1
|
Mishra S, Selvam TP, Sahoo S, Saxena SK, Kumar Y, Sapra BK. Monte Carlo-based dosimetry of proposed bi-radionuclide ( 125I and 106Ru/ 106Rh) eye plaque: A feasibility study. Med Phys 2024; 51:7561-7573. [PMID: 38935327 DOI: 10.1002/mp.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Combining the sharp dose fall off feature of beta-emitting 106Ru/106Rh radionuclide with larger penetration depth feature of photon-emitting125I radionuclide in a bi-radionuclide plaque, prescribed dose to the tumor apex can be delivered while maintaining the tumor dose uniformity and sparing the organs at risk. The potential advantages of bi-radionuclide plaque could be of interest in context of ocular brachytherapy. PURPOSE The aim of the study is to evaluate the dosimetric advantages of a proposed bi-radionuclide plaque for two different designs, consisting of indigenous 125I seeds and 106Ru/106Rh plaque, using Monte Carlo technique. The study also explores the influence of other commercial 125I seed models and presence or absence of silastic/acrylic seed carrier on the calculated dose distributions. The study further included the calculation of depth dose distributions for the bi-radionuclide eye plaque for which experimental data are available. METHODS The proposed bi-radionuclide plaque consists of a 1.2-mm-thick silver (Ag) spherical shell with radius of curvature of 12.5 mm, 20 µm-thick-106Ru/106Rh encapsulated between 0.2 mm Ag disk, and a 0.1-mm-thick Ag window, and water-equivalent gel containing 12 symmetrically arranged 125I seeds. Two bi-radionuclide plaque models investigated in the present study are designated as Design I and Design II. In Design I, 125I seeds are placed on the top of the plaque, while in Design II 106Ru/106Rh source is positioned on the top of the plaque. In Monte Carlo calculations, the plaque is positioned in a spherical water phantom of 30 cm diameter. RESULTS The proposed bi-radionuclide eye plaque demonstrated superior dose distributions as compared to 125I or 106Ru plaque for tumor thicknesses ranges from 5 to 10 mm. Amongst the designs, dose at a given voxel for Design I is higher as compared to the corresponding voxel dose for Design II. This difference is attributed to the higher degree of attenuation of 125I photons in Ag as compared to beta particles. Influence of different 125I seed models on the normalized lateral dose profiles of Design I (in the absence of carrier) is negligible and within 5% on the central axis depth dose distribution as compared to the corresponding values of the plaque that has indigenous 125I seeds. In the presence of a silastic/acrylic seed carrier, the normalized central axis dose distributions of Design I are smaller by 3%-12% as compared to the corresponding values in the absence of a seed carrier. For the published bi-radionuclide plaque model, good agreement is observed between the Monte Carlo-calculated and published measured depth dose distributions for clinically relevant depths. CONCLUSION Regardless of the type of 125I seed model utilized and whether silastic/acrylic seed carrier is present or not, Design I bi-radionuclide plaque offers superior dose distributions in terms of tumor dose uniformity, rapid dose fall off and lesser dose to nearby critical organs at risk over the Design II plaque. This shows that Design I bi-radionuclide plaque could be a promising alternative to 125I plaque for treatment of tumor sizes in the range 5 to 10 mm.
