1
|
Liu J, Xu Y, Teymurazyan A, Papandreou Z, Pang G. Development of a novel high quantum efficiency MV x-ray detector for image-guided radiotherapy: A feasibility study. Med Phys 2019; 47:152-163. [PMID: 31682020 PMCID: PMC7003972 DOI: 10.1002/mp.13900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose To develop a new scintillating fiber‐based electronic portal imaging device (EPID) with a high quantum efficiency (QE) while preserving an adequate spatial resolution. Methods Two prototypes were built: one with a single pixel readout and the other with an active matrix flat‐panel imager (AMFPI) for readout. The energy conversion layer of both prototypes was made of scintillating fiber layers interleaved with corrugated lead sheets to form a honeycomb pattern. The scintillating fibers have a diameter of 1 mm and the distance between the centers of neighboring fibers on the same layer is 1.35 mm. The layers have 1.22 mm spacing between them. The energy conversion layer has a thickness of 2 cm. The modulation transfer function (MTF), antiscatter properties and sensitivity of the detector with a single pixel readout were measured using a 6‐MV beam on a LINAC machine. In addition, a Monte Carlo simulation was conducted to calculate the zero‐frequency detective quantum efficiency (DQE(0)) of the proposed detector with an active matrix flat‐panel imager for readout. Results The DQE(0) of the proposed detector can be 11.5%, which is about an order of magnitude higher than that of current EPIDs. The frequency of 50% modulation (f50) of the measured MTF is 0.2 mm-1 at 6 MV, which is comparable to that of video‐based EPIDs. The scatter to primary ratio (SPR) measured with the detector at 10 cm air gap and 20 × 20 cm2 field size is approximately 30% lower than that of ionization chamber–based detectors with a comparable QE. The detector noise which includes the x‐ray quantum noise and absorption noise is much larger than the electronic noise per pixel of the flat‐panel imager at a dose of less than two LINAC pulses. Thus, the proposed detector is quantum noise limited down to very low doses (∼a couple of radiation pulses of the LINAC). A proof‐of‐concept image has been obtained using a 6‐MV beam. Conclusions This work indicates that by using scintillating fibers and lead layers it is possible to increase the thickness of the detecting materials, and therefore the QE or the DQE(0) of the detector, while maintaining an adequate spatial resolution for MV x‐ray imaging. Due to the use of lead as the spacing material, the new detector also has antiscatter property, which will help improve the signal‐to‐noise ratio of the images. Further investigation to optimize the design of the detector and achieve a better combination of DQE and spatial resolution is warranted.
Collapse
Affiliation(s)
- Jian Liu
- Department of Physics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Yuan Xu
- Department of Physics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Aram Teymurazyan
- Department of Physics, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Zisis Papandreou
- Department of Physics, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Geordi Pang
- Department of Physics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada.,Odette Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
2
|
Hu YH, Shedlock D, Wang A, Rottmann J, Baturin P, Myronakis M, Huber P, Fueglistaller R, Shi M, Morf D, Star-Lack J, Berbeco RI. Characterizing a novel scintillating glass for application to megavoltage cone-beam computed tomography. Med Phys 2019; 46:1323-1330. [PMID: 30586163 DOI: 10.1002/mp.13355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the performance of a prototype electric portal imaging device (EPID) with a high detective quantum efficiency (DQE) scintillator, LKH-5. Specifically, image quality in context of both planar and megavoltage (MV) cone-beam computed tomography (CBCT) is analyzed. METHODS Planar image quality in terms of modulation transfer function (MTF), noise power spectrum (NPS), and DQE are measured and compared to an existing EPID (AS-1200) using the 6 MV beamline for a Varian TrueBeam linac. Imager performance is contextualized for three-dimensional (3D), MV-CBCT performance by measuring imager lag and analyzing the expected degradation of the DQE as a function of dose. Finally, comparisons between reconstructed images of the Catphan phantom in terms of qualitative quality and signal-difference-to-noise ratio (SDNR) are made for 6 MV images using both conventional and LKH-5 EPIDs as well as for the kilovoltage (kV) on-board imager (OBI). RESULTS Analysis of the NPS reveals linearity at all measured doses using the prototype LKH-5 detector. While the first zero of the MTF is much lower for the LKH-5 detector than the conventional EPID (0.6 cycles/mm vs 1.6 cycles/mm), the normalized NPS (NNPS) multiplied by total quanta (qNNPS) of the LKH-5 detector is roughly a factor of seven to eight times lower, yielding a DQE(0) of approximately 8%. First, second, and third frame lag were measured at approximately 23%, 5%, and 1%, respectively, although no noticeable image artifacts were apparent in reconstructed volumes. Analysis of low-dose performance reveals that DQE(0) remains at 80% of its maximum value at a dose as low as 7.5 × 10-6 MU. For a 400 projection technique, this represents a total scan dose of 0.0030 MU, suggesting that if imaging doses are increased to a value typical of kV-CBCT scans (~2.7 cGy), the LKH-5 detector will retain quantum noise limited performance. Finally, comparing Catphan scans, the prototype detector exhibits much lower image noise than the conventional EPID, resulting in improved small object representation. Furthermore, SDNR of H2 O and polystyrene cylinders improved from -1.95 and 2.94 to -15 and 18.7, respectively. CONCLUSIONS Imaging performance of the prototype LKH-5 detector was measured and analyzed for both planar and 3D contexts. Improving noise transfer of the detector results in concurrent improvement of DQE(0). For 3D imaging, temporal characteristics were adequate for artifact-free performance and at relevant doses, the detector retained quantum noise limited performance. Although quantitative MTF measurements suggest poorer resolution, small object representation of the prototype imager is qualitatively improved over the conventional detector due to the measured reduction in noise.
