1
|
Lin X, Sun T, Liu X, Zhang G, Yin Y. Comparison of MLC positioning deviations using log files and establishment of specific assessment parameters for different accelerators with IMRT and VMAT. Radiat Oncol 2022; 17:123. [PMID: 35842671 PMCID: PMC9288677 DOI: 10.1186/s13014-022-02097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background and purpose The study evaluated the differences in leaf positioning deviations by the log files of three advanced accelerators with two delivery techniques, and established specific assessment parameters of leaf positioning deviations for different types of accelerators. Methods A total of 420 treatment plans with 5 consecutive treatment log files were collected from the Trilogy, TrueBeam and Halcyon accelerators. Millennium MLC was equipped on the Trilogy and TrueBeam accelerators. A jawless design and dual-layer MLC were adopted on the Halcyon accelerator. 70 IMRT and 70 VMAT plans were selected randomly on each accelerator. The treatment sites of all plans included head and neck, chest, breast, pelvis and other sites. The parsing tasks for 2100 log files were proceeded by SunCheck software from Sun Nuclear Corporation. The maximum leaf root mean square (RMS) errors, 95th percentile errors and percentages of different leaf positioning errors were statistically analyzed. The correlations between these evaluation parameters and accelerator performance parameters (maximum leaf speed, mean leaf speed, gantry and arc angle) were analyzed. Results The average maximum leaf RMS errors of the Trilogy in the IMRT and VMAT plans were 0.44 ± 0.09 mm and 0.79 ± 0.07 mm, respectively, which were higher than the TrueBeam's 0.03 ± 0.01 mm, 0.03 ± 0.01 mm and the Halcyon's 0.05 ± 0.01 mm, 0.07 ± 0.01 mm. Similar data results were shown in the 95th percentile error. The maximum leaf RMS errors were strongly correlated with the 95th percentile errors (Pearson index > 0.5). The leaf positioning deviations in VMAT were higher than those in IMRT for all accelerators. In TrueBeam and Halcyon, leaf position errors above 1 mm were not found in IMRT and VMAT plans. The main influencing factor of leaf positioning deviation was the leaf speed, which has no strong correlation with gantry and arc angles. Conclusions Compared with the quality assurance guidelines, the MLC positioning deviations tolerances of the three accelerators should be tightened. For both IMRT and VMAT techniques, the 95th percentile error and the maximum RMS error are suggested to be tightened to 1.5 and 1 mm respectively for the Trilogy accelerator. In TrueBeam and Halcyon accelerators, the 95th percentile error and maximum RMS error of 1 and 0.5 mm, respectively, are considered appropriate. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02097-0.
Collapse
Affiliation(s)
- Xiutong Lin
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Tao Sun
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Xiao Liu
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Guifang Zhang
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Yong Yin
- Department of Radiation Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
2
|
Osman AFI, Maalej NM, Jayesh K. Prediction of the individual multileaf collimator positional deviations during dynamic IMRT delivery
priori
with artificial neural network. Med Phys 2020; 47:1421-1430. [DOI: 10.1002/mp.14014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alexander F. I. Osman
- Department of Radiation Oncology American University of Beirut Medical Center Riad El‐Solh 1107 2020 Beirut Lebanon
- Department of Medical Physics Al‐Neelain University Khartoum 11121Sudan
| | - Nabil M. Maalej
- Department of Physics King Fahd University of Petroleum and Minerals Dhahran 31261Saudi Arabia
| | - Kunnanchath Jayesh
- Department of Radiation Oncology American Hospital Dubai Dubai United Arab Emirates
| |
Collapse
|
3
|
Kojima H, Takigami M, Asano T, Hatanaka Y, Aizawa K, Ishikawa M. [Consideration of Dose Error in Dynamic MLC IMRT Using MLC Speed Control with Dose Rate Change]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2017; 73:382-388. [PMID: 28529252 DOI: 10.6009/jjrt.2017_jsrt_73.5.382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In dynamic multi-leaf collimator (MLC) intensity-modulated radiotherapy (IMRT), the accuracy of delivered dose is influenced by the positional accuracy of the moving MLC. In order to assess the accuracy of the delivered dose during dynamic MLC IMRT, the delivered dose error in dynamic MLC IMRT using the MLC speed control with dose rate change was investigated. Sweeping gap sequence irradiation was performed with constant MLC leaf speed at 0.6 to 5 cm/s or changed MLC speed (4 steps). The positional accuracy of the moving MLC was evaluated from the trajectory log file. Absorbed dose measurements with sweeping field (Field size: 10 cm×10 cm, MLC leaf speed: 0.6 to 2.7 cm/s, MLC leaf gap width: 0.2 to 2.0 cm) were performed. The delivered dose error at each gap width was evaluated according to MLC leaf speed change. MLC positional errors and changes in delivered dose according to MLC leaf speed were within 0.07 mm and 0.6%, respectively, for all measurements. Beam hold-off did not occur under any conditions. We confirmed that TrueBeam can regulate MLC leaf speed below the maximum limit (2.5 cm/s) by changing the dose rate in real-time during irradiation in dynamic MLC IMRT. MLC gap error during irradiation was estimated within 0.2 mm at the maximum dose rate from the results of absolute dose measurements using dynamic MLC irradiation. In conclusion, TrueBeam can use the maximum dose rate for the treatment planning of dynamic MLC IMRT, which has an advantage of shorter treatment time.