Collapse
Affiliation(s)
- Subhalaxmi Mishra
- Radiological Physics and Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - T Palani Selvam
- Radiological Physics and Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Sridhar Sahoo
- Radiological Physics and Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sanjay Kumar Saxena
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Yogendra Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Balvinder K Sapra
- Radiological Physics and Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Manke H, Fluehs D, Stroth M, Bechrakis NE, Foerster AMH, Albrecht J. Measurements regarding a combined therapy concept for ophthalmic tumors consisting of brachytherapy and x-rays. Biomed Phys Eng Express 2024; 10:045056. [PMID: 38588642 DOI: 10.1088/2057-1976/ad3bbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Objective.We present a novel concept to treat ophthalmic tumors which combines brachytherapy and low-energy x-ray therapy. Brachytherapy with106Ru applicators is inadequate for intraocular tumors with a height of 7 mm or more. This results from a steep dose gradient, and it is unfeasible to deliver the required dose at the tumor apex without exceeding the maximum tolerable sclera dose of usually 1000 Gy to 1500 Gy. Other modalities, such as irradiation with charged particles, may be individually contraindicated. A dose boost at the apex provided by a superficial x-ray therapy unit, performed simultaneously with the brachytherapy, results in a more homogeneous dose profile than brachytherapy alone. This avoids damage to organs at risk. The applicator may also serve as a beam stop for x-rays passing through the target volume, which reduces healthy tissue dosage. This study aims to investigate the suitability of the applicator to serve as a beam stop for the x-rays.Approach.A phantom with three detector types comprising a soft x-ray ionization chamber, radiochromic films, and a self-made scintillation detector was constructed to perform dosimetry. Measurements were performed using a conventional x-ray unit for superficial therapy to investigate the uncertainties of the phantom and the ability of the applicator to absorb x-rays. The manufacturer provided a dummy plaque to obtain x-ray dose profiles without noise from106Ru decays.Results.The phantom is generally feasible to obtain dose profiles with three different detector types. The interaction of x-rays with the silver of the applicator leads to an increased dose rate in front of the applicator. The dose rate of the x-rays is reduced by up to 90% behind a106Ru applicator. Therefore, a106Ru applicator can be used as a beam stop in combined x-ray and brachytherapy treatment.
Collapse
Affiliation(s)
- H Manke
- Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - D Fluehs
- Radiation and Tumor Clinic, Essen University Hospital, Hufelandstr. 55, 45147 Essen, Germany
| | - M Stroth
- Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - N E Bechrakis
- Radiation and Tumor Clinic, Essen University Hospital, Hufelandstr. 55, 45147 Essen, Germany
| | - A M H Foerster
- Radiation and Tumor Clinic, Essen University Hospital, Hufelandstr. 55, 45147 Essen, Germany
| | - J Albrecht
- Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| |
Collapse
|
3
|
Kim V, Guberina M, Bechrakis NE, Lohmann DR, Zeschnigk M, Le Guin CHD. Release of Cell-Free Tumor DNA in the Plasma of Uveal Melanoma Patients Under Radiotherapy. Invest Ophthalmol Vis Sci 2023; 64:35. [PMID: 37862025 PMCID: PMC10599159 DOI: 10.1167/iovs.64.13.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023] Open
Abstract
Purpose Uveal melanoma (UM) is a tumor of the eye that metastasizes in approximately half of cases. Prognostic testing requires accessibility to tumor tissue, which is usually not available with eye-preserving therapies. Noninvasive approaches to prognostic testing that provide valuable information for patient care are therefore needed. The aim of this study was to evaluate the use of circulating cell-free plasma DNA analysis in UM patients undergoing brachytherapy. Methods The study recruited 26 uveal melanoma patients referred to the department between February and October 2020. Blood samples were collected at various time points before, during, and after treatment, and deep amplicon sequencing was used to identify oncogenic variant alleles of the GNAQ and GNA11 genes, which serve as indicators for the presence of circulating tumor DNA (ctDNA). Results The results showed that all patients were ctDNA negative before brachytherapy. In 31% of patients, ctDNA was detected during therapy. The variant allele fraction of GNAQ or GNA11 alleles in ctDNA positive samples ranged from 0.24% to 2% and correlates with the largest basal diameter and thickness of the tumor. Conclusions The findings suggest that brachytherapy increases the presence of tumor DNA in the plasma of UM patients. Thus ctDNA analysis may offer a noninvasive approach for prognostic testing. However, efforts are still required to lower the limit of detection for tumor-specific genetic alterations.