Collapse
Affiliation(s)
- Yue-Houng Hu
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Adam Wang
- Varian Medical Systems, Palo Alto, CA, 94304-1030, USA
| | - Joerg Rottmann
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul Baturin
- Varian Medical Systems, Palo Alto, CA, 94304-1030, USA
| | - Marios Myronakis
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal Huber
- Varian Medical Systems, CH-5405, Baden-Dattwil, Switzerland
| | | | - Mengying Shi
- University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Daniel Morf
- Varian Medical Systems, CH-5405, Baden-Dattwil, Switzerland
| | | | - Ross I Berbeco
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Teymurazyan A, Rowlands JA, Pang G. Monte Carlo simulation of a quantum noise limited Čerenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging. Med Phys 2014; 41:041907. [PMID: 24694138 DOI: 10.1118/1.4867867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. METHODS Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (∼ 1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. RESULTS A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. CONCLUSIONS Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an avalanche gain in the AMFPI and is quantum noise limited at dose levels corresponding to a single Linac pulse.
Collapse
Affiliation(s)
- A Teymurazyan
- Imaging Research, Sunnybrook Health Sciences Centre, Department of Medical Biophysics, University of Toronto, Toronto M4N 3M5, Canada
| | - J A Rowlands
- Imaging Research, Sunnybrook Health Sciences Centre, Department of Medical Biophysics, University of Toronto, Toronto M4N 3M5, Canada; Thunder Bay Regional Research Institute (TBRRI), Thunder Bay P7A 7T1, Canada; and Department of Radiation Oncology, University of Toronto, Toronto M5S 3E2, Canada
| | - G Pang
- Imaging Research, Sunnybrook Health Sciences Centre, Department of Medical Biophysics, University of Toronto, Toronto M4N 3M5, Canada; Department of Radiation Oncology, University of Toronto, Toronto M5S 3E2, Canada; Odette Cancer Centre, Toronto M4N 3M5, Canada; and Department of Physics, Ryerson University, Toronto M5B 2K3, Canada
| |
Collapse
|
4
|
Silva I, Pang G. Characteristics of radiation induced light in optical fibres for portal imaging application. Radiat Phys Chem Oxf Engl 1993 2012. [DOI: 10.1016/j.radphyschem.2012.01.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Teymurazyan A, Pang G. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers. Med Phys 2012; 39:1518-29. [DOI: 10.1118/1.3687163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
6
|
El-Mohri Y, Antonuk LE, Zhao Q, Choroszucha RB, Jiang H, Liu L. Low-dose megavoltage cone-beam CT imaging using thick, segmented scintillators. Phys Med Biol 2011; 56:1509-27. [PMID: 21325709 PMCID: PMC3062516 DOI: 10.1088/0031-9155/56/6/001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (∼2% at 6 MV). To overcome this limitation, the incorporation of thick, segmented, crystalline scintillators, as a replacement for the phosphor screens used in these AMFPIs, has been shown to significantly improve the detective quantum efficiency (DQE) performance, leading to improved image quality for projection imaging at low dose. Toward the realization of practical AMFPIs capable of low dose, soft-tissue visualization using MV CBCT imaging, two prototype AMFPIs incorporating segmented scintillators with ∼11 mm thick CsI:Tl and Bi(4)Ge(3)O(12) (BGO) crystals were evaluated. Each scintillator consists of 120 × 60 crystalline elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm. The prototypes were evaluated using a bench-top CBCT system, allowing the acquisition of 180 projection, 360° tomographic scans with a 6 MV radiotherapy photon beam. Reconstructed images of a spatial resolution phantom, as well as of a water-equivalent phantom, embedded with tissue equivalent objects having electron densities (relative to water) varying from ∼0.28 to ∼1.70, were obtained down to one beam pulse per projection image, corresponding to a scan dose of ∼4 cGy--a dose similar to that required for a single portal image obtained from a conventional MV AMFPI. By virtue of their significantly improved DQE, the prototypes provided low contrast visualization, allowing clear delineation of an object with an electron density difference of ∼2.76%. Results of contrast, noise and contrast-to-noise ratio are presented as a function of dose and compared to those from a conventional MV AMFPI.
