beam path and in vivo during a treatment fraction. The study included plans with fields of all existing sizes (1.05, 2.51, 5.05 cm). The collimator jaws were in dynamic mode (TomoEDGETM ). The feasibility of measuring the LOTs was assessed with respect to the jaw aperture. RESULTS The mean discrepancy between LOTs measured by the algorithm and those measured by TQA was of 0 ms, with a standard deviation of 0.3 ms. The LOT measured by the method had thus an uncertainty of 1 ms with a confidence level of 99%. In 5.05 cm dynamic jaw procedures, the detector is in the beam umbra at the beginning and at the end of the delivery. In such procedures, the algorithm could not measure the LOTs at jaw apertures between 7 and maximum 12.4 mm. Otherwise, no measurement error due to the jaw movement was observed. No LOT measurement difference between air and in vivo data was observed either. CONCLUSION The method we propose is reliable. It can equivalently measure the LOTs from data acquired in air or in vivo. It handles fully the static procedures and the 2.51 cm dynamic procedures. It handles partially the 5.05 cm dynamic procedures. The limitation was evaluated with respect to the jaw aperture.
Collapse
Affiliation(s)
- Mathieu Schopfer
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - François O Bochud
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation-oncology department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Han C, Yu W, Zheng X, Zhou Y, Gong C, Xie C, Jin X. Composite QA for intensity-modulated radiation therapy using individual volume-based 3D gamma indices. JOURNAL OF RADIATION RESEARCH 2018; 59:669-676. [PMID: 30085157 PMCID: PMC6151639 DOI: 10.1093/jrr/rry061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate the feasibility and sensitivity of using individual volume-based 3D gamma indices for composite dose-volume histogram (DVH)-based intensity-modulated radiation therapy (IMRT) quality assurance (QA). Composite IMRT QA for 15 cervical cancer patients was performed with ArcCHECK. The percentage dosimetric errors (%DEs) of DVH metrics when comparing treatment planning system and QA-reconstructed dose distribution, percentage gamma passing rates (%GPs) with different criteria for individual volumes and global gamma indices were evaluated, as well as their correlations. Receiver operating characteristic (ROC) curves were applied in order to study the sensitivities of the global and individual volume gamma indices. Most %DEs of the DVH metrics were within 3%. The γPTV and γrectum were <80% at 2%/2 mm; apart from these two individual volume indices, all other individual volume gamma indices and global indices had acceptable %GPs. For the criteria of 2%/2 mm, 3%/3 mm and 4%/4 mm, individual volume-based %GPs and global %GPs were correlated in 11, 1 and 12 out of 24 %DE metrics, and in 5, 4 and 5 out of 24 %DE metrics, respectively. Individual volume-based %GPs had a higher percentage of correlation with DVH metrics (%DEs) compared with global %GPs in composite IMRT QA. The areas under the curve (AUCs) of individual volume %GPs were higher than those of global %GPs. In conclusion, individual volume-based %GPs had a higher correlation with %DEs of metrics and a higher sensitivity presented by ROC analysis compared with global %GPs for composite IMRT QA. Thus, use of individual volume-based 3D gamma indices was found to be feasible and sensitive for composite IMRT QA.
Collapse
Affiliation(s)
- Ce Han
- Department of Radiation and Medical Oncology, the 1st Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, China
| | - Wenliang Yu
- Department of Radiation Oncology, Quzhou People’s Hospital, No.2 Zhongloudi Road, Quzhou, China
| | - Xiaomin Zheng
- Department of Radiation and Medical Oncology, the 1st Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, China
| | - Yongqiang Zhou
- Department of Radiation and Medical Oncology, the 1st Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, China
| | - Changfei Gong
- Department of Radiation and Medical Oncology, the 1st Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, China
| | - Congying Xie
- Department of Radiation and Medical Oncology, the 1st Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, China
| | - Xiance Jin
- Department of Radiation and Medical Oncology, the 1st Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, China
| |
Collapse
|
11
|
Deshpande S, Xing A, Metcalfe P, Holloway L, Vial P, Geurts M. Clinical implementation of an exit detector-based dose reconstruction tool for helical tomotherapy delivery quality assurance. Med Phys 2017; 44:5457-5466. [PMID: 28737014 DOI: 10.1002/mp.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this study was to validate the accuracy of an exit detector-based dose reconstruction tool for helical tomotherapy (HT) delivery quality assurance (DQA). METHODS AND MATERIAL Exit detector-based DQA tool was developed for patient-specific HT treatment verification. The tool performs a dose reconstruction on the planning image using the sinogram measured by the HT exit detector with no objects in the beam (i.e., static couch), and compares the reconstructed dose to the planned dose. Vendor supplied (three "TomoPhant") plans with a cylindrical solid water ("cheese") phantom were used for validation. Each "TomoPhant" plan was modified with intentional multileaf collimator leaf open time (MLC LOT) errors to assess the sensitivity and robustness of this tool. Four scenarios were tested; leaf 32 was "stuck open," leaf 42 was "stuck open," random leaf LOT was closed first by mean values of 2% and then 4%. A static couch DQA procedure was then run five times (once with the unmodified sinogram and four times with modified sinograms) for each of the three "TomoPhant" treatment plans. First, the original optimized delivery plan was compared with the original machine agnostic delivery plan, then the original optimized plans with a known modification applied (intentional MLC LOT error) were compared to the corresponding error plan exit detector measurements. An absolute dose comparison between calculated and ion chamber (A1SL, Standard Imaging, Inc., WI, USA) measured dose was performed for the unmodified "TomoPhant" plans. A 3D gamma evaluation (2%/2 mm global) was performed by comparing the planned dose ("original planned dose" for unmodified plans and "adjusted planned dose" for each intentional error) to exit detector-reconstructed dose for all three "Tomophant" plans. Finally, DQA for 119 clinical (treatment length <25 cm) and three cranio-spinal irradiation (CSI) plans were measured with both the ArcCHECK phantom (Sun Nuclear Corp., Melbourne, FL, USA) and the exit detector DQA tool to assess the time required for DQA and similarity between two methods. RESULTS The measured ion chamber dose agreed to within 1.5% of the reconstructed dose computed by the exit detector DQA tool on a cheese phantom for all unmodified "Tomophant" plans. Excellent agreement in gamma pass rate (>95%) was observed between the planned and reconstructed dose for all "Tomophant" plans considered using the tool. The gamma pass rate from 119 clinical plan DQA measurements was 94.9% ± 1.5% and 91.9% ± 4.37% for the exit detector DQA tool and ArcCHECK phantom measurements (P = 0.81), respectively. For the clinical plans (treatment length <25 cm), the average time required to perform DQA was 24.7 ± 3.5 and 39.5 ± 4.5 min using the exit detector QA tool and ArcCHECK phantom, respectively, whereas the average time required for the 3 CSI treatments was 35 ± 3.5 and 90 ± 5.2 min, respectively. CONCLUSION The exit detector tool has been demonstrated to be faster for performing the DQA with equivalent sensitivity for detecting MLC LOT errors relative to a conventional phantom-based QA method. In addition, comprehensive MLC performance evaluation and features of reconstructed dose provide additional insight into understanding DQA failures and the clinical relevance of DQA results.