Collapse
Affiliation(s)
- Hideki Kojima
- Department of Radiation Oncology, Sapporo Higashi Tokushukai Hospital
| | - Makoto Takigami
- Department of Radiation Oncology, Sapporo Higashi Tokushukai Hospital
| | - Tomohiro Asano
- Department of Radiation Oncology, Sapporo Higashi Tokushukai Hospital
| | | | | | | |
Collapse
|
4
|
Zwan BJ, Barnes MP, Fuangord T, Stanton CJ, O'Connor DJ, Keall PJ, Greer PB. An EPID-based system for gantry-resolved MLC quality assurance for VMAT. J Appl Clin Med Phys 2016; 17:348-365. [PMID: 27685132 PMCID: PMC5874117 DOI: 10.1120/jacmp.v17i5.6312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/19/2016] [Accepted: 05/13/2016] [Indexed: 11/23/2022] Open
Abstract
Multileaf collimator (MLC) positions should be precisely and independently mea-sured as a function of gantry angle as part of a comprehensive quality assurance (QA) program for volumetric-modulated arc therapy (VMAT). It is also ideal that such a QA program has the ability to relate MLC positional accuracy to patient-specific dosimetry in order to determine the clinical significance of any detected MLC errors. In this work we propose a method to verify individual MLC trajectories during VMAT deliveries for use as a routine linear accelerator QA tool. We also extend this method to reconstruct the 3D patient dose in the treatment planning sys-tem based on the measured MLC trajectories and the original DICOM plan file. The method relies on extracting MLC positions from EPID images acquired at 8.41fps during clinical VMAT deliveries. A gantry angle is automatically tagged to each image in order to obtain the MLC trajectories as a function of gantry angle. This analysis was performed for six clinical VMAT plans acquired at monthly intervals for three months. The measured trajectories for each delivery were compared to the MLC positions from the DICOM plan file. The maximum mean error detected was 0.07 mm and a maximum root-mean-square error was 0.8 mm for any leaf of any delivery. The sensitivity of this system was characterized by introducing random and systematic MLC errors into the test plans. It was demonstrated that the system is capable of detecting random and systematic errors on the range of 1-2mm and single leaf calibration errors of 0.5 mm. The methodology developed in the work has potential to be used for efficient routine linear accelerator MLC QA and pretreatment patient-specific QA and has the ability to relate measured MLC positional errors to 3D dosimetric errors within a patient volume.
Collapse
|
5
|
Carlson JNK, Park JM, Park SY, Park JI, Choi Y, Ye SJ. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors. Phys Med Biol 2016; 61:2514-31. [PMID: 26948678 DOI: 10.1088/0031-9155/61/6/2514] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD = 1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be delivered to the patient.
Collapse
Affiliation(s)
- Joel N K Carlson
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea. Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | | | | | | | | | | |
Collapse
|
6
|
Hernandez V, Abella R, Calvo JF, Jurado-Bruggemann D, Sancho I, Carrasco P. Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques. Med Phys 2015; 42:1911-6. [DOI: 10.1118/1.4915541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Development of multi-planar dose verification by use of a flat panel EPID for intensity-modulated radiation therapy. Radiol Phys Technol 2012; 6:226-32. [PMID: 23229201 DOI: 10.1007/s12194-012-0192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
Our purpose in this study was to evaluate the accuracy of a new multi-planar dose measurement method. The multi-planar dose distributions were reconstructed at each depth by convolution of EPID fluence and dose kernels with the use of EPIDose software (SunNuclear). The EPIDose was compared with EPID, MapCHECK (SunNuclear), EDR2 (Kodak), and Monte Carlo-calculated dose profiles. The EPIDose profiles were almost in agreement with Monte Carlo-calculated dose profiles and MapCHECK for test plans. The dose profiles were in good agreement with EDR2 at the penumbra region. For dose distributions, EPIDose, EDR2, and MapCHECK agreed with that of the treatment-planning system at each depth in the gamma analysis. In comparisons of clinical IMRT plans, EPIDose had almost the same accuracy as MapCHECK and EDR2. Because EPIDose has a wide dynamic range and high resolution, it is a useful tool for the complicated IMRT verification. Furthermore, EPIDose can also evaluate the absolute dose.
Collapse
|
8
|
Agnew CE, King RB, Hounsell AR, McGarry CK. Implementation of phantom-less IMRT delivery verification using Varian DynaLog files and R/V output. Phys Med Biol 2012; 57:6761-77. [DOI: 10.1088/0031-9155/57/21/6761] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Rowshanfarzad P, Sabet M, Barnes MP, O'Connor DJ, Greer PB. EPID-based verification of the MLC performance for dynamic IMRT and VMAT. Med Phys 2012; 39:6192-207. [DOI: 10.1118/1.4752207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
Calvo O, Stathakis S, Gutiérrez AN, Esquivel C, Papanikolaou N. 3D Dose Reconstruction of Pretreatment Verification Plans Using Multiple 2D Planes from the OCTAVIUS/Seven29 Phantom Array. Technol Cancer Res Treat 2012; 11:69-82. [DOI: 10.7785/tcrt.2012.500236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study is to evaluate 3D dose reconstruction of pretreatment verification plans using multiple 2D planes acquired from the OCTAVIUS phantom and the Seven29 detector array. Eight VMAT patient treatment plans of different sites were delivered onto the OCTAVIUS phantom. The plans span a variety of tumor site locations from low to high plan complexity. A patient specific quality assurance (QA) plan was created and delivered for each of the 8 patients using the OCTAVIUS phantom in which the Seven29 detector array was placed. Each plan was delivered four times by rotating the phantom in 45° increments along its longitudinal axis. The treatment plans were delivered using a Novalis Tx with the HD120 MLC. Each of the four corresponding planar doses was exported as a text file for further analysis. An in-house MATLAB code was used to process the planar dose information. A cylindrical geometry-based, linear interpolation method was utilized to generate the measured 3D dose reconstruction. The TPS calculated volumetric dose was exported and compared against the measured reconstructed volumetric dose. Dose difference, dose area histograms (DAH), isodose lines, profiles, 2D and 3D gamma were used for evaluation. The interpolation method shows good agreement (<2%) between the planned dose distributions in the high dose region but shows discrepancies in the low dose region. Horizontal profiles, dose area histograms and isodose lines show good agreement for the sagittal and coronal planes but demonstrate slight discrepancies in the transverse plane. The 3D gamma index average was 92.4% for all patients when a 5%/5 mm gamma passing rate criteria was employed but dropped to <80.1% on average when parameters were reduced to 2%/2 mm. A simple cylindrical geometry-based, linear interpolation method is able to predict good agreement in the high dose region between the reconstructed volumetric dose and the planned volumetric dose. It is important to mention that the interpolation algorithm introduces dose discrepancies in small regions within the high dose gradients due to the interpolation itself. However, the work presented serves as a good starting point to establish a benchmark for the level of manipulation necessary to obtain 3D dose delivery quality assurance using current technology.