Collapse
Affiliation(s)
- Viktoria Kim
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Maja Guberina
- Department of Radiotherapy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dietmar R Lohmann
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Zeschnigk
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Claudia H D Le Guin
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Jabbarli L, Guberina M, Biewald E, Flühs D, Guberina N, Le Guin CHD, Sauerwein W, Bornfeld N, Stuschke M, Bechrakis NE. Scleral necrosis after brachytherapy for uveal melanoma: Analysis of risk factors. Clin Exp Ophthalmol 2021; 49:357-367. [PMID: 33866652 DOI: 10.1111/ceo.13928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Radiation-induced scleral necrosis (RISN) is a rare, but a serious complication of brachytherapy for uveal melanoma. We aimed at analysing the incidence, timing and risk factors associated with development of RISN in a large institutional series. METHODS All consecutive cases with brachytherapy for uveal melanoma treated by the Departments of Ophthalmology and Radiotherapy at University Hospital Essen between 1999 and 2016 were eligible. Development of RISN during the post-treatment follow-up was recorded. A 1:2 propensity score matched case-control study was performed for the evaluation of the prognostic value of different tumour- and treatment-associated parameters. RESULTS RISN was documented in 115 (2.9%) of 3960 patients with uveal melanoma included in the final analysis, and occurred at the mean 30.3 months (range: 1.26-226 months) after brachytherapy. In the whole cohort, younger age (p = 0.042), plaque type (p = 0.001) and ciliary body involvement (p < 0.0001) were independently associated with the RISN occurrence. In the case-control study, multivariable weighted proportional hazard analysis discovered the association of the following additional tumour- and treatment-associated characteristics with RISN: posterior tumour margin anterior to equatorial region (p = 0.0003), extraocular tumour extension (p = <0.0001), scleral contact dose (p = <0.0001), conjunctival dehiscence after therapy (p = 0.0001), disinsertion of the superior rectus muscle (p = 0.001) and the glaucoma medication (p = 0.014). CONCLUSIONS Our study confirms RISN as a rare complication, which might occur even years later after the brachytherapy for uveal melanoma. Alongside with scleral dose five other tumour and therapy related factors predict the risk of RISN after brachytherapy for uveal melanoma were established.
Collapse
Affiliation(s)
- Leyla Jabbarli
- Department of Ophthalmology, University Hospital of Essen, Essen, Germany
| | - Maja Guberina
- Department of Radiotherapy, University Hospital of Essen, Essen, Germany
| | - Eva Biewald
- Department of Ophthalmology, University Hospital of Essen, Essen, Germany
| | - Dirk Flühs
- Department of Radiotherapy, University Hospital of Essen, Essen, Germany
| | - Nika Guberina
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | | | - Wolfgang Sauerwein
- Department of Radiotherapy, University Hospital of Essen, Essen, Germany
| | - Norbert Bornfeld
- Department of Ophthalmology, University Hospital of Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital of Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Partner Site University Hospital Essen, Essen, Germany
| | | |
Collapse
|
5
|
Thomson RM, Furutani KM, Kaulich TW, Mourtada F, Rivard MJ, Soares CG, Vanneste FM, Melhus CS. AAPM recommendations on medical physics practices for ocular plaque brachytherapy: Report of task group 221. Med Phys 2020; 47:e92-e124. [PMID: 31883269 DOI: 10.1002/mp.13996] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/12/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
The American Association of Physicists in Medicine (AAPM) formed Task Group 221 (TG-221) to discuss a generalized commissioning process, quality management considerations, and clinical physics practice standards for ocular plaque brachytherapy. The purpose of this report is also, in part, to aid the clinician to implement recommendations of the AAPM TG-129 report, which placed emphasis on dosimetric considerations for ocular brachytherapy applicators used in the Collaborative Ocular Melanoma Study (COMS). This report is intended to assist medical physicists in establishing a new ocular brachytherapy program and, for existing programs, in reviewing and updating clinical practices. The report scope includes photon- and beta-emitting sources and source:applicator combinations. Dosimetric studies for photon and beta sources are reviewed to summarize the salient issues and provide references for additional study. The components of an ocular plaque brachytherapy quality management program are discussed, including radiation safety considerations, source calibration methodology, applicator commissioning, imaging quality assurance tests for treatment planning, treatment planning strategies, and treatment planning system commissioning. Finally, specific guidelines for commissioning an ocular plaque brachytherapy program, clinical physics practice standards in ocular plaque brachytherapy, and other areas reflecting the need for specialized treatment planning systems, measurement phantoms, and detectors (among other topics) to support the clinical practice of ocular brachytherapy are presented. Expected future advances and developments for ocular brachytherapy are discussed.