Collapse
Affiliation(s)
- Shrikant Deshpande
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Aitang Xing
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia
| | - Peter Metcalfe
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lois Holloway
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006, Australia.,South West Sydney Clinical School, School of Medicine, University of NSW, Sydney, Australia
| | - Philip Vial
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Geurts
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
12
|
Yi J, Han C, Zheng X, Zhou Y, Deng Z, Xie C, Jin X, Jin F. Individual volume-based 3D gamma indices for pretreatment VMAT QA. J Appl Clin Med Phys 2017; 18:28-36. [PMID: 28318101 PMCID: PMC5689866 DOI: 10.1002/acm2.12062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 11/11/2022] Open
Abstract
Although gamma analysis is still a widely accepted quantitative tool to analyze and report patient-specific QA for intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), the correlation between the 2D percentage gamma passing rate (%GP), and the clinical dosimetric difference for IMRT and VMAT has been questioned. The purpose of this study was to investigate the feasibility of individual volume-based 3D gamma indices for pretreatment VMAT QA. Percentage dosimetric errors (%DE) of dose-volume histogram metrics (includes target volumes and organ at risks) between the treatment planning system and QA-reconstructed dose distribution, %GPs for individual volume and global gamma indices, as well their correlations and sensitivities were investigated for one- and two-arc VMAT plans. The %GPs of individual volumes had a higher percent of correlation with individual 15 %DE metrics compared with global %GPs. For two-arc VMAT at 2%/2 mm, 3%/3 mm, and 4%/4 mm criteria, individual volume %GPs were correlated with 9, 12, and 9 out of 15 %DE metrics, while global %GPs were correlated with only 2 out of 15 %DE metrics, respectively. For one-arc VMAT at 2%/2 mm, 3%/3 mm, and 4%/4 mm criteria, individual volume %GPs were correlated with 18, 16, and 13 out of 23 %DE metrics, and global %GPs were correlated with 19, 12, and 1 out 23 %DE metrics, respectively. The area under curves (AUC) of individual volume %GPs were higher than those of global %GPs for two-arc VMAT plans, but with mixed results for one-arc VMAT plans. In a conclusion, the idea of individual volume %GP was created and investigated to better serve for VMAT QA and individual volume-based %GP had a higher percent of correlation with DVH 15 %DE metrics compared with global %GP for both one- and two-arc VMAT plans.
Collapse
Affiliation(s)
- Jinling Yi
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ce Han
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Zheng
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongqiang Zhou
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxiang Deng
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiance Jin
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fu Jin
- Physics Unit, Department of Radiation Oncology, Chongqing Cancer Hospital & Institute, Chongqing, China
| |
Collapse
|
13
|
Peñagarícano JA, Shi C, Ratanatharathorn V. Evaluation of Integral Dose in Cranio-spinal Axis (CSA) Irradiation with Conventional and Helical Delivery. Technol Cancer Res Treat 2016; 4:683-9. [PMID: 16292889 DOI: 10.1177/153303460500400613] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In cranio-spinal axis (CSA) irradiation, patients are usually treated in the prone position with junctions between cranial and spinal fields. Collimator angle and pedestal rotations are introduced to obtain coplanar alignment of the matched junction. Furthermore, daily moving junctions are commonly used to feather out the junctional dose as additional safe-guards to avoid radiation myelopathy. Helical tomotherapy integrates linear accelerator and CT technology capable of delivering CSA treatment without geometric matches or feathering of junctions. The patient is treated with helical beams in the supine position. Since CSA is used mainly in the pediatric population, the potential increase in integral dose to structures or the whole body from linac- or tomotherapy-based IMRT raises concerns of increased rates of secondary malignancies. In this study, we will present an integral dose comparison between conventional CSA (3D) and helical delivery to the CSA (TOMO) utilizing the Tomotherapy Hi-ART system for three pediatric patients. Integral dose was calculated for organ at risk (OAR), two targets (PTV-BRAIN and PTV-SPINE), entire planning CT data set and to the healthy tissue (entire CT-DATA SET minus the PTV). Overall integral dose was 8% higher in the TOMO plans for Patients #1 and #3, but 2% lower in Patient #2. DVH analysis shows that TOMO plans give lower doses to larger volumes and higher doses to smaller volumes of tissue in all three cases. The advantages of the TOMO plans are minimization of matched junctions and better sparing of most OARs. With increased computational and memory power in the tomotherapy planning station, the excess integral dose to the healthy tissue can be re-distributed within the patient and in turn the total integral dose can be same or lower than in conventional delivery. The impact of a small increase in overall integral dose and the associated risks of secondary malignancies are unknown. Long-term follow-up is needed to answer this question.
Collapse
Affiliation(s)
- José A Peñagarícano
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
| | | | | |
Collapse
|
14
|
Hui SK, Das RK, Kapatoes J, Oliviera G, Becker S, Odau H, Fenwick JD, Patel R, Kuske R, Mehta M, Paliwal B, Mackie TR, Fowler JF, Welsh JS. Helical Tomotherapy as a Means of Delivering Accelerated Partial Breast Irradiation. Technol Cancer Res Treat 2016; 3:639-46. [PMID: 15560722 DOI: 10.1177/153303460400300614] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel treatment approach utilizing helical tomotherapy for partial breast irradiation for patients with early-stage breast cancer is described. This technique may serve as an alternative to high dose-rate (HDR) interstitial brachytherapy and standard linac-based approaches. Through helical tomotherapy, highly conformal irradiation of target volumes and avoidance of normal sensitive structures can be achieved. Unlike HDR brachytherapy, it is noninvasive. Unlike other linac-based techniques, it provides image-guided adaptive radiotherapy along with intensity modulation. A treatment planning CT scan was obtained as usual on a post-lumpectomy patient undergoing HDR interstitial breast brachytherapy. The patient underwent catheter placement for HDR treatment and was positioned prone on a specially designed position-supporting mattress during C T. The planning target volume (PTV) was defined as the lumpectomy bed plus a 20 mm margin. The prescription dose was 34 Gy (10 fx of 3.4 Gy) in both the CT based HDR and on the tomotherapy plan. Cumulative dose-volume histograms (DVHs) were generated and analyzed for the target, lung, heart, skin, pectoralis muscle, and chest wall for both HDR brachytherapy and helical tomotherapy. Dosimetric coverage of the target with helical tomotherapy was conformal and homogeneous. “Hot spots” (≥150% isodose line) were present around implanted dwell positions in brachytherapy plan whereas no isodose lines higher than 109% were present in the helical tomotherapy plan. Similar dose coverage was achieved for lung, pectoralis muscle, heart, chest wall and breast skin with the two methods. We also compared our results to that obtained using conventional linac-based three dimensional (3D) conformal accelerated partial breast irradiation. Dose homogeneity is excellent with 3D conformal irradiation, and lung, heart and chest wall dose is less than for either HDR brachytherapy or helical tomotherapy but skin and pectoral muscle doses were higher than with the other techniques. Our results suggest that helical tomotherapy can serve as an effective means of delivering accelerated partial breast irradiation and may offer superior dose homogeneity compared to HDR brachytherapy.