Collapse
Affiliation(s)
- O. Calvo
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - S. Stathakis
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - A. N. Gutiérrez
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - C. Esquivel
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - N. Papanikolaou
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center at the University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Buckey CR, Stathakis S, Papanikolaou N. The inter- and intrafraction reproducibilities of three common IMRT delivery techniques. Med Phys 2010; 37:4854-60. [PMID: 20964202 DOI: 10.1118/1.3476413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Intensity modulated radiation therapy (IMRT) treatment delivery requires higher precision than conventional 3D treatment delivery because of the sensitivity of the resulting dose to small geometric misalignment of the modulated beamlets. The chosen treatment delivery technique will affect the treatment precision in different ways, based on the characteristics of the delivery method. Delivery using a multileaf collimator (MLC) can reduce treatment time and therapist workload, but typically requires a greater number of monitor units and the fields are prone to both systematic and random leaf positioning errors. An alternative to MLC-based fields, patient specific brass compensators, do not suffer from these leaf positioning errors. In our study, we set out to investigate which delivery method will provide the highest levels of dosimetric reproducibility and the minimum amount of interfraction variability. METHODS In our study, a seven field IMRT plan for a head and neck treatment was created using the Pinnacle3 treatment planning system and the intensity maps for each field were obtained. The intensity maps of the fields were delivered with a Varian 2100C/D linear accelerator, using solid compensators and sliding window (SW) and step-and-shoot (SS) MLC segments. Three fields were selected from the seven-beam IMRT plan for comparison. Analysis was carried out using the MatriXX ion chamber array, radiochromic film, and Varian dynalog files. RESULTS Our results show that the error in MLC leaf positioning has no gantry angle dependence. The compensator and SW deliveries showed excellent agreement, even when stricter than usual gamma criteria were applied. However, we noted that under these strict conditions, the SS field had at least ten times more pixels out of range than did the compensators. When using step-and-shoot MLC fields, it was observed that the increase in dose rate or the increase of MU/segment degrades the quality of the plan. Analysis of the dynalog files showed that while each individual field had its own propensity for error, all fields showed the same trend: a greater percentage of time the leaves are out of position as dose rate increases, MUs decrease, or both. CONCLUSIONS The compensator-based field and both types of MLC-based fields have MatriXX results that are within the clinically acceptable tolerance of 3% dose difference and 2 mm DTA. However, when the criteria are tightened, it becomes evident that the compensators have a definite advantage over their comparable MLC-based competitors in terms of interfraction reproducibility. Fewer monitor units are required to deliver each portal, potentially improving patient outcomes and reducing unwanted side effects to both patients and therapists. In centers without MLC, compensators represent a simple and cost effective way to offer patients state of the art treatment. Based on the results of this study, compensator-based IMRT is a reliable, viable option for use in clinics both with and without MLC-equipped linacs.
Collapse
Affiliation(s)
- Courtney R Buckey
- Department of Radiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | |
Collapse
|
12
|
Poulsen PR, Cho B, Sawant A, Ruan D, Keall PJ. Detailed analysis of latencies in image-based dynamic MLC tracking. Med Phys 2010; 37:4998-5005. [PMID: 20964219 DOI: 10.1118/1.3480504] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Previous measurements of the accuracy of image-based real-time dynamic multileaf collimator (DMLC) tracking show that the major contributor to errors is latency, i.e., the delay between target motion and MLC response. Therefore the purpose of this work was to develop a method for detailed analysis of latency contributions during image-based DMLC tracking. METHODS A prototype DMLC tracking system integrated with a linear accelerator was used for tracking a phantom with an embedded fiducial marker during treatment delivery. The phantom performed a sinusoidal motion. Real-time target localization was based on x-ray images acquired either with a portal imager or a kV imager mounted orthogonal to the treatment beam. Each image was stored in a file on the imaging workstation. A marker segmentation program opened the image file, determined the marker position in the image, and transferred it to the DMLC tracking program. This program estimated the three-dimensional target position by a single-imager method and adjusted the MLC aperture to the target position. Imaging intervals deltaT(image) from 150 to 1000 ms were investigated for both kV and MV imaging. After the experiments, the recorded images were synchronized with MLC log files generated by the MLC controller and tracking log files generated by the tracking program. This synchronization allowed temporal analysis of the information flow for each individual image from acquisition to completed MLC adjustment. The synchronization also allowed investigation of the MLC adjustment dynamics on a considerably finer time scale than the 50 ms time resolution of the MLC log files. RESULTS For deltaT(image) = 150 ms, the total time from image acquisition to completed MLC adjustment was 380 +/- 9 ms for MV and 420 +/- 12 ms for kV images. The main part of this time was from image acquisition to completed image file writing (272 ms for MV and 309 ms for kV). Image file opening (38 ms), marker segmentation (4 ms), MLC position calculation (16 ms), and MLC adjustment (52 ms) were considerably faster. For deltaT(image) = 1000 ms, the total time from image acquisition to completed MLC adjustment increased to 1030 +/- 62 ms (MV) and 1330 +/- 52 ms (kV) mainly because of delayed image file writing. The MLC adjustment duration was constant 52 ms (+/- 3 ms) for MLC adjustments below 1.1 mm and increased linearly for larger MLC adjustments. CONCLUSIONS A method for detailed time analysis of each individual real-time position signal for DMLC tracking has been developed and applied to image-based tracking. The method allows identification of the major contributors to latency and therefore a focus for reducing this latency. The method could be an important tool for the reconstruction of the delivered target dose during DMLC tracking as it provides synchronization between target motion and MLC motion.
Collapse
Affiliation(s)
- Per Rugaard Poulsen
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
13
|
Okumura M, Obata Y, Shimomura K, Tamura M, Nishimura Y. The effect of gantry and collimator angles on leaf limited velocity and position in dynamic multileaf collimator intensity-modulated radiation therapy. Phys Med Biol 2010; 55:3101-13. [PMID: 20463373 DOI: 10.1088/0031-9155/55/11/008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of the study is to evaluate the limiting velocity (LV) of a multileaf collimator and the leaf position in various collimator and gantry angles. Both leading leaves and trailing leaves began to move with a constant acceleration from 0 to 4 cm s(-1). When the beam hold occurred, the leaf velocity was defined as the leaf LV. Dynamic irradiation was performed at eight gantry angles of every 45 degrees with three different collimator angles. The analysis of the LV and the leaf position was performed with a log file from a leaf motion controller. The mean LVs for Varian Clinac 21EX (21EX) ranged from 2.51 to 3.10 cm s(-1). The mean LVs for Clinac 600C ranged from 2.91 to 3.12 cm s(-1). When only central 5 mm leaves of 21EX moved, LVs were significantly higher than those when all 60 pairs of leaf moved, while the leaf position inconsistencies of the two accelerators were within 1 mm at the leaf velocities from 0.5 to 2.0 cm s(-1). It was recognized that the LV was affected by gravity. This measurement method can be utilized as routine quality assurance for a dynamic multileaf collimator (DMLC) is and easily reproducible.