Collapse
Affiliation(s)
- Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Keith M Furutani
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Theodor W Kaulich
- Department of Medical Physics, University of Tübingen, 72074, Tübingen, Germany
| | - Firas Mourtada
- Department of Radiation Oncology, Christiana Care Hospital, Newark, DE, 19713, USA
| | - Mark J Rivard
- Department of Radiation Oncology, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | | | | | - Christopher S Melhus
- Department of Radiation Oncology, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
6
|
Munier FL, Beck-Popovic M, Chantada GL, Cobrinik D, Kivelä TT, Lohmann D, Maeder P, Moll AC, Carcaboso AM, Moulin A, Schaiquevich P, Bergin C, Dyson PJ, Houghton S, Puccinelli F, Vial Y, Gaillard MC, Stathopoulos C. Conservative management of retinoblastoma: Challenging orthodoxy without compromising the state of metastatic grace. "Alive, with good vision and no comorbidity". Prog Retin Eye Res 2019; 73:100764. [PMID: 31173880 DOI: 10.1016/j.preteyeres.2019.05.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Retinoblastoma is lethal by metastasis if left untreated, so the primary goal of therapy is to preserve life, with ocular survival, visual preservation and quality of life as secondary aims. Historically, enucleation was the first successful therapeutic approach to decrease mortality, followed over 100 years ago by the first eye salvage attempts with radiotherapy. This led to the empiric delineation of a window for conservative management subject to a "state of metastatic grace" never to be violated. Over the last two decades, conservative management of retinoblastoma witnessed an impressive acceleration of improvements, culminating in two major paradigm shifts in therapeutic strategy. Firstly, the introduction of systemic chemotherapy and focal treatments in the late 1990s enabled radiotherapy to be progressively abandoned. Around 10 years later, the advent of chemotherapy in situ, with the capitalization of new routes of targeted drug delivery, namely intra-arterial, intravitreal and now intracameral injections, allowed significant increase in eye preservation rate, definitive eradication of radiotherapy and reduction of systemic chemotherapy. Here we intend to review the relevant knowledge susceptible to improve the conservative management of retinoblastoma in compliance with the "state of metastatic grace", with particular attention to (i) reviewing how new imaging modalities impact the frontiers of conservative management, (ii) dissecting retinoblastoma genesis, growth patterns, and intraocular routes of tumor propagation, (iii) assessing major therapeutic changes and trends, (iv) proposing a classification of relapsing retinoblastoma, (v) examining treatable/preventable disease-related or treatment-induced complications, and (vi) appraising new therapeutic targets and concepts, as well as liquid biopsy potentiality.
Collapse
Affiliation(s)
- Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland.
| | - Maja Beck-Popovic
- Unit of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Guillermo L Chantada
- Hemato-Oncology Service, Hospital JP Garrahan, Buenos Aires, Argentina; Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - David Cobrinik
- The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; USC Roski Eye Institute, Department of Biochemistry & Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Tero T Kivelä
- Department of Ophthalmology, Ocular Oncology and Pediatric Ophthalmology Services, Helsinki University Hospital, Helsinki, Finland
| | - Dietmar Lohmann
- Eye Oncogenetics Research Group, Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Philippe Maeder
- Unit of Neuroradiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Annette C Moll
- UMC, Vrije Universiteit Amsterdam, Department of Ophthalmology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Angel Montero Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Alexandre Moulin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Paula Schaiquevich
- Unit of Clinical Pharmacokinetics, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Ciara Bergin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Susan Houghton
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Francesco Puccinelli
- Interventional Neuroradiology Unit, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Yvan Vial
- Materno-Fetal Medicine Unit, Woman-Mother-Child Department, University Hospital of Lausanne, Switzerland
| | - Marie-Claire Gaillard
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Christina Stathopoulos
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Flühs D, Flühs A, Ebenau M, Eichmann M. Polyethylene Naphthalate Scintillator: A Novel Detector for the Dosimetry of Radioactive Ophthalmic Applicators. Ocul Oncol Pathol 2015; 2:5-12. [PMID: 27171681 DOI: 10.1159/000381720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm(3) and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. PURPOSE MATERIALS AND METHODS Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. RESULTS For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. CONCLUSION Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications.