Collapse
Affiliation(s)
- Susanta K Hui
- Department of Human Oncology, University of Wisconsin-Madison, 600 Highland Avenue, Madison WI 53792, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
High-dose radiotherapy with helical tomotherapy and long-term androgen deprivation therapy for prostate cancer: 5-year outcomes. J Cancer Res Clin Oncol 2016; 142:1609-19. [DOI: 10.1007/s00432-016-2173-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
16
|
Defining the “Hostile Pelvis” for Intensity Modulated Radiation Therapy: The Impact of Anatomic Variations in Pelvic Dimensions on Dose Delivered to Target Volumes and Organs at Risk in Patients With High-Risk Prostate Cancer Treated With Whole Pelvic Radiation Therapy. Int J Radiat Oncol Biol Phys 2015; 92:894-903. [DOI: 10.1016/j.ijrobp.2015.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022]
|
17
|
Moutrie ZR, Lancaster CM, Yu L. First experiences in using a dose control system on a TomoTherapy Hi·Art II. J Appl Clin Med Phys 2015; 16:5489. [PMID: 26103503 PMCID: PMC5690136 DOI: 10.1120/jacmp.v16i3.5489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/14/2015] [Accepted: 01/07/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to investigate the impact of a dose control system (DCS) servo installed on two fully commissioned TomoTherapy Hi·Art II treatment units. This servo is designed to actively adjust machine parameters to control the output variation of a tomotherapy unit to within ± 0.5% of the nominal dose rate. Machine output, dose rate, and patient-specific quality assurance data were retrospectively analyzed for periods prior to and following the installation of the servo system. Quality assurance tests indicate a reduction in the rotational variation of the output during a procedure, where the peak-to-peak amplitude of the variation was ± 1.30 prior to DCS and equal to ± 0.4 with DCS. Comparing two tomotherapy unit static outputs over four years the percentage error was 1.05% ± 0.7% and -0.4% ± 0.66% and, once DCS was installed, was reduced to -0.22% ± 0.29% and -0.08% ± 0.16%. The results of the quality assurance tests indicate that the dose control system reduced the output variation of each machine for both static and rotational delivery, leading to an improvement in the overall performance of the machine and providing greater certainty in treatment delivery.
Collapse
Affiliation(s)
- Zoë R Moutrie
- Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia.
| | | | | |
Collapse
|
18
|
Towards online patient imaging during helical radiotherapy. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:119-28. [PMID: 25636244 DOI: 10.1007/s13246-015-0331-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Exit-detector data from helical radiation therapy have been studied extensively for delivery verification and dose reconstruction. Since the same radiation source is used for both imaging and treatment, this work investigates the possibility of utilising exit-detector raw data for imaging purposes. This gives rise to potential clinical applications such as retrospective daily setup verification and inter-fractional setup error detection. The exit-detector raw data were acquired and independently analysed using Python programming language. The raw data were extracted from the treatment machine's onboard computer, and converted into 2D array files. The contours of objects (phantom or patient) were acquired by applying a logarithmic function to the ratio of two sinograms, one with the object in the beam and one without. The setup variation between any two treatment deliveries can be detected by applying the same function to their corresponding exit-detector sinograms. The contour of the object was well defined by the secondary radiation from the treatment beam and validated with the imaging beam, although no internal structures were discernible due to the interference from the primary radiation. The sensitivity of the setup variation detection was down to 2 mm, which was mainly limited by the resolution of the exit-detector itself. The exit-detector data from treatment procedures contain valuable photon exit fluence maps which can be utilised for contour definition and verification of patient alignment without reconstruction.
Collapse
|
19
|
Pisaturo O, Miéville F, Tercier PA, Allal AS. An efficient procedure for tomotherapy treatment plan verification using the on-board detector. Phys Med Biol 2015; 60:1625-39. [DOI: 10.1088/0031-9155/60/4/1625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Schombourg K, Bochud F, Moeckli R. Stability of the Helical TomoTherapy Hi·Art II detector for treatment beam irradiations. J Appl Clin Med Phys 2014; 15:4897. [PMID: 25493514 PMCID: PMC5711117 DOI: 10.1120/jacmp.v15i6.4897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 08/21/2014] [Accepted: 08/05/2014] [Indexed: 11/23/2022] Open
Abstract
The Hi·Art II Helical TomoTherapy (HT) unit is equipped with a built‐in onboard MVCT detector used for patient imaging and beam monitoring. Our aim was to study the detector stability for treatment beam measurements. We studied the MVCT detector response with the 6 MV photon beam over time, throughout short‐term (during an irradiation) and long‐term (two times 50 days) periods. Our results show a coefficient of variation ≤1% for detector chambers inside the beam (excluding beam gradients) for short‐ and long‐term response of the MVCT detector. Larger variations were observed in beam gradients and an influence of the X‐ray target where degradation was found. The results assume that an ‘air scan’ procedure is performed daily to recalibrate the detector with the imaging beam. On short term, the detector response stability is comparable to other devices. Long‐term measurements during two 50‐day periods show a good reproducibility. PACS numbers: 87.55.ne, 87.55.Qr
Collapse
|
21
|
Boissard P, François P, Rousseau V, Mazal A. Évaluation et mise en œuvre de la dosimétrie in vivo de transmission par imageurs portals. Cancer Radiother 2013; 17:656-63. [DOI: 10.1016/j.canrad.2013.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 10/26/2022]
|
22
|
Chaudhury A, Kulhari A, Sheorayan A. Targeted Chemotherapeutics: An Overview of the Recent Progress in Effectual Cancer Treatment. PHARMACOLOGIA 2013; 4:535-552. [DOI: 10.5567/pharmacologia.2013.535.552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
23
|
Sevillano D, Minguez C, Sanchez A, Sanchez-Reyes A. Measurement and correction of leaf open times in helical tomotherapy. Med Phys 2012; 39:6972-80. [PMID: 23127091 DOI: 10.1118/1.4762565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The binary multileaf collimator (MLC) is one of the most important components in helical tomotherapy (HT), as it modulates the dose delivered to the patient. However, methods to ensure MLC quality in HT treatments are lacking. The authors obtained data on the performance of the MLC in treatments administered in their department in order to assess possible delivery errors due to the MLC. Correction methods based on their data are proposed. METHODS Twenty sinograms from treatments delivered using both of the authors HT systems were measured and analyzed by recording the fluence collected by the imaging detector. Planned and actual sinograms were compared using distributions of leaf open time (LOT) errors, as well as differences in fluence reconstructed at each of the 51 projections into which the treatment planning system divides each rotation for optimization purposes. They proposed and applied a method based on individual leaf error correction and the increase in projection time to prevent latency effects when LOT is close to projection time. In order to analyze the dosimetric impact of the corrections, inphantom measurements were made for four corrected treatments. RESULTS The LOTs measured were consistent with those planned. Most of the mean errors in LOT distributions were within 1 ms with standard deviations of over 4 ms. Reconstructed fluences showed good results, with over 90% of points passing the 3% criterion, except in treatments with a short mean LOT, where the percentage of passing points was as low as 66%. Individual leaf errors were as long as 4 ms in some cases. Corrected sinograms improved error distribution, with standard deviations of over 3 ms and increased percentages of points passing 3% in the fluence per angle analysis, especially in treatments with a short mean LOT and those that were more subject to latency effects. The minimum percentage of points within 3% increased to 86%. In-phantom measurements of the corrected treatments showed that, while treatments affected by latency effects were improved, those affected by individual leaf errors were not. CONCLUSIONS Measurement of MLC performance in real treatments provides the authors with a valuable tool for ensuring the quality of HT delivery. The LOTs of MLC are very accurate in most cases. Sources of error were found and correction methods proposed and applied. The corrections decreased the amount of LOT errors. The dosimetric impact of these corrections should be evaluated more thoroughly using 3D dose distribution analysis.