Collapse
Affiliation(s)
- Youcef El-Mohri
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Parsai EI, Shvydka D, Kang J. Design and optimization of large area thin-film CdTe detector for radiation therapy imaging applications. Med Phys 2010; 37:3980-94. [PMID: 20879560 DOI: 10.1118/1.3438082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors investigate performance of thin-film cadmium telluride (CdTe) in detecting high-energy (6 MV) x rays. The utilization of this material has become technologically feasible only in recent years due to significant development in large area photovoltaic applications. METHODS The CdTe film is combined with a metal plate, facilitating conversion of incoming photons into secondary electrons. The system modeling is based on the Monte Carlo simulations performed to determine the optimized CdTe layer thickness in combination with various converter materials. RESULTS The authors establish a range of optimal parameters producing the highest DQE due to energy absorption, as well as signal and noise spatial spreading. The authors also analyze the influence of the patient scatter on image formation for a set of detector configurations. The results of absorbed energy simulation are used in device operation modeling to predict the detector output signal. Finally, the authors verify modeling results experimentally for the lowest considered device thickness. CONCLUSIONS The proposed CdTe-based large area thin-film detector has a potential of becoming an efficient low-cost electronic portal imaging device for radiation therapy applications.
Collapse
Affiliation(s)
- E Ishmael Parsai
- Department of Radiation Oncology, University of Toledo Health Sciences Campus, Ohio 43614, USA.
| | | | | |
Collapse
|
8
|
Zhao Q, Antonuk LE, El-Mohri Y, Wang Y, Du H, Sawant A, Su Z, Yamamoto J. Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging. Med Phys 2010; 37:2738-48. [PMID: 20632584 DOI: 10.1118/1.3416924] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Electronic portal imaging devices based on megavoltage (MV), active matrix, flat-panel imagers (AMFPIs) are presently regarded as the gold standard in portal imaging for external beam radiation therapy. These devices, employing indirect detection of incident radiation by means of a metal plate plus phosphor screen combination, offer a quantum efficiency of only approximately 2% at 6 MV, leading to a detective quantum efficiency (DQE) of only approximately 1%. In order to significantly improve the DQE performance of MV AMFPIs, a strategy based on the development of direct detection imagers incorporating thick films of polycrystalline mercuric iodide (HgI2) photoconductor was undertaken and is reported. METHODS Two MV AMFPI prototypes, one incorporating an approximately 300 microm thick HgI2 layer created through physical vapor deposition (PVD) and a second incorporating an approximately 460 microm thick HgI2 layer created through screen-printing of particle-in-binder (PIB) material, were quantitatively evaluated using a 6 MV photon beam. The reported measurements include empirical determination of x-ray sensitivity, lag, modulation transfer function (MTF), noise power spectrum, and DQE. RESULTS For both prototypes, MTF and DQE results were found to be consistent with theoretical expectations and the MTFs were also found to be higher than that measured from a conventional MV AMFPI. In addition, the DQE results exhibit input-quantum-limited behavior, even at extremely low doses. Compared to PVD, the PIB prototype exhibits much lower dark current, slightly higher lag, and similar DQE. Finally, the challenges associated with this approach, as well as strategies for achieving considerably higher DQE through thicker HgI2 layers, are discussed. CONCLUSIONS The DQE of each of the prototypes is found to be comparable to that of conventional MV AMFPIs, commensurate with the modest photoconductor thicknesses of these early samples. It is anticipated that thicker layers of HgI2 based on PIB deposition can provide higher DQE while maintaining good material properties.