Collapse
Affiliation(s)
- M Okumura
- Program in Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan. m
| | | | | | | | | |
Collapse
|
14
|
Cheong KH, Kang SK, Lee M, Kim SS, Park S, Hwang TJ, Kim KJ, Oh DH, Bae H, Suh TS. Evaluation of delivered monitor unit accuracy of gated step-and-shoot IMRT using a two-dimensional detector array. Med Phys 2010; 37:1146-51. [PMID: 20384250 DOI: 10.1118/1.3310806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To overcome the problem of organ motion in intensity-modulated radiation therapy (IMRT), gated IMRT is often used for the treatment of lung cancer. In this study, the authors investigated the accuracy of the delivered monitor units (MUs) from each segment during gated IMRT using a two-dimensional detector array for user-specific verification purpose. METHODS The authors planned a 6 MV photon, seven-port step-and-shoot lung IMRT delivery. The respiration signals for gated IMRT delivery were obtained from the one-dimensional moving phantom using the real-time position management (RPM) system (Varian Medical Systems, Palo Alto, CA). The beams were delivered using a Clinac iX (Varian Medical Systems, Palo Alto, CA) with the Millennium 120 MLC. The MatriXX (IBA Dosimetry GmbH, Germany) was validated through consistency and reproducibility tests as well as comparison with measurements from a Farmer-type ion chamber. The authors delivered beams with varying dose rates and duty cycles and analyzed the MatriXX data to evaluate MU delivery accuracy. RESULTS There was quite good agreement between the planned segment MUs and the MUs computed from the MatriXX within +/- 2% error. The beam-on times computed from the MatriXX data were almost identical for all cases, and they matched well with the RPM beam-on and beam-off signals. A slight difference was observed between them, but it was less than 40 ms. The gated IMRT delivery demonstrated an MU delivery accuracy that was equivalent to ungated IMRT, and the delivered MUs with a gating signal agreed with the planned MUs within +/- 0.5 MU regardless of dose rate and duty cycle. CONCLUSIONS The authors can conclude that gated IMRT is able to deliver an accurate dose to a patient during a procedure. The authors believe that the methodology and results can be transferred to other vendors' devices, particularly those that do not provide MLC log data for a verification purpose.
Collapse
Affiliation(s)
- Kwang-Ho Cheong
- Department of Radiation Oncology, Hallym University College of Medicine, Seoul 431070, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Staton RJ, Langen KM, Kupelian PA, Meeks SL. Dosimetric effects of rotational output variation and x-ray target degradation on helical tomotherapy plans. Med Phys 2009; 36:2881-8. [PMID: 19673187 DOI: 10.1118/1.3134262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In this study, two potential sources of IMRT delivery error have been identified for helical tomotherapy delivery using the HiART system (TomoTherapy, Inc., Madison, WI): Rotational output variation and target degradation. The HiArt system is known to have output variation, typically about +/- 2%, due to the absence of a dose servo system. On the HiArt system, x-ray target replacement is required approximately every 10-12 months due to target degradation. Near the end of target life, the target thins and causes a decrease in the beam energy and a softening of the beam profile at the lateral edges of the beam. The purpose of this study is to evaluate the dosimetric effects of rotational output variation and target degradation by modeling their effects and incorporating them into recalculated treatment plans for three clinical scenarios: Head and neck, partial breast, and prostate. Models were created to emulate both potential sources of error. For output variation, a model was created using a sine function to match the amplitude (+/- 2%), frequency, and phase of the measured rotational output variation data. A second model with a hypothetical variation of +/- 7% was also created to represent the largest variation that could exist without violating the allowable dose window in the delivery system. A measured beam profile near the end of target life was used to create a modified beam profile model for the target degradation. These models were then incorporated into the treatment plan by modifying the leaf opening times in the delivery sinogram. A new beam model was also created to mimic the change in beam energy seen near the end of target life. The plans were then calculated using a research version of the PLANNED ADAPTIVE treatment planning software from TomoTherapy, Inc. Three plans were evaluated in this study: Head and neck, partial breast, and prostate. The D50 of organs at risk, the D95 for planning target volumes (PTVs), and the local dose difference were used to evaluate the changes in the modified treatment plans. Dosimetric effects from rotational variation were found to be low (less than 1%) for a typical variation of +/- 2%. Even using a variation of +/- 7%, DVH values and dose distributions were altered by less than 2% for all scenarios. The dosimetric effects of target degradation were found to be slightly more significant. For a model using data taken just before target failure, dosimetric differences of 2%-4% were observed in the recalculated plans when compared to the original plans. The largest effects (up to 4.5%) were observed for PTVs that were located at deeper depths as seen in the prostate plan. Overall, the recalculated plans show that the dosimetric effects of rotational variation and target degradation are on the order of 1%-4% for helical tomotherapy on the HiART system and do not pose a risk for significant deviations from the original treatment plan.
Collapse
Affiliation(s)
- Robert J Staton
- Department of Radiation Physics, M. D. Anderson Cancer Center Orlando, Orlando, Florida 32806, USA.
| | | | | | | |
Collapse
|
16
|
Yan G, Liu C, Simon TA, Peng LC, Fox C, Li JG. On the sensitivity of patient-specific IMRT QA to MLC positioning errors. J Appl Clin Med Phys 2009; 10:120-128. [PMID: 19223841 PMCID: PMC5720508 DOI: 10.1120/jacmp.v10i1.2915] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/26/2008] [Accepted: 09/07/2008] [Indexed: 12/22/2022] Open
Abstract
Accurate multileaf collimator (MLC) leaf positioning plays an essential role in the effective implementation of intensity modulated radiation therapy (IMRT). This work evaluates the sensitivity of current patient-specific IMRT quality assurance (QA) procedures to minor MLC leaf positioning errors. Random errors of up to 2 mm and systematic errors of +/-1 mm and +/-2 mm in MLC leaf positions were introduced into 8 clinical IMRT patient plans (totaling 53 fields). Planar dose distributions calculated with modified plans were compared to dose distributions measured with both radiochromic films and a diode matrix. The agreement between calculation and measurement was evaluated using both absolute distance-to-agreement (DTA) analysis and gamma index with 2%/2 mm and 3%/3 mm criteria. It was found that both the radiochromic film and the diode matrix could only detect systematic errors on the order of 2 mm or above. The diode array had larger sensitivity than film due to its excellent detector response (such as small variation, linear response, etc.). No difference was found between DTA analysis and gamma index in terms of the sensitivity to MLC positioning errors. Higher sensitivity was observed with 2%/2 mm than with 3%/3 mm in general. When using the diode array and 2%/2 mm criterion, the IMRT QA procedure showed strongest sensitivity to MLC position errors and, at the same time, achieved clinically acceptable passing rates. More accurate dose calculation and measurement would further enhance the sensitivity of patient-specific IMRT QA to MLC positioning errors. However, considering the significant dosimetric effect such MLC errors could cause, patient-specific IMRT QA should be combined with a periodic MLC QA program in order to guarantee the accuracy of IMRT delivery.