Collapse
Affiliation(s)
- David Sevillano
- Department of Medical Physics, Tomotherapy Unit, Grupo IMO, Madrid, Spain.
| | | | | | | |
Collapse
|
24
|
Wooten HO, Goddu SM, Rodriguez V, Cates J, Grigsby P, Low DA. The use of exit detector sinograms to detect anatomical variations for patients extending beyond the TomoTherapy field of view: a feasibility study. Med Phys 2012; 39:6407-19. [PMID: 23039676 DOI: 10.1118/1.4754583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work describes an independent method to use the TomoTherapy Hi-ART megavoltage CT imaging system for daily monitoring of anatomical changes of cancer patients whose anatomy extends beyond the imaging field of view. METHODS The imaging detector response to changes in attenuating media was measured using water-equivalent plastic. Weight loss was simulated using an anthropomorphic phantom and determining the system's ability to detect the weight loss. Layers of tissue-equivalent bolus were added to an anthropomorphic pelvis phantom and CT simulations of the phantom were conducted, one in which the phantom and bolus were both within the TomoTherapy imaging field of view, and another in which the couch was raised so that the bolus was outside the field of view. Gynecological treatment plans were developed using the TomoTherapy treatment planning system, and successive fractions of the plan were then delivered to the phantom. Weight loss was simulated by removing a 0.5 cm layer of bolus following each fraction. The exit detector sinograms were obtained from each fraction, and ratios of sinograms were calculated relative to a reference sinogram for which all bolus was in place. Histograms of ratio sinograms were determined and used to correlate with simulated weight loss. Exit detector sinograms and ratio histograms were also retrospectively analyzed for five patients all of whose anatomies extended beyond the imaging field of view and all of whom experienced weight variations exceeding 10% during treatment. RESULTS Exit detector signal is well correlated to changes in attenuator thickness as demonstrated in both slab and anthropomorphic phantom geometries. Measured and expected signal increases agreed to within less than 2% for simulated weight loss on the anthropomorphic phantom. Exit detector signals for pelvic patients with significant weight loss variations were consistent with phantom measurements. CONCLUSIONS The analysis of the ratio sinograms for the phantom measurements and real patients indicated that exit detector sinograms can be used to detect relative changes in patient anatomy for each fraction as a means of in vivo quality assurance.
Collapse
Affiliation(s)
- H Omar Wooten
- Department of Radiation Oncology, Washington University, Saint Louis, MO, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Lissner S, Schubert K, Klüter S, Oetzel D, Debus J. A method for testing the performance and the accuracy of the binary MLC used in helical tomotherapy. Z Med Phys 2012; 23:153-61. [PMID: 22921842 DOI: 10.1016/j.zemedi.2012.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/25/2012] [Accepted: 08/07/2012] [Indexed: 11/28/2022]
Abstract
During a helical tomotherapy a binary MLC is used for fluence modulation. The 64 pneumatically driven leaves of the MLC are either completely open or closed. The fast and frequent leaf movements result in a high demand of accuracy and stability of the MLC. This article is based on the analytical investigation of the accuracy and the stability of the MLC. Different patterns of MLC movements were generated to investigate the characteristics of the MLC. One of the considered aspects contains the friction between the leaves. The influence of variations of the compressed air on the MLC was also explored. The integrated MVCT detector of the tomotherapy system deposits the treatment data in a matrix. The detector is triggered with the linear accelerator, which is pulsed by 300Hz. The data matrix is available after the treatment. An IDL (Interactive Data Language) routine was programmed in order to analyse the matrix. The points of time, at which the leaves open (POT), and the period, in which the leaves stay open (LOT), were measured and compared with the desired values. That procedure has been repeated several times a week for approximately 6 months to investigate the stability of the MLC. Relative deviations of the LOT from -0.4% to -5.4% were measured. The friction between the leaves had no significant influence on the LOT. The available compressed air, that is used to move the leaves, depends on the number of moving leaves and also on the previous movements of the MLC. Variations of the compressed air resulted in deviations of the LOT from -1.8% to -3.7%. The measured POT deviates from the programmed POT up to -18.4ms±0.7ms. This maximal deviation correlates with a shift of the gantry angle of 0.52̊ which is negligible. The MLC has shown a stable behaviour over the 6 months. A separate consideration of the leaves showed no higher standard deviation of the LOT than ±0.7ms during the investigated time. The variation between the different leaves is much higher than the deviations of LOT caused by friction and changes of compressed air. The deviations of the LOT vary between -2.6ms and -11.0ms. The developed method is feasible in order to recognize a deterioration of the MLC performance.
Collapse
Affiliation(s)
- Steffen Lissner
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
26
|
Preliminary results of intensity-modulated radiation therapy with helical tomotherapy for prostate cancer. J Cancer Res Clin Oncol 2012; 138:1931-6. [DOI: 10.1007/s00432-012-1277-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 06/21/2012] [Indexed: 11/27/2022]
|
27
|
Wu C, Hosier KE, Beck KE, Radevic MB, Lehmann J, Zhang HH, Kroner A, Dutton SC, Rosenthal SA, Bareng JK, Logsdon MD, Asche DR. On using 3D γ-analysis for IMRT and VMAT pretreatment plan QA. Med Phys 2012; 39:3051-9. [DOI: 10.1118/1.4711755] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Sheng K, Jones R, Yang W, Saraiya S, Schneider B, Chen Q, Sobering G, Olivera G, Read P. 3D Dose Verification Using Tomotherapy CT Detector Array. Int J Radiat Oncol Biol Phys 2012; 82:1013-20. [DOI: 10.1016/j.ijrobp.2010.12.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/22/2010] [Accepted: 12/29/2010] [Indexed: 11/26/2022]
|
29
|
Hashimoto M, Uematsu M, Ito M, Hama Y, Inomata T, Fujii M, Nishio T, Nakamura N, Nakagawa K. Investigation of the feasibility of a simple method for verifying the motion of a binary multileaf collimator synchronized with the rotation of the gantry for helical tomotherapy. J Appl Clin Med Phys 2012; 13:3700. [PMID: 22231222 PMCID: PMC5716135 DOI: 10.1120/jacmp.v13i1.3700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/26/2011] [Indexed: 11/23/2022] Open
Abstract
In this paper, we suggest a new method for verifying the motion of a binary multileaf collimator (MLC) in helical tomotherapy. For this we used a combination of a cylindrical scintillator and a general-purpose camcorder. The camcorder records the light from the scintillator following photon irradiation, which we use to track the motion of the binary MLC. The purpose of this study is to demonstrate the feasibility of this method as a binary MLC quality assurance (QA) tool. First, the verification was performed using a simple binary MLC pattern with a constant leaf open time; secondly, verification using the binary MLC pattern used in a clinical setting was also performed. Sinograms of simple binary MLC patterns, in which leaves that were open were detected as "open" from the measured light, define the sensitivity which, in this case, was 1.000. On the other hand, the specificity, which gives the fraction of closed leaves detected as "closed", was 0.919. The leaf open error identified by our method was -1.3 ± 7.5%. The 68.6% of observed leaves were performed within ± 3% relative error. The leaf open error was expressed by the relative errors calculated on the sinogram. In the clinical binary MLC pattern, the sensitivity and specificity were 0.994 and 0.997, respectively. The measurement could be performed with -3.4 ± 8.0% leaf open error. The 77.5% of observed leaves were performed within ± 3% relative error. With this method, we can easily verify the motion of the binary MLC, and the measurement unit developed was found to be an effective QA tool.