Collapse
Affiliation(s)
- Qihua Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48019, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang Y, El-Mohri Y, Antonuk LE, Zhao Q. Monte Carlo investigations of the effect of beam divergence on thick, segmented crystalline scintillators for radiotherapy imaging. Phys Med Biol 2010; 55:3659-73. [PMID: 20526032 PMCID: PMC2909124 DOI: 10.1088/0031-9155/55/13/006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of thick, segmented scintillators in electronic portal imagers offers the potential for significant improvement in x-ray detection efficiency compared to conventional phosphor screens. Such improvement substantially increases the detective quantum efficiency (DQE), leading to the possibility of achieving soft-tissue visualization at clinically practical (i.e. low) doses using megavoltage (MV) cone-beam computed tomography. While these DQE increases are greatest at zero spatial frequency, they are diminished at higher frequencies as a result of degradation of spatial resolution due to lateral spreading of secondary radiation within the scintillator--an effect that is more pronounced for thicker scintillators. The extent of this spreading is even more accentuated for radiation impinging the scintillator at oblique angles of incidence due to beam divergence. In this paper, Monte Carlo simulations of radiation transport, performed to investigate and quantify the effects of beam divergence on the imaging performance of MV imagers based on two promising scintillators (BGO and CsI:Tl), are reported. In these studies, 10-40 mm thick scintillators, incorporating low-density polymer, or high-density tungsten septal walls, were examined for incident angles corresponding to that encountered at locations up to approximately 15 cm from the central beam axis (for an imager located 130 cm from a radiotherapy x-ray source). The simulations demonstrate progressively more severe spatial resolution degradation (quantified in terms of the effect on the modulation transfer function) as a function of increasing angle of incidence (as well as of the scintillator thickness). Since the noise power behavior was found to be largely independent of the incident angle, the dependence of the DQE on the incident angle is therefore primarily determined by the spatial resolution. The observed DQE degradation suggests that 10 mm thick scintillators are not strongly affected by beam divergence for detector areas up to approximately 30x30 cm2. For thicker scintillators, the area that is relatively unaffected is significantly reduced, requiring a focused scintillator geometry in order to preserve spatial resolution, and thus DQE.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
10
|
Wang Y, Antonuk LE, Zhao Q, El-Mohri Y, Perna L. High-DQE EPIDs based on thick, segmented BGO and CsI:Tl scintillators: performance evaluation at extremely low dose. Med Phys 2009; 36:5707-18. [PMID: 20095283 PMCID: PMC2797046 DOI: 10.1118/1.3259721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 09/18/2009] [Accepted: 10/13/2009] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Electronic portal imaging devices (EPIDs) based on active matrix, flat-panel imagers (AMFPIs) have become the gold standard for portal imaging and are currently being investigated for megavoltage cone-beam computed tomography (CBCT) and cone-beam digital tomosynthesis (CBDT). However, the practical realization of such volumetric imaging techniques is constrained by the relatively low detective quantum efficiency (DQE) of AMFPI-based EPIDs at radiotherapy energies, approximately 1% at 6 MV. In order to significantly improve DQE, the authors are investigating thick, segmented scintillators, consisting of 2D matrices of scintillating crystals separated by septal walls. METHODS A newly constructed segmented BGO scintillator (11.3 mm thick) and three segmented CsI:Tl scintillators (11.4, 25.6, and 40.0 mm thick) were evaluated using a 6 MV photon beam. X-ray sensitivity, modulation transfer function, noise power spectrum, DQE, and phantom images were obtained using prototype EPIDs based on the four scintillators. RESULTS The BGO and CsI:Tl prototypes were found to exhibit improvement in DQE ranging from approximately 12 to 25 times that of a conventional AMFPI-based EPID at zero spatial frequency. All four prototype EPIDs provide significantly improved contrast resolution at extremely low doses, extending down to a single beam pulse. In particular, the BGO prototype provides contrast resolution comparable to that of the conventional EPID, but at 20 times less dose, with spatial resolution sufficient for identifying the boundaries of low-contrast objects. For this prototype, however, the BGO scintillator exhibited an undesirable radiation-induced variation in x-ray sensitivity. CONCLUSIONS Prototype EPIDs based on thick, segmented BGO and CsI:T1 scintillators provide significantly improved portal imaging performance at extremely low dose (i.e., down to 1 beam pulse corresponding to approximately 0.022 cGy), creating the possibility of soft-tissue visualization using MV CBCT and CBDT at clinically practical dose.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiation Oncology, University of Michigan, Ann Arbor Michigan 48109, USA
| | | | | | | | | |
Collapse
|
11
|