Collapse
Affiliation(s)
- Guanghua Yan
- Department of Radiation Oncology, University of Florida, Gainesville, FL, U.S.A.,Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, U.S.A
| | - Chihray Liu
- Department of Radiation Oncology, University of Florida, Gainesville, FL, U.S.A
| | - Thomas A Simon
- Department of Radiation Oncology, University of Florida, Gainesville, FL, U.S.A.,Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, U.S.A
| | - Lee-Cheng Peng
- Department of Radiation Oncology, University of Florida, Gainesville, FL, U.S.A.,Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, U.S.A
| | - Christopher Fox
- Department of Radiation Oncology, University of Florida, Gainesville, FL, U.S.A
| | - Jonathan G Li
- Department of Radiation Oncology, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
17
|
van Elmpt W, McDermott L, Nijsten S, Wendling M, Lambin P, Mijnheer B. A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol 2008; 88:289-309. [PMID: 18706727 DOI: 10.1016/j.radonc.2008.07.008] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/09/2008] [Accepted: 07/12/2008] [Indexed: 10/21/2022]
Abstract
Electronic portal imaging devices (EPIDs) have been the preferred tools for verification of patient positioning for radiotherapy in recent decades. Since EPID images contain dose information, many groups have investigated their use for radiotherapy dose measurement. With the introduction of the amorphous-silicon EPIDs, the interest in EPID dosimetry has been accelerated because of the favourable characteristics such as fast image acquisition, high resolution, digital format, and potential for in vivo measurements and 3D dose verification. As a result, the number of publications dealing with EPID dosimetry has increased considerably over the past approximately 15 years. The purpose of this paper was to review the information provided in these publications. Information available in the literature included dosimetric characteristics and calibration procedures of various types of EPIDs, strategies to use EPIDs for dose verification, clinical approaches to EPID dosimetry, ranging from point dose to full 3D dose distribution verification, and current clinical experience. Quality control of a linear accelerator, pre-treatment dose verification and in vivo dosimetry using EPIDs are now routinely used in a growing number of clinics. The use of EPIDs for dosimetry purposes has matured and is now a reliable and accurate dose verification method that can be used in a large number of situations. Methods to integrate 3D in vivo dosimetry and image-guided radiotherapy (IGRT) procedures, such as the use of kV or MV cone-beam CT, are under development. It has been shown that EPID dosimetry can play an integral role in the total chain of verification procedures that are implemented in a radiotherapy department. It provides a safety net for simple to advanced treatments, as well as a full account of the dose delivered. Despite these favourable characteristics and the vast range of publications on the subject, there is still a lack of commercially available solutions for EPID dosimetry. As strategies evolve and commercial products become available, EPID dosimetry has the potential to become an accurate and efficient means of large-scale patient-specific IMRT dose verification for any radiotherapy department.
Collapse
Affiliation(s)
- Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Yan G, Fox C, Liu C, Li JG. The extraction of true profiles for TPS commissioning and its impact on IMRT patient-specific QA. Med Phys 2008; 35:3661-70. [DOI: 10.1118/1.2952643] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
19
|
Mamalui-Hunter M, Li H, Low DA. MLC quality assurance using EPID: A fitting technique with subpixel precision. Med Phys 2008; 35:2347-55. [DOI: 10.1118/1.2919560] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Verification of dose delivery for a prostate sIMRT treatment using a SLIC-EPID. Appl Radiat Isot 2008; 66:1930-8. [PMID: 18583141 DOI: 10.1016/j.apradiso.2008.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 03/13/2008] [Accepted: 04/30/2008] [Indexed: 11/22/2022]
Abstract
The current work focuses on the verification of transmitted dose maps, measured using a scanning liquid ionization chamber-electronic portal imaging device (SLIC-EPID) for a typical step-and-shoot prostate IMRT treatment using an anthropomorphic phantom at anterior-posterior (A-P), and several non-zero gantry angles. The dose distributions measured using the SLIC-EPID were then compared with those calculated in the modelled EPID for each segment/subfield and also for the corresponding total fields using a gamma function algorithm with a distance to agreement and dose difference criteria of 2.54mm and 3%, respectively.
Collapse
|
21
|
Mu G, Ludlum E, Xia P. Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer. Phys Med Biol 2007; 53:77-88. [DOI: 10.1088/0031-9155/53/1/005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Seibert RM, Ramsey CR, Garvey DR, Hines JW, Robison BH, Outten SS. Verification of helical tomotherapy delivery using autoassociative kernel regressiona). Med Phys 2007; 34:3249-62. [PMID: 17879788 DOI: 10.1118/1.2754059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Quality assurance (QA) is a topic of major concern in the field of intensity modulated radiation therapy (IMRT). The standard of practice for IMRT is to perform QA testing for individual patients to verify that the dose distribution will be delivered to the patient. The purpose of this study was to develop a new technique that could eventually be used to automatically evaluate helical tomotherapy treatments during delivery using exit detector data. This technique uses an autoassociative kernel regression (AAKR) model to detect errors in tomotherapy delivery. AAKR is a novel nonparametric model that is known to predict a group of correct sensor values when supplied a group of sensor values that is usually corrupted or contains faults such as machine failure. This modeling scheme is especially suited for the problem of monitoring the fluence values found in the exit detector data because it is able to learn the complex detector data relationships. This scheme still applies when detector data are summed over many frames with a low temporal resolution and a variable beam attenuation resulting from patient movement. Delivery sequences from three archived patients (prostate, lung, and head and neck) were used in this study. Each delivery sequence was modified by reducing the opening time for random individual multileaf collimator (MLC) leaves by random amounts. The errof and error-free treatments were delivered with different phantoms in the path of the beam. Multiple autoassociative kernel regression (AAKR) models were developed and tested by the investigators using combinations of the stored exit detector data sets from each delivery. The models proved robust and were able to predict the correct or error-free values for a projection, which had a single MLC leaf decrease its opening time by less than 10 msec. The model also was able to determine machine output errors. The average uncertainty value for the unfaulted projections ranged from 0.4% to 1.8% of the detector signal. The low model uncertainty indicates that the AAKR model is extremely accurate in its predictions and also suggests that the model may be able to detect errors that cause the fluence to change by less than 2%. However, additional evaluation of the AAKR technique is needed to determine the minimum detectable error threshold from the compressed helical tomotherapy detector data. Further research also needs to explore applying this technique to electronic portal imaging detector data.