Collapse
Affiliation(s)
- Masatoshi Hashimoto
- Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
3D dose reconstruction for narrow beams using ion chamber array measurements. Z Med Phys 2012; 22:123-32. [PMID: 22209700 DOI: 10.1016/j.zemedi.2011.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/23/2011] [Accepted: 10/16/2011] [Indexed: 11/20/2022]
Abstract
3D dose reconstruction is a verification of the delivered absorbed dose. Our aim was to describe and evaluate a 3D dose reconstruction method applied to phantoms in the context of narrow beams. A solid water phantom and a phantom containing a bone-equivalent material were irradiated on a 6 MV linac. The transmitted dose was measured by using one array of a 2D ion chamber detector. The dose reconstruction was obtained by an iterative algorithm. A phantom set-up error and organ interfraction motion were simulated to test the algorithm sensitivity. In all configurations convergence was obtained within three iterations. A local reconstructed dose agreement of at least 3% / 3mm with respect to the planned dose was obtained, except in a few points of the penumbra. The reconstructed primary fluences were consistent with the planned ones, which validates the whole reconstruction process. The results validate our method in a simple geometry and for narrow beams. The method is sensitive to a set-up error of a heterogeneous phantom and interfraction heterogeneous organ motion.
Collapse
|
31
|
Chen Q, Westerly D, Fang Z, Sheng K, Chen Y. TomoTherapy MLC verification using exit detector data. Med Phys 2011; 39:143-51. [DOI: 10.1118/1.3666762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
32
|
Kron T, Eyles D, Schreiner LJ, Battista J. Magnetic resonance imaging for adaptive cobalt tomotherapy: A proposal. J Med Phys 2011; 31:242-54. [PMID: 21206640 PMCID: PMC3004099 DOI: 10.4103/0971-6203.29194] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 08/01/2006] [Indexed: 11/04/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent soft tissue contrast for oncology applications. We propose to combine a MRI scanner with a helical tomotherapy (HT) system to enable daily target imaging for improved conformal radiation dose delivery to a patient. HT uses an intensity-modulated fan-beam that revolves around a patient, while the patient slowly advances through the plane of rotation, yielding a helical beam trajectory. Since the use of a linear accelerator to produce radiation may be incompatible with the pulsed radiofrequency and the high and pulsed magnetic fields required for MRI, it is proposed that a radioactive Cobalt-60 ((60)Co) source be used instead to provide the radiation. An open low field (0.25 T) MRI system is proposed where the tomotherapy ring gantry is located between two sets of Helmholtz coils that can generate a sufficiently homogenous main magnetic field.It is shown that the two major challenges with the design, namely acceptable radiation dose rate (and therefore treatment duration) and moving parts in strong magnetic field, can be addressed. The high dose rate desired for helical tomotherapy delivery can be achieved using two radiation sources of 220TBq (6000Ci) each on a ring gantry with a source to axis-of-rotation distance of 75 cm. In addition to this, a dual row multi-leaf collimator (MLC) system with 15 mm leaf width at isocentre and relatively large fan beam widths between 15 and 30 mm per row shall be employed. In this configuration, the unit would be well-suited for most pelvic radiotherapy applications where the soft tissue contrast of MRI will be particularly beneficial. Non-magnetic MRI compatible materials must be used for the rotating gantry. Tungsten, which is non-magnetic, can be used for primary collimation of the fan-beam as well as for the MLC, which allows intensity modulated radiation delivery. We propose to employ a low magnetic Cobalt compound, sycoporite (CoS) for the Cobalt source material itself.Rotational delivery is less susceptible to problems related to the use of a low energy megavoltage photon source while the helical delivery reduces the negative impact of the relatively large penumbra inherent in the use of Cobalt sources for radiotherapy. On the other hand, the use of a (60)Co source ensures constant dose rate with gantry rotation and makes dose calculation in a magnetic field as easy as the range of secondary electrons is limited.The MR-integrated Cobalt tomotherapy unit, dubbed 'MiCoTo,' uses two independent physical principles for image acquisition and treatment delivery. It would offer excellent target definition and will allow following target motion during treatment using fast imaging techniques thus providing the best possible input for adaptive radiotherapy. As an additional bonus, quality assurance of the radiation delivery can be performed in situ using radiation sensitive gels imaged by MRI.
Collapse
Affiliation(s)
- Tomas Kron
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | |
Collapse
|
33
|
Francois P, Boissard P, Berger L, Mazal A. In vivo dose verification from back projection of a transit dose measurement on the central axis of photon beams. Phys Med 2011; 27:1-10. [DOI: 10.1016/j.ejmp.2010.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/31/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022] Open
|
34
|
Tomita N, Kodaira T, Matsuo M, Furutani K, Tachibana H, Daimon T, Shimizu H. Helical tomotherapy for solitary lung tumor: feasibility study and dosimetric evaluation of treatment plans. Technol Cancer Res Treat 2010; 9:407-15. [PMID: 20626206 DOI: 10.1177/153303461000900410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study is to evaluate the feasibility of and treatment plans for helical tomotherapy (HT) for solitary lung tumors. Nine patients with stage IA non-small-cell lung cancer (NSCLC) and three patients with solitary lung metastasis were treated with HT. All patients were immobilized with the BodyFIX system, and the target volume shown on computed tomography in the 3 respiration phases were superimposed onto the 3-dimensional radiation treatment planning system to represent the internal target motion. All patients were treated with 54-60 Gy in 12 fractions over 8 to 13 days. The median follow-up time was 14 months (range: 3-16 months). The overall response rate was 92%. The local control rate at 1 year was 100% with no difference between NSCLC and metastasis. Of 12 patients, one patient experienced Grade 2 radiation pneumonitis (RP), and the other patient with severe interstitial pneumonia and emphysema experienced Grade 5 RP. The mean lung dose (MLD) and the dose-volume histogram (DVH) for the normal lung volumes were converted into normalized total dose with an alpha/beta ratio of 3 Gy. The DVH of the normal lung volumes demonstrated that the mean volumes of V(10), V(30), V(50), and V(70) were 40.4 +/- 9.4%, 21.3 +/- 6.4%, and 12.8 +/- 4.6%, and 9.3 +/- 4.2% in all patients, 28.8%, 18.7%, 12.3%, and 10.5% in the patient with Grade 2 RP, and 29.3%, 17.9%, 7.7%, and 5.4% in the patient with Grade 5 RP. The mean MLD of all patients was 13.5 +/- 3.9 Gy, and those values of patients with Grade 2 and 5 RP were 12.9 and 21.8 Gy, respectively. Our study found that only the MLD was significantly correlated with RP >Grade 2 (p = 0.030) using the Student's t-test. Our study found the conformity index value of 1.48 +/- 0.15 and the homogeneity index value of 1.066 +/- 0.023, which suggested the feasibility of using HT to treat lung tumors with hypofractionation. In conclusion, HT is a feasible non-invasive technique for treating solitary lung tumors and achieves high accuracy in terms of dose conformity and homogeneity. The decision of the indications for HT might be required caution in cases in which a severe pulmonary toxicity is predicted from the high MLD, especially in cases involving a severe pulmonary comorbidity.