Wang Y, Antonuk LE, El-Mohri Y, Zhao Q. A Monte Carlo investigation of Swank noise for thick, segmented, crystalline scintillators for radiotherapy imaging. Med Phys 2009; 36:3227-38. [PMID: 19673222 DOI: 10.1118/1.3125821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Thick, segmented scintillating detectors, consisting of 2D matrices of scintillator crystals separated by optically opaque septal walls, hold considerable potential for significantly improving the performance of megavoltage (MV) active matrix, flat-panel imagers (AMFPIs). Initial simulation studies of the radiation transport properties of segmented detectors have indicated the possibility of significant improvement in DQE compared to conventional MV AMFPIs based on phosphor screen detectors. It is therefore interesting to investigate how the generation and transport of secondary optical photons affect the DQE performance of such segmented detectors. One effect that can degrade DQE performance is optical Swank noise (quantified by the optical Swank factor I(opt)), which is induced by depth-dependent variations in optical gain. In this study, Monte Carlo simulations of radiation and optical transport have been used to examine I(opt) and zero-frequency DQE for segmented CsI:Tl and BGO detectors at different thicknesses and element-to-element pitches. For these detectors, I(opt) and DQE were studied as a function of various optical parameters, including absorption and scattering in the scintillator, absorption at the top reflector and septal walls, as well as scattering at the side surfaces of the scintillator crystals. The results indicate that I(opt) and DQE are only weakly affected by absorption and scattering in the scintillator, as well as by absorption at the top reflector. However, in some cases, these metrics were found to be significantly degraded by absorption at the septal walls and scattering at the scintillator side surfaces. Moreover, such degradations are more significant for detectors with greater thickness or smaller element pitch. At 1.016 mm pitch and with optimized optical properties, 40 mm thick segmented CsI:Tl and BGO detectors are predicted to provide DQE values of approximately 29% and 42%, corresponding to improvement by factors of approximately 29 and 42, respectively, compared to that of conventional MV AMFPIs.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
12
|
Gopal A, Samant SS. Use of a line-pair resolution phantom for comprehensive quality assurance of electronic portal imaging devices based on fundamental imaging metrics. Med Phys 2009; 36:2006-15. [PMID: 19610289 DOI: 10.1118/1.3099559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Image guided radiation therapy solutions based on megavoltage computed tomography (MVCT) involve the extension of electronic portal imaging devices (EPIDs) from their traditional role of weekly localization imaging and planar dose mapping to volumetric imaging for 3D setup and dose verification. To sustain the potential advantages of MVCT, EPIDs are required to provide improved levels of portal image quality. Therefore, it is vital that the performance of EPIDs in clinical use is maintained at an optimal level through regular and rigorous quality assurance (QA). Traditionally, portal imaging QA has been carried out by imaging calibrated line-pair and contrast resolution phantoms and obtaining arbitrarily defined QA indices that are usually dependent on imaging conditions and merely indicate relative trends in imaging performance. They are not adequately sensitive to all aspects of image quality unlike fundamental imaging metrics such as the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) that are widely used to characterize detector performance in radiographic imaging and would be ideal for QA purposes. However, due to the difficulty of performing conventional MTF measurements, they have not been used for routine clinical QA. The authors present a simple and quick QA methodology based on obtaining the MTF, NPS, and DQE of a megavoltage imager by imaging standard open fields and a bar-pattern QA phantom containing 2 mm thick tungsten line-pair bar resolution targets. Our bar-pattern based MTF measurement features a novel zero-frequency normalization scheme that eliminates normalization errors typically associated with traditional bar-pattern measurements at megavoltage x-ray energies. The bar-pattern QA phantom and open-field images are used in conjunction with an automated image analysis algorithm that quickly computes the MTF, NPS, and DQE of an EPID system. Our approach combines the fundamental advantages of linear systems metrics such as robustness, sensitivity across the full spatial frequency range of interest, and normalization to imaging conditions (magnification, system gain settings, and exposure), with the simplicity, ease, and speed of traditional phantom imaging. The algorithm was analyzed for accuracy and sensitivity by comparing with a commercial portal imaging QA method (PIPSPRO, Standard Imaging, Middleton, WI) on both first-generation lens-coupled and modern a-Si flat-panel based clinical EPID systems. The bar-pattern based QA measurements were found to be far more sensitive to even small levels of degradation in spatial resolution and noise. The bar-pattern based QA methodology offers a comprehensive image quality assessment tool suitable for both commissioning and routine EPID QA.
Collapse
Affiliation(s)
- Arun Gopal
- Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
13
|
Pang G, Bani-Hashemi A, Au P, O'Brien PF, Rowlands JA, Morton G, Lim T, Cheung P, Loblaw A. Megavoltage cone beam digital tomosynthesis (MV-CBDT) for image-guided radiotherapy: a clinical investigational system. Phys Med Biol 2008; 53:999-1013. [DOI: 10.1088/0031-9155/53/4/012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Wang Y, Antonuk LE, El-Mohri Y, Zhao Q, Sawant A, Du H. Monte Carlo investigations of megavoltage cone-beam CT using thick, segmented scintillating detectors for soft tissue visualization. Med Phys 2008; 35:145-58. [PMID: 18293571 PMCID: PMC2920060 DOI: 10.1118/1.2818957] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Megavoltage cone-beam computed tomography (MV CBCT) is a highly promising technique for providing volumetric patient position information in the radiation treatment room. Such information has the potential to greatly assist in registering the patient to the planned treatment position, helping to ensure accurate delivery of the high energy therapy beam to the tumor volume while sparing the surrounding normal tissues. Presently, CBCT systems using conventional MV active matrix flat-panel imagers (AMFPIs), which are commonly used in portal imaging, require a relatively large amount of dose to create images that are clinically useful. This is due to the fact that the phosphor screen detector employed in conventional MV AMFPIs utilizes only approximately 2% of the incident radiation (for a 6 MV x-ray spectrum). Fortunately, thick segmented scintillating detectors can overcome this limitation, and the first prototype imager has demonstrated