Collapse
Affiliation(s)
- Rebecca M Seibert
- Department of Nuclear Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | | | | | | | |
Collapse
|
23
|
McDermott LN, Wendling M, Sonke JJ, van Herk M, Mijnheer BJ. Replacing Pretreatment Verification With In Vivo EPID Dosimetry for Prostate IMRT. Int J Radiat Oncol Biol Phys 2007; 67:1568-77. [PMID: 17394951 DOI: 10.1016/j.ijrobp.2006.11.047] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/23/2006] [Accepted: 11/24/2006] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate the feasibility of replacing pretreatment verification with in vivo electronic portal imaging device (EPID) dosimetry for prostate intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS Dose distributions were reconstructed from EPID images, inside a phantom (pretreatment) or the patient (five fractions in vivo) for 75 IMRT prostate plans. Planned and EPID dose values were compared at the isocenter and in two dimensions using the gamma index (3%/3 mm). The number of measured in vivo fractions required to achieve similar levels of agreement with the plan as pretreatment verification was determined. The time required to perform both methods was compared. RESULTS Planned and EPID isocenter dose values agreed, on average, within +/-1% (1 SD) of the total plan for both pretreatment and in vivo verification. For two-dimensional field-by-field verification, an alert was raised for 10 pretreatment checks with clear but clinically irrelevant discrepancies. Multiple in vivo fractions were combined by assessing gamma images consisting of median, minimum and low (intermediate) pixel values of one to five fractions. The "low" gamma values of three fractions rendered similar results as pretreatment verification. Additional time for verification was approximately 2.5 h per plan for pretreatment verification, and 15 min +/- 10 min/fraction using in vivo dosimetry. CONCLUSIONS In vivo EPID dosimetry is a viable alternative to pretreatment verification for prostate IMRT. For our patients, combining information from three fractions in vivo is the best way to distinguish systematic errors from non-clinically relevant discrepancies, save hours of quality assurance time per patient plan, and enable verification of the actual patient treatment.
Collapse
Affiliation(s)
- Leah N McDermott
- Department of Radiation Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Litzenberg DW, Hadley SW, Tyagi N, Balter JM, Ten Haken RK, Chetty IJ. Synchronized dynamic dose reconstruction. Med Phys 2006; 34:91-102. [PMID: 17278494 DOI: 10.1118/1.2388157] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined.
Collapse
|
25
|
Luo W, Li J, Price RA, Chen L, Yang J, Fan J, Chen Z, McNeeley S, Xu X, Ma CM. Monte Carlo based IMRT dose verification using MLC log files and R/V outputs. Med Phys 2006; 33:2557-64. [PMID: 16898460 DOI: 10.1118/1.2208916] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Conventional IMRT dose verification using film and ion chamber measurements is useful but limited with respect to the actual dose distribution received by the patient. The Monte Carlo simulation has been introduced as an independent dose verification tool for IMRT using the patient CT data and MLC leaf sequence files, which validates the dose calculation accuracy but not the plan delivery accuracy. In this work, we propose a Monte Carlo based IMRT dose verification method that reconstructs the patient dose distribution using the patient CT, actual beam data based on the information from the record and verify system (R/V), and the MLC log files obtained during dose delivery that record the MLC leaf positions and MUs delivered. Comparing the Monte Carlo dose calculation with the original IMRT plan using these data simultaneously validates the accuracy of both the IMRT dose calculation and beam delivery. Such log file based Monte Carlo simulations are expected to be employed as a useful and efficient IMRT QA modality to validate the dose delivered to the patient. We have run Monte Carlo simulations for eight IMRT prostate plans using this method and the results for the target dose were consistent with the original CORVUS treatment plans to within 3.0% and 2.0% with and without heterogeneity corrections in the dose calculation. However, significant dose deviations in nearby critical structures have been observed. The results showed that up to 9.0% of the bladder dose and up to 38.0% of the rectum dose, to which leaf position errors were found to contribute <2%, were underestimated by the CORVUS treatment planning system. The concept of average leaf position error has been defined to analyze MLC leaf position errors for an IMRT plan. A linear correlation between the target dose error and the average position error has been found based on log file based Monte Carlo simulations, showing that an average position error of 0.2 mm can result in a target dose error of about 1.0%.
Collapse
Affiliation(s)
- Wei Luo
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McDermott LN, Wendling M, Sonke JJ, van Herk M, Mijnheer BJ. Anatomy changes in radiotherapy detected using portal imaging. Radiother Oncol 2006; 79:211-7. [PMID: 16698097 DOI: 10.1016/j.radonc.2006.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 03/30/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE Localisation images normally acquired to verify patient positioning also contain information about the patient's internal anatomy. The aim of this study was to investigate the anatomical changes observed in localisation images and examples of dosimetric consequences. PATIENTS AND METHODS Localisation images were obtained weekly prior to radiotherapy with an electronic portal imaging device (EPID). A series of 'difference images' was created by subtracting the first localisation image from that of subsequent fractions. Images from 81 lung, 40 head and neck and 34 prostate cancer patients were classified according to the changes observed. Changes were considered relevant if the average pixel value over an area of at least 1cm(2) differed by more than 5%, to allow for variations in linac output and EPID signal. Two patients were selected to illustrate the dosimetric effects of relevant changes. Their plans were re-calculated with repeat CT scans acquired after 4 weeks of treatment and compared with the difference images of the corresponding days. RESULTS Progressive changes were detected for 57% of lung and 37% of head and neck cancer patients studied. Random changes were observed in 37% of lung, 28% of head and neck and 82% of prostate cancer patients. For a lung case, an increase of 10.0% in EPID dose due to tumour shrinkage corresponded to an increase of 9.8% in mean lung dose. Gas pockets in the rectum region of the prostate case increased the EPID dose by 6.3%, and resulted in a decrease of the minimum dose to the planning target volume of 26.4%. CONCLUSIONS Difference images are an efficient means of qualitatively detecting anatomical changes for various treatment sites in clinical practice. They can be used to identify changes for a particular patient, to indicate if the dose delivered to the patient would differ from planning and to detect if there is a need for re-planning.