Collapse
Affiliation(s)
- Dirk Flühs
- Universitätsklinikum Essen, Essen, Germany
| | | | - Melanie Ebenau
- Universitätsklinikum Essen, Essen, Germany; Technische Universität Dortmund, Dortmund, Germany
| | | |
Collapse
|
8
|
Lesperance M, Martinov M, Thomson RM. Monte Carlo dosimetry for 103Pd, 125I, and 131Cs ocular brachytherapy with various plaque models using an eye phantom. Med Phys 2014; 41:031706. [PMID: 24593710 DOI: 10.1118/1.4864474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate dosimetry for ocular brachytherapy for a range of eye plaque models containing(103)Pd, (125)I, or (131)Cs seeds with model-based dose calculations. METHODS Five representative plaque models are developed based on a literature review and are compared to the standardized COMS plaque, including plaques consisting of a stainless steel backing and acrylic insert, and gold alloy backings with: short collimating lips and acrylic insert, no lips and silicone polymer insert, no lips and a thin acrylic layer, and individual collimating slots for each seed within the backing and no insert. Monte Carlo simulations are performed using the EGSnrc user-code BrachyDose for single and multiple seed configurations for the plaques in water and within an eye model (including nonwater media). Simulations under TG-43 assumptions are also performed, i.e., with the same seed configurations in water, neglecting interseed and plaque effects. Maximum and average doses to ocular structures as well as isodose contours are compared for simulations of each radionuclide within the plaque models. RESULTS The presence of the plaque affects the dose distribution substantially along the plaque axis for both single seed and multiseed simulations of each plaque design in water. Of all the plaque models, the COMS plaque generally has the largest effect on the dose distribution in water along the plaque axis. Differences between doses for single and multiple seed configurations vary between plaque models and radionuclides. Collimation is most substantial for the plaque with individual collimating slots. For plaques in the full eye model, average dose in the tumor region differs from those for the TG-43 simulations by up to 10% for(125)I and (131)Cs, and up to 17% for (103)Pd, and in the lens region by up to 29% for (125)I, 34% for (103)Pd, and 28% for (131)Cs. For the same prescription dose to the tumor apex, the lowest doses to critical ocular structures are generally delivered with plaques containing (103)Pd seeds. CONCLUSIONS The combined effects of ocular and plaque media on dose are significant and vary with plaque model and radionuclide, suggesting the importance of model-based dose calculations employing accurate ocular and plaque media and geometries for eye plaque brachytherapy.
Collapse
Affiliation(s)
- Marielle Lesperance
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - M Martinov
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - R M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
9
|
Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity. J Contemp Brachytherapy 2013; 4:165-75. [PMID: 23346146 PMCID: PMC3551379 DOI: 10.5114/jcb.2012.30683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/29/2012] [Accepted: 07/19/2012] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. MATERIAL AND METHODS The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. RESULTS Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. CONCLUSIONS A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.
Collapse
|
10
|
Eichmann M, Krause T, Flühs D, Spaan B. Development of a high-precisionxyz-measuring table for the determination of the 3D dose rate distributions of brachytherapy sources. Phys Med Biol 2012; 57:N421-9. [DOI: 10.1088/0031-9155/57/22/n421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Gagne NL, Leonard KL, Rivard MJ. Radiobiology for eye plaque brachytherapy and evaluation of implant duration and radionuclide choice using an objective function. Med Phys 2012; 39:3332-42. [DOI: 10.1118/1.4718683] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
12
|
Weaver M, Petasecca M, Lerch M, Cutajar D, Jakůbek J, Pospíšil S, Rosenfeld A. Dosimetry verification in eye brachytherapy using silicon pixelated detectors. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Pacilio M, Aragno D, Rauco R, D'Onofrio S, Pressello MC, Bianciardi L, Santini E. Monte Carlo dose calculations using MCNP4C and EGSnrc/BEAMnrc codes to study the energy dependence of the radiochromic film response to beta-emitting sources. Phys Med Biol 2007; 52:3931-48. [PMID: 17664586 DOI: 10.1088/0031-9155/52/13/018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The energy dependence of the radiochromic film (RCF) response to beta-emitting sources was studied by dose theoretical calculations, employing the MCNP4C and EGSnrc/BEAMnrc Monte Carlo codes. Irradiations with virtual monochromatic electron sources, electron and photon clinical beams, a (32)P intravascular brachytherapy (IVB) source and other beta-emitting radioisotopes ((188)Re, (90)Y, (90)Sr/(90)Y,(32)P) were simulated. The MD-55-2 and HS radiochromic films (RCFs) were considered, in a planar or cylindrical irradiation geometry, with water or polystyrene as the surrounding medium. For virtual monochromatic sources, a monotonic decrease with energy of the dose absorbed to the film, with respect to that absorbed to the surrounding medium, was evidenced. Considering the IVB (32)P source and the MD-55-2 in a cylindrical geometry, the calibration with a 6 MeV electron beam would yield dose underestimations from 14 to 23%, increasing the source-to-film radial distance from 1 to 6 mm. For the planar beta-emitting sources in water, calibrations with photon or electron clinical beams would yield dose underestimations between 5 and 12%. Calibrating the RCF with (90)Sr/(90)Y, the MD-55-2 would yield dose underestimations between 3 and 5% for (32)P and discrepancies within +/-2% for (188)Re and (90)Y, whereas for the HS the dose underestimation would reach 4% with (188)Re and 6% with (32)P.
