1
|
Wu X, Ono M, Kawashima H, Poon EKW, Torii R, Shahzad A, Gao C, Wang R, Barlis P, von Birgelen C, Reiber JHC, Bourantas CV, Tu S, Wijns W, Serruys PW, Onuma Y. Angiography-Based 4-Dimensional Superficial Wall Strain and Stress: A New Diagnostic Tool in the Catheterization Laboratory. Front Cardiovasc Med 2021; 8:667310. [PMID: 34222366 PMCID: PMC8249568 DOI: 10.3389/fcvm.2021.667310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
A novel method for four-dimensional superficial wall strain and stress (4D-SWS) is derived from the arterial motion as pictured by invasive coronary angiography. Compared with the conventional finite element analysis of cardiovascular biomechanics using the estimated pulsatile pressure, the 4D-SWS approach can calculate the dynamic mechanical state of the superficial wall in vivo, which could be directly linked with plaque rupture or stent fracture. The validation of this approach using in silico models showed that the distribution and maximum values of superficial wall stress were similar to those calculated by conventional finite element analysis. The in vivo deformation was validated on 16 coronary arteries, from the comparison of centerlines predicted by the 4D-SWS approach against the actual centerlines reconstructed from angiograms at a randomly selected time-point, which demonstrated a good agreement of the centerline morphology between both approaches (scaling: 0.995 ± 0.018 and dissimilarity: 0.007 ± 0.014). The in silico vessel models with softer plaque and larger plaque burden presented more variation in mean lumen diameter and resulted in higher superficial wall stress. In more than half of the patients (n = 16), the maximum superficial wall stress was found at the proximal lesion shoulder. Additionally, in three patients who later suffered from acute coronary syndrome, the culprit plaque rupture sites co-localized with the site of highest superficial wall stress on their baseline angiography. These representative cases suggest that angiography-based superficial wall dynamics have the potential to identify coronary segments at high-risk of plaque rupture and fracture sites of implanted stents. Ongoing studies are focusing on identifying weak spots in coronary bypass grafts, and on exploring the biomechanical mechanisms of coronary arterial remodeling and aneurysm formation. Future developments involve integration of fast computational techniques to allow online availability of superficial wall strain and stress in the catheterization laboratory.
Collapse
Affiliation(s)
- Xinlei Wu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Smart Sensors Lab, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Masafumi Ono
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hideyuki Kawashima
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric K W Poon
- Department of Medicine, Melbourne Medical School, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Atif Shahzad
- Smart Sensors Lab, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Peter Barlis
- Department of Medicine, Melbourne Medical School, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry Health Sciences, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Clemens von Birgelen
- Thoraxcentrum Twente, Medisch Spectrum Twente, Enschede, Netherlands.,Department of Health Technology and Services Research, Technical Medical Centre, Faculty of Behavioural, Management, and Social Sciences, University of Twente, Enschede, Netherlands
| | - Johan H C Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Christos V Bourantas
- Institute of Cardiovascular Science, University College London, London, United Kingdom.,Department of Cardiology, Barts Heart Centre, London, United Kingdom
| | - Shengxian Tu
- School of Biomedical Engineering, Biomedical Instrument Institute, Shanghai Jiao Tong University, Shanghai, China
| | - William Wijns
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Smart Sensors Lab, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
2
|
Wong JT, Kamyar F, Molloi S. Quantitative coronary angiography using image recovery techniques for background estimation in unsubtracted images. Med Phys 2007; 34:4003-15. [PMID: 17985646 DOI: 10.1118/1.2779942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Densitometry measurements have been performed previously using subtracted images. However, digital subtraction angiography (DSA) in coronary angiography is highly susceptible to misregistration artifacts due to the temporal separation of background and target images. Misregistration artifacts due to respiration and patient motion occur frequently, and organ motion is unavoidable. Quantitative densitometric techniques would be more clinically feasible if they could be implemented using unsubtracted images. The goal of this study is to evaluate image recovery techniques for densitometry measurements using unsubtracted images. A humanoid phantom and eight swine (25-35 kg) were used to evaluate the accuracy and precision of the following image recovery techniques: Local averaging (LA), morphological filtering (MF), linear interpolation (LI), and curvature-driven diffusion image inpainting (CDD). Images of iodinated vessel phantoms placed over the heart of the humanoid phantom or swine were acquired. In addition, coronary angiograms were obtained after power injections of a nonionic iodinated contrast solution in an in vivo swine study. Background signals were estimated and removed with LA, MF, LI, and CDD. Iodine masses in the vessel phantoms were quantified and compared to known amounts. Moreover, the total iodine in left anterior descending arteries was measured and compared with DSA measurements. In the humanoid phantom study, the average root mean square errors associated with quantifying iodine mass using LA and MF were approximately 6% and 9%, respectively. The corresponding average root mean square errors associated with quantifying iodine mass using LI and CDD were both approximately 3%. In the in vivo swine study, the root mean square errors associated with quantifying iodine in the vessel phantoms with LA and MF were approximately 5% and 12%, respectively. The corresponding average root mean square errors using LI and CDD were both 3%. The standard deviations in the differences between measured iodine mass in left anterior descending arteries using DSA and LA, MF, LI, or CDD were calculated. The standard deviations in the DSA-LA and DSA-MF differences (both approximately 21 mg) were approximately a factor of 3 greater than that of the DSA-LI and DSA-CDD differences (both approximately 7 mg). Local averaging and morphological filtering were considered inadequate for use in quantitative densitometry. Linear interpolation and curvature-driven diffusion image inpainting were found to be effective techniques for use with densitometry in quantifying iodine mass in vitro and in vivo. They can be used with unsubtracted images to estimate background anatomical signals and obtain accurate densitometry results. The high level of accuracy and precision in quantification associated with using LI and CDD suggests the potential of these techniques in applications where background mask images are difficult to obtain, such as lumen volume and blood flow quantification using coronary arteriography.
Collapse
Affiliation(s)
- Jerry T Wong
- Department of Radiological Sciences, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|