Collapse
Affiliation(s)
- Leah N McDermott
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Petric MP, Robar JL, Clark BG. Development and characterization of a tissue equivalent plastic scintillator based dosimetry system. Med Phys 2006; 33:96-105. [PMID: 16485414 DOI: 10.1118/1.2140118] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High precision techniques in radiation therapy, such as intensity modulated radiation therapy, offer the potential for improved target coverage and increased normal tissue sparing compared with conformal radiotherapy. The complex fluence maps used in many of these techniques, however, often lead to more challenging quality assurance with dose verification being labor-intensive and time consuming. A prototype dose verification system has been developed using a tissue equivalent plastic scintillator that provides easy-to-acquire, rapid, digital dose measurements in a plane perpendicular to the beam. The system consists of a water-filled Lucite phantom with a scintillator screen built into the top surface. The phantom contains a silver coated plastic mirror to reflect scintillation light towards a viewing window where it is captured using a charge coupled device camera and a personal computer. Optical photon spread is removed using a microlouvre optical collimator and by deconvolving a glare kernel from the raw images. A characterization of the system was performed that included measurements of linear output response, dose rate dependence, spatial linearity, effective pixel size, signal uniformity and both short- and long-term reproducibility. The average pixel intensity for static, regular shaped fields between 3 cm X 3 cm and 12 cm x 12 cm imaged with the system was found to be linear in the dose delivered with linear regression analysis yielding a correlation coefficient r2 > 0.99. Effective pixel size was determined to be 0.53 mm/pixel. The system was found to have a signal uniformity of 5.6% and a long-term reproducibility/stability of 1.7% over a 6 month period. The system's ability to verify a dynamic treatment field was evaluated using 60 degrees dynamic wedged fields and comparing the results to two-dimensional film dosimetry. Results indicate agreement with two-dimensional film dosimetry distributions within 8% inside the field edges. With further development, this system promises to provide a fast, directly digital, and tissue equivalent alternative to current dose verification systems.
Collapse
Affiliation(s)
- M P Petric
- Department of Medical Physics, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6
| | | | | |
Collapse
|
28
|
Ranade MK, Lynch BD, Li JG, Dempsey JF. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery. Med Phys 2005; 33:106-10. [PMID: 16485415 DOI: 10.1118/1.2143142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.
Collapse
Affiliation(s)
- Manisha K Ranade
- Department of Radiation Oncology, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385, USA
| | | | | | | |
Collapse
|
29
|
Stasi M, Giordanengo S, Cirio R, Boriano A, Bourhaleb F, Cornelius I, Donetti M, Garelli E, Gomola I, Marchetto F, Porzio M, Sanz Freire CJ, Sardo A, Peroni C. D-IMRT verification with a 2D pixel ionization chamber: dosimetric and clinical results in head and neck cancer. Phys Med Biol 2005; 50:4681-94. [PMID: 16177497 DOI: 10.1088/0031-9155/50/19/017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dynamic intensity-modulated radiotherapy (D-IMRT) using the sliding-window technique is currently applied for selected treatments of head and neck cancer at Institute for Cancer Research and Treatment of Candiolo (Turin, Italy). In the present work, a PiXel-segmented ionization Chamber (PXC) has been used for the verification of 19 fields used for four different head and neck cancers. The device consists of a 32x32 matrix of 1024 parallel-plate ionization chambers arranged in a square of 24x24 cm2 area. Each chamber has 0.4 cm diameter and 0.55 cm height; a distance of 0.75 cm separates the centre of adjacent chambers. The sensitive volume of each single ionization chamber is 0.07 cm3. Each of the 1024 independent ionization chambers is read out with a custom microelectronics chip.The output factors in water obtained with the PXC at a depth of 10 cm were compared to other detectors and the maximum difference was 1.9% for field sizes down to 3x3 cm2. Beam profiles for different field dimensions were measured with the PXC and two other types of ionization chambers; the maximum distance to agreement (DTA) in the 20-80% penumbra region of a 3x3 cm2 field was 0.09 cm. The leaf speed of the multileaf collimator was varied between 0.07 and 2 cm s-1 and the detector response was constant to better than 0.6%. The behaviour of the PXC was measured while varying the dose rate between 0.21 and 1.21 Gy min-1; the mean difference was 0.50% and the maximum difference was 0.96%. Using fields obtained with an enhanced dynamic wedge and a staircase-like (step) IMRT field, the PXC has been tested for simple 1D modulated beams; comparison with film gave a maximum DTA of 0.12 cm. The PXC was then used to check four different IMRT plans for head and neck cancer treatment: cervical chordoma, parotid, ethmoid and skull base. In the comparison of the PXC versus film and PXC versus treatment planning system, the number of pixels with gamma parameter<or=1 was 97.7% and 97.6%, respectively.