Collapse
Affiliation(s)
- M Pacilio
- Department of Medical Physics, S Camillo Forlanini Hospital, P.zza Carlo Forlanini 1, 00151 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Schueler AO, Flühs D, Anastassiou G, Jurklies C, Neuhäuser M, Schilling H, Bornfeld N, Sauerwein W. Beta-ray brachytherapy with 106Ru plaques for retinoblastoma. Int J Radiat Oncol Biol Phys 2006; 65:1212-21. [PMID: 16682139 DOI: 10.1016/j.ijrobp.2006.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/06/2006] [Accepted: 02/03/2006] [Indexed: 11/28/2022]
Abstract
PURPOSE A retrospective analysis of 134 patients who received (106)Ru brachytherapy for retinoblastomas (175 tumors in 140 eyes). Treatment and follow-up were analyzed with special emphasis on tumor control organ, preservation, and late complications. RESULTS Treated tumors had a mean height and diameter of 3.7+/-1.4 mm and 5.0+/-2.8 disk diameters, respectively. The radiation dose values were recalculated according to the calibration standard recently introduced by the National Institute of Standards and Technology. The recalculation revealed a mean applied dose of 419 Gy at the sclera (SD, 207 Gy) and 138 Gy (SD, 67 Gy) at the tumor apex. The 5-year tumor control rate was 94.4%. Tumor recurrence was more frequent in eyes with vitreous tumor cell seeding or fish-flesh regression. The estimated 5-year eye preservation rate was 86.5%. Previous treatment by brachytherapy or external beam radiotherapy, as well as a large tumor diameter, were significant factors for enucleation. The radiotherapy-induced complications after 5 years of follow-up were retinopathy (22%), optic neuropathy (21%), and cataract (17%). These complications were significantly more frequent after prior brachytherapy or external beam radiotherapy. CONCLUSION Brachytherapy using (106)Ru plaques is a highly efficient therapy with excellent local tumor control and an acceptable incidence of side effects.
Collapse
Affiliation(s)
- Andreas O Schueler
- Department of Ophthalmology, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Schueler AO, Flühs D, Anastassiou G, Jurklies C, Sauerwein W, Bornfeld N. Beta-Ray Brachytherapy of Retinoblastoma: Feasibility of a New Small-Sized Ruthenium-106 Plaque. Ophthalmic Res 2005; 38:8-12. [PMID: 16166817 DOI: 10.1159/000088259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 02/24/2005] [Indexed: 11/19/2022]
Abstract
UNLABELLED A non-comparative case observation study estimated the feasibility of brachytherapy for retinoblastoma with a newly designed ruthenium-106 plaque (label: CXS) with an 8-mm diameter of the irradiation zone. METHODS The new CXS plaque was used between 2001 and 2003 for brachytherapy of 13 retinoblastomas. Indications were recurrences after preceding local treatment or endophytic retinoblastoma with an impending vitreous tumour cell seeding. The prescribed radiation dose at the apex was 88 Gy (NIST-calibrated dosimetry). RESULTS The mean age at brachytherapy was 1.2 years (standard deviation, SD: 1.1 years), and the mean follow-up was 1.7 years (SD: 0.6 years). The treated tumours had a mean diameter of 2.3 mm (SD: 0.7 mm) and a mean height of 1.5 mm (SD: 0.6 mm) with a mean distance to the optic disc of 9.9 mm (SD: 2.2 mm). The mean duration of irradiation was 29.3 h (SD: 9.9 h) with a mean dose at the sclera of 213 Gy (SD: 80 Gy). Surgery was uneventful in all cases. Complete regression developed after 3.1 months (SD: 2.8 months) in all cases without a recurrence or a progression of the vitreous tumour cell seeding. The eyes developed no further side-effects besides a temporary circumscribed intra-ocular haemorrhage that emerged from the regressive tumour remnants. CONCLUSION Brachytherapy with the CXS plaque seems to be a safe and reliable treatment option for small-sized retinoblastoma when laser or cryocoagulation failed to control the tumour growth or for small retinoblastoma with an incipient local tumour cell seeding on the tumour surface.