highly promising performance for projection imaging at low doses. It is therefore of definite interest to examine the potential performance of such thick, segmented scintillating detectors for MV CBCT. In this study, Monte Carlo simulations of radiation energy deposition were used to examine reconstructed images of cylindrical CT contrast phantoms, embedded with tissue-equivalent objects. The phantoms were scanned at 6 MV using segmented detectors having various design parameters (i.e., detector thickness as well as scintillator and septal wall materials). Due to constraints imposed by the nature of this study, the size of the phantoms was limited to approximately 6 cm. For such phantoms, the simulation results suggest that a 40 mm thick, segmented CsI detector with low density septal walls can delineate electron density differences of approximately 2.3% and 1.3% at doses of 1.54 and 3.08 cGy, respectively. In addition, it was found that segmented detectors with greater thickness, higher density scintillator material, or lower density septal walls exhibit higher contrast-to-noise performance. Finally, the performance of various segmented detectors obtained at a relatively low dose (1.54 cGy) was compared with that of a phosphor screen similar to that employed in conventional MV AMFPIs. This comparison indicates that for a phosphor screen to achieve the same contrast-to-noise performance as the segmented detectors approximately 18 to 59 times more dose is required, depending on the configuration of the segmented detectors.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Murphy MJ, Balter J, Balter S, BenComo JA, Das IJ, Jiang SB, Ma CM, Olivera GH, Rodebaugh RF, Ruchala KJ, Shirato H, Yin FF. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys 2007; 34:4041-63. [PMID: 17985650 DOI: 10.1118/1.2775667] [Citation(s) in RCA: 417] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radiographic image guidance has emerged as the new paradigm for patient positioning, target localization, and external beam alignment in radiotherapy. Although widely varied in modality and method, all radiographic guidance techniques have one thing in common--they can give a significant radiation dose to the patient. As with all medical uses of ionizing radiation, the general view is that this exposure should be carefully managed. The philosophy for dose management adopted by the diagnostic imaging community is summarized by the acronym ALARA, i.e., as low as reasonably achievable. But unlike the general situation with diagnostic imaging and image-guided surgery, image-guided radiotherapy (IGRT) adds the imaging dose to an already high level of therapeutic radiation. There is furthermore an interplay between increased imaging and improved therapeutic dose conformity that suggests the possibility of optimizing rather than simply minimizing the imaging dose. For this reason, the management of imaging dose during radiotherapy is a different problem than its management during routine diagnostic or image-guided surgical procedures. The imaging dose received as part of a radiotherapy treatment has long been regarded as negligible and thus has been quantified in a fairly loose manner. On the other hand, radiation oncologists examine the therapy dose distribution in minute detail. The introduction of more intensive imaging procedures for IGRT now obligates the clinician to evaluate therapeutic and imaging doses in a more balanced manner. This task group is charged with addressing the issue of radiation dose delivered via image guidance techniques during radiotherapy. The group has developed this charge into three objectives: (1) Compile an overview of image-guidance techniques and their associated radiation dose levels, to provide the clinician using a particular set of image guidance techniques with enough data to estimate the total diagnostic dose for a specific treatment scenario, (2) identify ways to reduce the total imaging dose without sacrificing essential imaging information, and (3) recommend optimization strategies to trade off imaging dose with improvements in therapeutic dose delivery. The end goal is to enable the design of image guidance regimens that are as effective and efficient as possible.
Collapse
Affiliation(s)
- Martin J Murphy
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol 2007; 17:2767-79. [PMID: 17587058 DOI: 10.1007/s00330-007-0651-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/20/2007] [Accepted: 03/30/2007] [Indexed: 12/12/2022]
Abstract
Flat-panel detectors or, synonymously, flat detectors (FDs) have been developed for use in radiography and fluoroscopy with the defined goal to replace standard X-ray film, film-screen combinations and image intensifiers by an advanced sensor system. FD technology in comparison to X-ray film and image intensifiers offers higher dynamic range, dose reduction, fast digital readout and the possibility for dynamic acquisitions of image series, yet keeping to a compact design. It appeared logical to employ FD designs also for computed tomography (CT) imaging. Respective efforts date back a few years only, but FD-CT has meanwhile become widely accepted for interventional and intra-operative imaging using C-arm systems. FD-CT provides a very efficient way of combining two-dimensional (2D) radiographic or fluoroscopic and 3D CT imaging. In addition, FD technology made its way into a number of dedicated CT scanner developments, such as scanners for the maxillo-facial region or for micro-CT applications. This review focuses on technical and performance issues of FD technology and its full range of applications for CT imaging. A comparison with standard clinical CT is of primary interest. It reveals that FD-CT provides higher spatial resolution, but encompasses a number of disadvantages, such as lower dose efficiency, smaller field of view and lower temporal resolution. FD-CT is not aimed at challenging standard clinical CT as regards to the typical diagnostic examinations; but it has already proven unique for a number of dedicated CT applications, offering distinct practical advantages, above all the availability of immediate CT imaging in the interventional suite or the operating room.