Collapse
Affiliation(s)
- M Stasi
- Institute for Cancer Research and Treatment (IRCC), Candiolo and A.S.O. Ordine Maurizano, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Steciw S, Warkentin B, Rathee S, Fallone BG. Three-dimensional IMRT verification with a flat-panel EPID. Med Phys 2005; 32:600-12. [PMID: 15789607 DOI: 10.1118/1.1843471] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A three-dimensional (3D) intensity-modulated radiotherapy (IMRT) pretreatment verification procedure has been developed based on the measurement of two-dimensional (2D) primary fluence profiles using an amorphous silicon flat-panel electronic portal imaging device (EPID). As described in our previous work, fluence profiles are extracted from EPID images by deconvolution with kernels that represent signal spread in the EPID due to radiation and optical scattering. The deconvolution kernels are derived using Monte Carlo simulations of dose deposition in the EPID and empirical fitting methods, for both 6 and 15 MV photon energies. In our new 3D verification technique, 2D fluence modulation profiles for each IMRT field in a treatment are used as input to a treatment planning system (TPS), which then generates 3D doses. Verification is accomplished by comparing this new EPID-based 3D dose distribution to the planned dose distribution calculated by the TPS. Thermoluminescent dosimeter (TLD) point dose measurements for an IMRT treatment of an anthropomorphic phantom were in good agreement with the EPID-based 3D doses; in contrast, the planned dose under-predicts the TLD measurement in a high-gradient region by approximately 16%. Similarly, large discrepancies between EPID-based and TPS doses were also evident in dose profiles of small fields incident on a water phantom. These results suggest that our 3D EPID-based method is effective in quantifying relevant uncertainties in the dose calculations of our TPS for IMRT treatments. For three clinical head and neck cancer IMRT treatment plans, our TPS was found to underestimate the mean EPID-based doses in the critical structures of the spinal cord and the parotids by approximately 4 Gy (11%-14%). According to radiobiological modeling calculations that were performed, such underestimates can potentially lead to clinically significant underpredictions of normal tissue complication rates.
Collapse
Affiliation(s)
- S Steciw
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G IZ2, Canada
| | | | | | | |
Collapse
|
31
|
Woo MK, Nico A. Impact of multileaf collimator leaf positioning accuracy on intensity modulation radiation therapy quality assurance ion chamber measurements. Med Phys 2005; 32:1440-5. [PMID: 15986524 DOI: 10.1118/1.1901843] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Quality assurance (QA) procedures for intensity modulation radiation therapy (IMRT) usually involve an ion chamber measurement in a phantom using the beam configuration of the actual treatment plan. In our QA procedures it was observed that the degree of agreement between the measurement and the calculation could vary from plan to plan, from linac to linac, as well as over time, with a discrepancy up to 8%. In this paper we examine one aspect of the process which can contribute to such poor reproducibility, namely, the leaf end position accuracy. A series of measurements was designed to irradiate an ion chamber using small beam segments where one multileaf collimator (MLC) edge covers half of the chamber. It was shown that the reproducibility varied up to 13%, which provides a possible explanation for the observed discrepancies above. A useful tool was also developed to measure ionization signals from individual segments of an IMRT sequence. In addition, an understanding of the leaf end position variations offers some insight into the overall quality of an IMRT dose distribution.
Collapse
Affiliation(s)
- M K Woo
- Department of Medical Physics, Sunnybrook and Womens Health Sciences Center, Toronto and Department of Medical Biophysics and Department of Radiation Oncology, University of Toronto, Ontario M4N 3M5, Canada.
| | | |
Collapse
|
32
|
Stell AM, Li JG, Zeidan OA, Dempsey JF. An extensive log-file analysis of step-and-shoot intensity modulated radiation therapy segment delivery errors. Med Phys 2005; 31:1593-602. [PMID: 15259664 DOI: 10.1118/1.1751011] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We present a study to evaluate the monitor unit (MU), dosimetric, and leaf-motion errors found in the delivery of 91 step-and-shoot IMRT treatment plans performed at three nominal dose rates using a dual modality high energy Linac (Varian 2100 C/D, Varian Medical Systems Inc., Palo Alto, CA) equipped with a 120-leaf multileaf collimator (MLC). The analysis was performed by studying log files generated by the MLC controller system. Recent studies by our group have validated that the automatically generated MLC log files accurately record the actual system delivery. A total of 635 beams were delivered at three nominal dose rates: 100, 300, and 600 MU/min. The log files were manually retrieved and analysis software was developed to extract the recorded MU delivery and leaf positions for each segment. Our analysis revealed that the magnitude of segment MU errors were independent of the planned segment MUs. Segment MU errors were found to increase with dose rate having maximum errors per segment of +/-1.8 MU at 600 MU/min, +/-0.8 MU at 300 MU/min, and +/-0.5 MU at 100 MU/min. The total absolute MU error in each plan was observed to increase with the number of plan segments, with the trend increasing more rapidly for higher dose rates. Three dimensional dose distributions were recomputed based on the observed segment MU errors for three plans with large cumulative absolute MU errors. Comparison with the original treatment plans indicated no clinically significant consequences due to these errors. In addition, approximately 80% of the total segment deliveries reported at least one collimator leaf moving at least 1 mm (projected at isocenter) during segment delivery. Such errors occur near the end of segment delivery and have been previously observed by our group using a fast video-based electronic portal imaging device. At 600 MU/min, between 5% and 23% of the plan MUs were delivered during leaf motion that had exceeded a 1 mm position tolerance. These leaf motion errors were not included in the treatment plan recalculations performed in this study.
Collapse
Affiliation(s)
- Anthony M Stell
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385, USA
| | | | | | | |
Collapse
|
33
|
Fielding AL, Evans PM, Clark CH. Verification of patient position and delivery of IMRT by electronic portal imaging. Radiother Oncol 2004; 73:339-47. [PMID: 15588880 DOI: 10.1016/j.radonc.2004.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 08/27/2004] [Accepted: 09/09/2004] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE The purpose of the work presented in this paper was to determine whether patient positioning and delivery errors could be detected using electronic portal images of intensity modulated radiotherapy (IMRT). PATIENTS AND METHODS We carried out a series of controlled experiments delivering an IMRT beam to a humanoid phantom using both the dynamic and multiple static field method of delivery. The beams were imaged, the images calibrated to remove the IMRT fluence variation and then compared with calibrated images of the reference beams without any delivery or position errors. The first set of experiments involved translating the position of the phantom both laterally and in a superior/inferior direction a distance of 1, 2, 5 and 10 mm. The phantom was also rotated 1 and 2 degrees . For the second set of measurements the phantom position was kept fixed and delivery errors were introduced to the beam. The delivery errors took the form of leaf position and segment intensity errors. RESULTS The method was able to detect shifts in the phantom position of 1 mm, leaf position errors of 2 mm, and dosimetry errors of 10% on a single segment of a 15 segment IMRT step and shoot delivery (significantly less than 1% of the total dose). CONCLUSIONS The results of this work have shown that the method of imaging the IMRT beam and calibrating the images to remove the intensity modulations could be a useful tool in verifying both the patient position and the delivery of the beam.
Collapse
Affiliation(s)
- Andrew L Fielding
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey SM2 5PT, UK
| | | | | |
Collapse
|