Collapse
|
16
|
Astrahan MA, Szechter A, Finger PT. Design and dosimetric considerations of a modified COMS plaque: The reusable “seed-guide” insert. Med Phys 2005; 32:2706-16. [PMID: 16193802 DOI: 10.1118/1.1993828] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Collaborative Ocular Melanoma Study (COMS) developed a standardized set of eye plaques that consist of a 0.5 mm thick bowl-like gold alloy backing with a cylindrical collimating lip. A Silastic seed carrier into which 125I seeds are loaded was designed to fit within the backing. The carrier provides a standardized seed pattern and functions to offset the seeds by 1.0 mm from the concave (front) surface of the carrier. These Silastic carriers have been found to be difficult to load, preclude flash sterilization, and are a source of dosimetric uncertainty because the effective atomic number of Silastic is significantly higher than that of water. The main dosimetric effect of the Silastic carrier is a dose-reduction (compared to homogeneous water) of approximately 10%-15% for 125I radiation. The dose reduction is expected to be even greater for 103Pd radiation. In an attempt to improve upon, yet retain as much of the familiar COMS design as possible, we have developed a thin "seed-guide" insert made of gold alloy. This new insert has cutouts which match the seed pattern of the Silastic carrier, but allows the seeds to be glued directly to the inner surface of the gold backing using either dental acrylic or a cyanoacrylate adhesive. When glued directly to the gold backing the seeds are offset a few tenths of a millimeter further away from the scleral surface compared to using the Silastic carrier. From a dosimetric perspective, the space formerly occupied by the Silastic carrier is now assumed to be water equivalent. Water equivalency is a desirable attribute for this space because it eliminates the dosimetric uncertainties related to the atomic composition of Silastic and thereby facilitates the use of either 125I and/or 103Pd seeds. The caveat is that a new source of dosimetric uncertainty would be introduced were an air bubble to become trapped in this space during or after the surgical insertion. The presence of air in this space is modeled and the dosimetric impact discussed. Another unintended consequence of water equivalency is that some fluorescent x rays emitted from the gold backing can now reach the eye. These very low energy x rays were virtually eliminated by absorption in Silastic. When loaded with 125I seeds the modified plaque appears to produce dose distributions that are almost the same as those of the original COMS plaque and the maximum dosimetric uncertainty introduced by an air bubble is about 2%. Dose distributions calculated for a modified plaque loaded with 103Pd seeds show that dose to healthy ocular structures distal to the tumor apex can be reduced compared to 125I. Clearly, it is faster and easier to glue seeds into the reusable gold seed-guide insert than it is to load the COMS-Silastic carrier.