Collapse
Affiliation(s)
- Willi A Kalender
- Institute of Medical Physics, University of Erlangen-Nuernberg, Henkestr. 91, 91052, Erlangen, Germany.
| | | |
Collapse
|
17
|
Monajemi TT, Fallone BG, Rathee S. Thick, segmented CdWO4-photodiode detector for cone beam megavoltage CT: a Monte Carlo study of system design parameters. Med Phys 2007; 33:4567-77. [PMID: 17278808 DOI: 10.1118/1.2370503] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Megavoltage (MV) imaging detectors have been the focus of research by many groups in recent years. We have been working with segmented CdWO4 crystals in contact with photodiodes in our lab. The present study uses both x-ray and optical photon transport Monte Carlo simulations to analyze the effects of scintillation crystal height, septa material, beam divergence, and beam spectrum on the modulation transfer function, MTF(f) and zero frequency detective quantum efficiency, DQE(0), of a theoretical area detector. The theoretical detector is comprised of tall, segmented CdWO4 crystals and two dimensional photodiode arrays with a pitch of 1 mm and a fill factor of 72%. Increasing the crystal height above 10 mm does not result in an improvement in the DQE(0) if the reflection coefficient of the septa is less than 0.8. For a reflection coefficient of 0.975 for the septa, there is a continual gain in the DQE(0) up to 30 mm tall crystals. Similar calculations show that employing a 3.5 MV beam without a flattening filter increases the DQE(0) for 20 mm tall crystals by 9% compared to a typical 6 MV beam with a flattening filter. The severe degradations due to beam divergence on MTF(f) are quantified and suggest the use of focused detectors in MV imaging. It is found that when the effect of optical photons is considered, the presence of divergence can appear as a shift in the location of the input signal as well as loss of spatial resolution.
Collapse
Affiliation(s)
- T T Monajemi
- Department of Medical Physics, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada.
| | | | | |
Collapse
|
18
|
Mei X, Rowlands JA, Pang G. Electronic portal imaging based on Cerenkov radiation: A new approach and its feasibility. Med Phys 2006; 33:4258-70. [PMID: 17153404 DOI: 10.1118/1.2362875] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Most electronic portal imaging devices (EPIDs) developed so far use a Cu plate/phosphor screen to absorb x rays and convert their energies into light, and the light image is then read out. The main problem with this approach is that the Cu plate/phosphor screen must be thin (approximately 2 mm thick) in order to obtain a high spatial resolution, resulting in a low x-ray absorption or low quantum efficiency for megavoltage x rays (typically 2-4%). In addition, the phosphor screen contains high atomic number (high-Z) materials, resulting in an over-response of the detector to low-energy x rays in dosimetric verification. In this paper, we propose a new approach that uses Cerenkov radiation to convert x-ray energy absorbed by the detector into light for portal imaging applications. With our approach, a thick (approximately 10-30 cm) energy conversion layer made of a low-Z dielectric medium, such as a large-area, thick fiber-optic taper consisting of a matrix of optical fibers aligned with the incident x rays, is used to replace the thin Cu plate/phosphor screen. The feasibility of this approach has been investigated using a single optical fiber embedded in a solid material. The spatial resolution expressed by the modulation transfer function (MTF) and the sensitivity of the detector at low doses (approximately one Linac pulse) have been measured. It is predicted that, using this approach, a detective quantum efficiency of an order of magnitude higher at zero frequency can be obtained while maintaining a reasonable MTF, as compared to current EPIDs.
Collapse
Affiliation(s)
- X Mei
- Toronto-Sunnybrook Regional Cancer Centre, 2075 Bayview Avenue, Toronto M4N 3M5, Canada
| | | | | |
Collapse
|
19
|
Ross W, Cody DD, Hazle JD. Design and performance characteristics of a digital flat-panel computed tomography system. Med Phys 2006; 33:1888-901. [PMID: 16872096 DOI: 10.1118/1.2198941] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Computed tomography (CT) applications continue to expand, and they require faster data acquisition speeds and improved spatial resolution. Achieving isotropic resolution, by means of cubic voxels, in combination with longitudinal coverage beyond 20 mm would represent a substantial advance in clinical CT because few commercially available scanners are capable of this at present. To achieve this goal, a prototype CT system incorporating a movable array of 20 cm X 20 cm, 200-microm-pitch amorphous silicon flat-panel x-ray detectors and a conventional CT x-ray source was constructed at the General Electric Global Research Center and performance tested at The University of Texas M. D. Anderson Cancer Center. The device was designed for preclinical imaging applications and has a scan field of 13 to 33 cm, with a magnification of 1.5. Image quality performance measurements, such as spatial and contrast resolutions, were obtained using both industry standard and custom phantoms. Spatial resolution, quantified by the system's modulation transfer function, indicated improvement by a factor of 2.5 to 5 in isotropic spatial resolution over current commercially available systems, with 10% modulation transfer function modulations at frequencies from 19 to 31 lp/cm. Low-contrast detectability results were obtained from industry-standard phantoms and were comprised of embedded contrast regions of 0.3%, 0.5%, and 1.0% over areas of several mm2. Performance was sufficient to easily distinguish 1.0% contrast regions down to 2 mm in diameter relative to the background. On the basis of scans of specialized hydroxyapatite phantoms, the system response is extremely linear (R2=0.990) in bone-equivalent density regimens. Standard CT dose index CTDI100 and CTDIw measurements were also conducted to assess dose delivery using a 16-cm-CTDI phantom and a 120 kV 120 mAs scan technique. The CTDIw ranged from 30 mGy (one-panel mode) to 113 mGy (two-panel mode) for this system. Lastly, several in vivo canine and murine samples were examined, and preliminary results from these scans are presented. On the basis of our results, it is clear that flat-panel-based CT scanners are useful for high-contrast high-resolution clinical applications, providing up to a 20-fold increase in volumetric resolution over most commercially available scanners.