Collapse
Affiliation(s)
- Natsuo Tomita
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kinhikar RA, Jamema SV, Reenadevi, Pai R, Zubin M, Gupta T, Dhote DS, Deshpande DD, Shrivastava SK, Sarin R. Dosimetric validation of first helical tomotherapy Hi-Art II machine in India. J Med Phys 2010; 34:23-30. [PMID: 20126562 PMCID: PMC2804144 DOI: 10.4103/0971-6203.48717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 01/05/2009] [Indexed: 11/27/2022] Open
Abstract
A Helical Tomotherapy (HT) Hi-Art II machine, Hi ART (TomoTherapy, Inc., Madison, WI, USA) was installed at our center in July 2007, and was the first machine in India. Image-guided HT is a new modality for delivering intensity modulated radiotherapy (IMRT). Dosimetric tests done include (a) primary beam alignment (b) secondary beam alignment (c) water tank measurements (profiles and depth doses) (d) dose rate measurements (e) IMRT verification, and (f) Mega voltage Computed Tomography (MVCT) dose. Primary and secondary beam alignment revealed an acceptable linear accelerator (linac) alignment in both X and Y axes. In addition, it was observed that the beam was aligned in the same plane as gantry and the jaws were not twisted with respect to gantry. The rotational beam stability was acceptable. Multi-leaf collimators (MLC) were found to be stable and properly aligned with the radiation plane. The jaw alignment during gantry rotation was satisfactory. Transverse and longitudinal profiles were in good agreement with the “Gold” standard. During IMRT verification, the variation between the measured and calculated dose for a particular plan at the central and off-axis was found to be within 2% and 1mm in position, respectively. The dose delivered during the TomoImage scan was found to be 2.57 cGy. The Helical Tomotherapy system is mechanically stable and found to be acceptable for clinical treatment. It is recommended that the output of the machine should be measured on a daily basis to monitor the fluctuations in output.
Collapse
Affiliation(s)
- Rajesh A Kinhikar
- Department of Medical Physics, Tata Memorial Hospital, Parel, Mumbai, Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kinhikar RA, Master Z, Dhote DS, Deshpande DD. Initial dosimetric experience with mega voltage computed tomography detectors and estimation of pre and post-repair dosimetric parameters of a first Helical Hi-Art II tomotherapy machine in India. J Med Phys 2010; 34:73-9. [PMID: 20098540 PMCID: PMC2805893 DOI: 10.4103/0971-6203.51933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/12/2009] [Accepted: 04/02/2009] [Indexed: 11/28/2022] Open
Abstract
A Helical Tomotherapy™ (HT) Hi-Art II (TomoTherapy, Inc., Madison, WI, USA) has been one of the important innovations to help deliver IMRT with image guidance. On-board, mega voltage computed tomography (MVCT) detectors are used for imaging and dosimetric purpose. The two objectives of this study are: (i) To estimate the dosimetric and general capability (TomoImage registration, reconstruction, contrast and spatial resolution, artifacts-free image and dose in TomoImage) of on-board MVCT detectors. (ii) To measure the dosimetric parameters (output and energy) following major repair. The MVCT detectors also estimated the rotational output constancy well. During this study, dosimetric tests were repeated after replacing MVCT detectors and the target. fixed-gantry/fixed-couch measurements were measured daily to investigate; the system stability. Thermoluminescense dosimeter (TLD) was used during both the measurements subsequently. The MVCT image quality with old and new detectors was comparable and hence acceptable clinically. The spatial resolution was optimal and the dose during TomoImage was 2 cGy (well within the manufacturer tolerance of 4 cGy). The results of lateral beam profiles showed an excellent agreement between the two normalized plots. The output from the rotational procedure revealed 99.7% while the energy was consistent over a period of twelve months. The Hi-Art II system has maintained its calibration to within +/− 2% and energy to within +/− 1.5% over the initial twelve-month period. Based on the periodic measurements for rotational output and consistency in the lateral beam profile shape, the on-board detector proved to be a viable dosimetric quality assurance tool for IMRT with Tomotherapy. Tomotherapy was stable from the dosimetric point of view during the twelve-month period.
Collapse
Affiliation(s)
- Rajesh A Kinhikar
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai 400012, India
| | | | | | | |
Collapse
|
37
|
Pediatric Craniospinal Axis Irradiation With Helical Tomotherapy: Patient Outcome and Lack of Acute Pulmonary Toxicity. Int J Radiat Oncol Biol Phys 2009; 75:1155-61. [DOI: 10.1016/j.ijrobp.2008.12.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/16/2008] [Accepted: 12/24/2008] [Indexed: 11/18/2022]
|
38
|
TOMITA N, KODAIRA T, TACHIBANA H, NAKAMURA T, NAKAHARA R, INOKUCHI H, MIZOGUCHI N, TAKADA A. A comparison of radiation treatment plans using IMRT with helical tomotherapy and 3D conformal radiotherapy for nasal natural killer/T-cell lymphoma. Br J Radiol 2009; 82:756-63. [DOI: 10.1259/bjr/83758373] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
39
|
Lu W, Chen M, Ruchala KJ, Chen Q, Langen KM, Kupelian PA, Olivera GH. Real-time motion-adaptive-optimization (MAO) in TomoTherapy. Phys Med Biol 2009; 54:4373-98. [PMID: 19550000 DOI: 10.1088/0031-9155/54/14/003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large prostate motions. The results conceptually proved that the proposed method is applicable for real-time motion compensation in TomoTherapy delivery. Extension of the method to real-time adaptive radiation therapy (ART) that compensates for all kinds of delivery errors was proposed. Further validation and clinical implementation is underway.
Collapse
Affiliation(s)
- Weiguo Lu
- TomoTherapy Inc., 1240 Deming Way, Madison, WI, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Hui SK, Verneris MR, Froelich J, Dusenbery K, Welsh JS. Multimodality image guided total marrow irradiation and verification of the dose delivered to the lung, PTV, and thoracic bone in a patient: a case study. Technol Cancer Res Treat 2009; 8:23-8. [PMID: 19166239 DOI: 10.1177/153303460900800104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work reports our initial experience using multimodality image guidance to improve total marrow irradiation (TMI) using helical tomotherapy. We also monitored the details of the treatment delivery to glean information necessary for the implementation of future adaptive processes. A patient with metastatic Ewing's sarcoma underwent MRI, and bone scan imaging prior to TMI. A whole body kilovoltage CT (kVCT) scan was obtained for intensity modulated TMI treatment planning, including a boost treatment to areas of bony involvement. The delivered dose was estimated by using MVCT images from the helical tomotherapy treatment unit, compared to the expected dose distributions mapped onto the kVCT images. Clinical concerns regarding patient treatment and dosimetric uncertainties were also evaluated. A small fraction of thoracic bone volume received lower radiation dose than the prescribed dose. Reconstructed planned treatment volume (PTV) and the dose delivered to the lung were identical to planned dose. Bone scan imaging had a higher sensitivity for detecting skeletal metastasis compared to MR imaging. However the bone scan lacked sufficient specificity in three dimensions to be useful for planning conformal radiation boost treatments. Inclusion of appropriate imaging modalities improves detection of metastases, which allows the possibility of a radiation dose boost to metastases during TMI. Conformal intensity modulated radiation therapy via helical tomotherapy permitted radiation delivery to metastases in the skull with reduced dose to brain in conjunction with TMI. While TMI reduces irradiation to the lungs, onboard megavoltage computed tomography (MVCT) to verify accurate volumetric dose coverage to marrow-containing thoracic bones may be essential for successful conformal TMI treatment.