Collapse
Affiliation(s)
- Melvin A Astrahan
- Department of Radiation Oncology, University of Southern California School of Medicine, Los Angeles, California 90033, USA.
| | | | | |
Collapse
|
17
|
Kaulich TW, Zurheide J, Haug T, Nüsslin F, Bamberg M. Clinical quality assurance for 106Ru ophthalmic applicators. Radiother Oncol 2005; 76:86-92. [PMID: 15972240 DOI: 10.1016/j.radonc.2005.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 04/17/2005] [Accepted: 05/09/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Episcleral brachytherapy using 106Ru/106Rh ophthalmic applicators is a proven method of therapy of uveal melanomas sparing the globe and in many cases sparing the vision. In the year 2001, an internal clinical quality assurance procedure revealed that part of the ophthalmic applicators leaked and that the calibration was erroneous. Consequently, the producer modernized its production procedures and, in May 2002, introduced a dose rate calibration that is traceable to the NIST standard. This NIST calibration confirmed that the previous calibration had been incorrect. In order to study the effects of the producer's new internal quality assurance procedures on the ophthalmic applicators, applicators of this new generation were submitted to a newly improved internal clinical acceptance test. PATIENTS AND METHODS The internal clinical acceptance test consists of a leakage test and a dosimetric test of the ophthalmic applicators. The leakage test simulates contact of the ophthalmic applicators with chloride containing body fluid. The dosimetric tests measure depth dose curves and dose rate with a plastic scintillator dosimetric system and compare them with the indications in the producer's certificate. Furthermore, the depth dose profile of the most frequently used applicator (type CCB) was compared with published data. RESULTS The internal clinical leakage test showed that all of the tested ophthalmic applicators belonging to the new generation (n=17) were tight and not contaminated. The dosimetric acceptance tests applied to seven different types of applicators revealed that the relative depth dose profiles in the therapeutically relevant range (up to a depth of <or=7 mm) deviate from the producer's indications only by -2.7 to +3.2%. The acceptance test of the dose rate values of the ophthalmic applicators at a distance of 2mm from the surface of the applicators resulted in a coefficient of variation of 1.7% (n=17). In the evaluation of the depth dose profile of the type CCB applicator the producer's indications and the results of the entrance test conformed very well to published data. CONCLUSIONS The internal clinical quality assurance procedure has proved successful in three ways. (1) It had a catalytic effect that led to the development of a new generation of ophthalmic applicators. (2) It could be demonstrated that this new generation of applicators is up to the state of the art in brachytherapy. (3) With this new generation of 106Ru/106Rh ophthalmic applicators it is possible for the first time in the history of their use to apply the dose that is prescribed by the radiooncologist.
Collapse
|
18
|
Kirov AS, Piao JZ, Mathur NK, Miller TR, Devic S, Trichter S, Zaider M, Soares CG, LoSasso T. The three-dimensional scintillation dosimetry method: test for a106Ru eye plaque applicator. Phys Med Biol 2005; 50:3063-81. [PMID: 15972981 DOI: 10.1088/0031-9155/50/13/007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The need for fast, accurate and high resolution dosimetric quality assurance in radiation therapy has been outpacing the development of new and improved 2D and 3D dosimetry techniques. This paper summarizes the efforts to create a novel and potentially very fast, 3D dosimetry method based on the observation of scintillation light from an irradiated liquid scintillator volume serving simultaneously as a phantom material and as a dose detector medium. The method, named three-dimensional scintillation dosimetry (3DSD), uses visible light images of the liquid scintillator volume at multiple angles and applies a tomographic algorithm to a series of these images to reconstruct the scintillation light emission density in each voxel of the volume. It is based on the hypothesis that with careful design and data processing, one can achieve acceptable proportionality between the local light emission density and the locally absorbed dose. The method is applied to a Ru-106 eye plaque immersed in a 16.4 cm3 liquid scintillator volume and the reconstructed 3D dose map is compared along selected profiles and planes with radiochromic film and diode measurements. The comparison indicates that the 3DSD method agrees, within 25% for most points or within approximately 2 mm distance to agreement, with the relative radiochromic film and diode dose distributions in a small (approximately 4.5 mm high and approximately 12 mm diameter) volume in the unobstructed, high gradient dose region outside the edge of the plaque. For a comparison, the reproducibility of the radiochromic film results for our measurements ranges from 10 to 15% within this volume. At present, the 3DSD method is not accurate close to the edge of the plaque, and further than approximately 10 mm (<10% central axis depth dose) from the plaque surface. Improvement strategies, considered important to provide a more accurate quick check of the dose profiles in 3D for brachytherapy applicators, are discussed.
Collapse
Affiliation(s)
- A S Kirov
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|