Collapse
Affiliation(s)
- Susanta K Hui
- Department of Therapeutic Radiology, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Minnesota, 420 Delaware St SE, MMC 494, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
41
|
Tomita N, Kodaira T, Tachibana H, Nakamura T, Nakahara R, Inokuchi H, Shibamoto Y. Helical Tomotherapy for Brain Metastases: Dosimetric Evaluation of Treatment Plans and Early Clinical Results. Technol Cancer Res Treat 2008; 7:417-24. [DOI: 10.1177/153303460800700602] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to evaluate the feasibility and treatment plans of intensity-modulated radiation therapy using helical tomotherapy (HT) for brain metastases. Twenty-three patients with 1 to 4 brain metastases were treated with H T. In combination with whole-brain radiotherapy ( simultaneous plans), metastatic lesions, and the whole brain were treated with 50 Gy and 30 Gy, respectively, in 10 fractions, with a simultaneous integrated boost technique. In patients treated for brain metastases alone ( focal plans), metastatic lesions were treated with 35 or 37.5 Gy in 5 fractions. The treatment plans were compared regarding the conformation number (CN) and homogeneity index (HI), and differences in these indexes between simultaneous and focal plans were examined by Student's t-test. Seven and 16 patients were treated with simultaneous plans and focal plans, respectively. The mean ± SD of CN and HI values were 0.75 ± 0.13 and 0.063 ± 0.042, respectively, for simultaneous plans, and 0.73 ± 0.12 and 0.052 ± 0.023, respectively, for focal plans. The CN and HI between the two plans were not significantly different. Response rates in 13 patients with follow-up imaging were approximately 90% for both plans and the local control rate at 1 year was 69%. One patient with a huge tumor (34.0 cc) and WHO performance status 3 treated with focal plans experienced severe headache, requiring prolongation of the treatment time, and died at 8 days after completion of treatment. The exact cause of deterioration was uncertain as no radiological investigation was performed in this patient. No late complications were observed during follow-up periods up to 20 months. HT is a viable non-invasive technique for treatment of brain metastases and achieves high accuracy in terms of dose conformity and homogeneity.
Collapse
Affiliation(s)
- Natsuo Tomita
- Department of Radiation Oncology Aichi Cancer Center Hospital Nagoya 464-8681, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology Aichi Cancer Center Hospital Nagoya 464-8681, Japan
| | - Hiroyuki Tachibana
- Department of Radiation Oncology Aichi Cancer Center Hospital Nagoya 464-8681, Japan
| | - Tatsuya Nakamura
- Department of Radiation Oncology Aichi Cancer Center Hospital Nagoya 464-8681, Japan
| | - Rie Nakahara
- Department of Radiation Oncology Aichi Cancer Center Hospital Nagoya 464-8681, Japan
| | - Haruo Inokuchi
- Department of Radiation Oncology Aichi Cancer Center Hospital Nagoya 464-8681, Japan
| | - Yuta Shibamoto
- Department of Radiology Nagoya City University Graduate School of Medical Sciences Nagoya 467-8601, Japan
| |
Collapse
|
42
|
Peñagarícano JA, Moros E, Novák P, Yan Y, Corry P. Feasibility of concurrent treatment with the scanning ultrasound reflector linear array system (SURLAS) and the helical tomotherapy system. Int J Hyperthermia 2008; 24:377-88. [PMID: 18608592 DOI: 10.1080/02656730801929923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To evaluate the feasibility of concurrent treatment with the scanning ultrasound reflector linear array system (SURLAS) and helical tomotherapy (HT) intensity modulated radiation therapy (IMRT). METHODS The SURLAS was placed on a RANDO phantom simulating a patient with superficial or deep recurrent breast cancer. A megavoltage CT (MVCT) of the phantom with and without the SURLAS was obtained in the HT system. MVCT images with the SURLAS were obtained for two configurations: (1) with the SURLAS's long axis parallel and (2) perpendicular to the longitudinal axis of the phantom. The MVCT simulation data set was then transferred to a radiation therapy planning station. Organs at risk (OAR) were contoured including the lungs, heart, abdomen and spinal cord. The metallic parts of the SURLAS were contoured as well and constraints were assigned to completely or directionally block radiation through them. The MVCT simulation data set and regions of interest (ROI) files were subsequently transferred to the HT planning station. Several HT plans were obtained with optimization parameters that are usually used in the clinic. For comparison purposes, planning was also performed without the SURLAS on the phantom. RESULTS All plans with the SURLAS on the phantom showed adequate dose covering 95% of the planning target volume (PTV D95%), average dose and coefficient of variation of the planning target volume (PTV) dose distribution regardless of the SURLAS's orientation with respect to the RANDO phantom. Likewise, all OAR showed clinically acceptable dose values. Spatial dose distributions and dose-volume histogram (DVH) evaluation showed negligible plan degradation due to the presence of the SURLAS. Beam-on time varied depending on the selected optimization parameters. CONCLUSION From the perspective of the radiation dosage, concurrent treatment with the SURLAS and HT IMRT is feasible as demonstrated by the obtained clinically acceptable treatment plans. In addition, proper orientation of the SURLAS may be of benefit in reducing dose to organs at risk in some cases.
Collapse
Affiliation(s)
- José A Peñagarícano
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | |
Collapse
|
43
|
van Elmpt W, McDermott L, Nijsten S, Wendling M, Lambin P, Mijnheer B. A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol 2008; 88:289-309. [PMID: 18706727 DOI: 10.1016/j.radonc.2008.07.008] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/09/2008] [Accepted: 07/12/2008] [Indexed: 10/21/2022]
Abstract
Electronic portal imaging devices (EPIDs) have been the preferred tools for verification of patient positioning for radiotherapy in recent decades. Since EPID images contain dose information, many groups have investigated their use for radiotherapy dose measurement. With the introduction of the amorphous-silicon EPIDs, the interest in EPID dosimetry has been accelerated because of the favourable characteristics such as fast image acquisition, high resolution, digital format, and potential for in vivo measurements and 3D dose verification. As a result, the number of publications dealing with EPID dosimetry has increased considerably over the past approximately 15 years. The purpose of this paper was to review the information provided in these publications. Information available in the literature included dosimetric characteristics and calibration procedures of various types of EPIDs, strategies to use EPIDs for dose verification, clinical approaches to EPID dosimetry, ranging from point dose to full 3D dose distribution verification, and current clinical experience. Quality control of a linear accelerator, pre-treatment dose verification and in vivo dosimetry using EPIDs are now routinely used in a growing number of clinics. The use of EPIDs for dosimetry purposes has matured and is now a reliable and accurate dose verification method that can be used in a large number of situations. Methods to integrate 3D in vivo dosimetry and image-guided radiotherapy (IGRT) procedures, such as the use of kV or MV cone-beam CT, are under development. It has been shown that EPID dosimetry can play an integral role in the total chain of verification procedures that are implemented in a radiotherapy department. It provides a safety net for simple to advanced treatments, as well as a full account of the dose delivered. Despite these favourable characteristics and the vast range of publications on the subject, there is still a lack of commercially available solutions for EPID dosimetry. As strategies evolve and commercial products become available, EPID dosimetry has the potential to become an accurate and efficient means of large-scale patient-specific IMRT dose verification for any radiotherapy department.
Collapse
Affiliation(s)
- Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Patient specific dosimetry for intensity-modulated radiotherapy delivered with first helical tomotherapy in India — our initial experience of 50 patients. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2008; 31:139-45. [DOI: 10.1007/bf03178588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Quality Assurance of Onboard Megavoltage Computed Tomography Imaging and Target Localization Systems for On- and Off-Line Image-Guided Radiotherapy. Int J Radiat Oncol Biol Phys 2008; 71:S62-5. [DOI: 10.1016/j.ijrobp.2007.04.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/20/2022]
|
46
|
Novák P, Peñagarícano JA, Nahirnyak V, Corry P, Moros EG. Influence of the SURLAS applicator on radiation dose distributions during simultaneous thermoradiotherapy with helical tomotherapy. Phys Med Biol 2008; 53:2509-22. [PMID: 18424880 DOI: 10.1088/0031-9155/53/10/004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Simultaneous thermoradiotherapy has been shown to maximize the effect of hyperthermia as a radiation sensitizer in cancer treatment. Here we follow our previous work on feasibility of thermoradiotherapy with the scanning ultrasound reflector linear array system (SURLAS) and TomoTherapy HiArt treatment system, and investigate the influence of the SURLAS hyperthermia applicator on delivered radiation dose with the TomoTherapy. A radiation treatment plan was calculated and the treatment was delivered to a phantom with SURLAS on top simulating the likely clinical setup. Proper positioning of the SURLAS was assisted with a magnetic position-and-orientation tracking device (POTD) and was verified with megavoltage-computed tomography. The delivered dose was measured with an ionization chamber (point measurement) and a radiographic film (2D dose distributions). The planned and delivered point dose data agreed within 0.61% +/- 0.63%. Planar dose data agreed within a dose difference of < or =3% of the maximum dose, and a distance-to-dose-agreement of < or =1 mm. The susceptibility of the delivered radiation dose on correct SURLAS positioning was studied as well. The largest dose discrepancy was measured for a position for which a maximum number of radiation beams intersected the incorrectly positioned SURLAS within one TomoTherapy gantry rotation. The point dose disagreed by 6.14% +/- 0.52%, and 2.25% of pixels of the 2D dose distribution did not pass the 3% dose difference/1 mm distance-to-dose-agreement criteria. Our study showed that correct positioning of the SURLAS applicator had an influence on the delivered radiation dose. Delivered and planned dose distributions were in an excellent agreement when SURLAS was positioned according to the treatment plan. Moving the applicator from its planned position was found to cause a modification of delivered dose distributions. A precise and reproducible positioning of the applicator was assured with a POTD.
Collapse
Affiliation(s)
- Petr Novák
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
47
|
Petit SF, van Elmpt WJC, Nijsten SMJJG, Lambin P, Dekker ALAJ. Calibration of megavoltage cone-beam CT for radiotherapy dose calculations: Correction of cupping artifacts and conversion of CT numbers to electron density. Med Phys 2008; 35:849-65. [DOI: 10.1118/1.2836945] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
48
|
Abstract
The goal of radiation therapy is to eradicate tumor stem cells while sparing healthy tissue. Therefore, the first aim must be to delineate tumor from healthy tissue. Advanced imaging techniques will enable one to reduce the uncertainty of microscopic extension of disease. Ultimately, advanced functional imaging systems correlated with image-registered pathological specimens will allow one to delineate disease extent from normal tissue at the tumor periphery. When it is not possible to determine the CTV margin with reasonable certainty, the margins must remain generous and conformal avoidance methodology could and should be deployed to spare critical normal structures. Of equal importance to defining the CTV is the need to guarantee that this target is indeed treated. For this purpose, image guidance using a variety of systems including portal images, ultrasound devices, and CT scanners at the time of treatment has been implemented. Some image-guided methods, portal images for instance, are more amenable for use with rigid structures such as encountered in the sinus whereas others like ultrasound or CT scanners are able to account for nonrigid setup variations. Several strategies for preventing organ motion from degrading the precision that radiotherapy offers have been described. In particular, a CT scan at the time of treatment delivery can also be used as the basis to reconstruct the dose received by the patient. Dose reconstruction will allow the dose just delivered to be superimposed on the pretreatment CT scan and will allow one to compare the reconstructed delivered dose distribution with the planned dose distribution to assess discrepancies between these. Furthermore, reconstruction of the delivered dose distributions holds the promise of allowing one to accumulate dose delivered to the tumor and normal structures on a fraction per fraction basis. This will ultimately allow for the determination of treatment-specific tumor control probabilities and normal tissue complication probabilities.
Collapse
Affiliation(s)
- Thomas Rockwell Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | | |
Collapse
|
49
|
|
50
|
Penagaricano JA, Yan Y, Corry P, Moros E, Ratanatharathorn V. Retrospective evaluation of pediatric cranio-spinal axis irradiation plans with the Hi-ART tomotherapy system. Technol Cancer Res Treat 2007; 6:355-60. [PMID: 17668944 DOI: 10.1177/153303460700600413] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Helical tomotherapy (HT) can be used for the delivery of cranio-spinal axis irradiation (CSAI) without the need for beam matching of conventional linac-based external beam irradiation. The aim of this study is to retrospectively evaluate HT plans used for treatment in nine patients treated with CSAI. Helical tomotherapy cranio-spinal axis irradiation (HT-CSAI) plans were created for each patient. Average length along the cranio-spinal axis of the PTV was 65.6 cm with a range between 53 and 74 cm. Treatment planning optimization and plan evaluation parameters were obtained from the HT planning station for each of the nine patients. PTV coverage by the 95% isodose surface ranged between 98.0 to 100.0% for all nine patients. The clinically acceptable dose variation within the PTV or tolerance range was between 0.7 and 2.5% for all nine patients. Doses to the organs at risk were clinically acceptable. An increasing length along the longitudinal axis of the PTV did not consistently increase the beam-on time indicating that using a larger jaw width had a greater impact on treatment time. With a larger jaw width it is possible to substantially reduce the normalized beam-on treatment time without compromising plan quality and sparing of organs at risk. By using a larger jaw width or lower modulation factor or both, normalized beam-on times were decreased by up to 61% as compared to the other evaluated treatment plans. From the nine cases reported in this study the minimum beam-on time was achieved with a jaw width of 5.0 cm, pitch of 0.287 and a modulation factor of 2.0. Large and long cylindrical volumes can be effectively treated with helical tomotherapy with both clinically acceptable dose distribution and beam-on time.
Collapse
Affiliation(s)
- José A Penagaricano
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham #771, Little Rock, Arkansas 72205, USA.
| | | | | | | | | |
Collapse
|