Collapse
Affiliation(s)
- William Ross
- General Electric Global Research Center, Niskayuna, New York 12309, USA.
| | | | | |
Collapse
|
20
|
Sillanpaa J, Chang J, Mageras G, Yorke E, De Arruda F, Rosenzweig KE, Munro P, Seppi E, Pavkovich J, Amols H. Low-dose megavoltage cone-beam computed tomography for lung tumors using a high-efficiency image receptor. Med Phys 2006; 33:3489-97. [PMID: 17022245 DOI: 10.1118/1.2222075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report on the capabilities of a low-dose megavoltage cone-beam computed tomography (MV CBCT) system. The high-efficiency image receptor consists of a photodiode array coupled to a scintillator composed of individual CsI crystals. The CBCT system uses the 6 MV beam from a linear accelerator. A synchronization circuit allows us to limit the exposure to one beam pulse [0.028 monitor units (MU)] per projection image. 150-500 images (4.2-13.9 MU total) are collected during a one-minute scan and reconstructed using a filtered backprojection algorithm. Anthropomorphic and contrast phantoms are imaged and the contrast-to-noise ratio of the reconstruction is studied as a function of the number of projections and the error in the projection angles. The detector dose response is linear (R2 value 0.9989). A 2% electron density difference is discernible using 460 projection images and a total exposure of 13 MU (corresponding to a maximum absorbed dose of about 12 cGy in a patient). We present first patient images acquired with this system. Tumors in lung are clearly visible and skeletal anatomy is observed in sufficient detail to allow reproducible registration with the planning kV CT images. The MV CBCT system is shown to be capable of obtaining good quality three-dimensional reconstructions at relatively low dose and to be clinically usable for improving the accuracy of radiotherapy patient positioning.
Collapse
Affiliation(s)
- Jussi Sillanpaa
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rathee S, Tu D, Monajemi TT, Rickey DW, Fallone BG. A bench-top megavoltage fan-beam CT using CdWO4-photodiode detectors. I. System description and detector characterization. Med Phys 2006; 33:1078-89. [PMID: 16696485 DOI: 10.1118/1.2181290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We describe the components of a bench-top megavoltage computed tomography (MVCT) scanner that uses an 80-element detector array consisting of CdWO4 scintillators coupled to photodiodes. Each CdWO4 crystal is 2.75 x 8 x 10 mm3. The detailed design of the detector array, timing control, and multiplexer are presented. The detectors show a linear response to dose (dose rate was varied by changing the source to detector distance) with a correlation coefficient (R2) nearly unity with the standard deviation of signal at each dose being less than 0.25%. The attenuation of a 6 MV beam by solid water measured by this detector array indicates a small, yet significant spectral hardening that needs to be corrected before image reconstruction. The presampled modulation transfer function is strongly affected by the detector's large pitch and a large improvement can be obtained by reducing the detector pitch. The measured detective quantum efficiency at zero spatial frequency is 18.8% for 6 MV photons which will reduce the dose to the patient in MVCT applications. The detector shows a less than a 2% reduction in response for a dose of 24.5 Gy accumulated in 2 h; however, the lost response is recovered on the following day. A complete recovery can be assumed within the experimental uncertainty (standard deviation <0.5%); however, any smaller permanent damage could not be assessed.
Collapse
Affiliation(s)
- S Rathee
- Department of Medical Physics, Cross Cancer Institute; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G IZ2, Canada
| | | | | | | | | |
Collapse
|
22
|
Monajemi TT, Tu D, Fallone BG, Rathee S. A bench-top megavoltage fan-beam CT using CdWO4-photodiode detectors. II. Image performance evaluation. Med Phys 2006; 33:1090-100. [PMID: 16696486 DOI: 10.1118/1.2181291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Megavoltage computed tomography (MVCT) is a potential imaging tool for positioning and dose delivery verification during image guided radiotherapy. The problem with many MVCT detectors, however, is their low detective quantum efficiency (DQE) which leads to poor low contrast resolution (LCR) and high image noise. This makes separating the tumors from the soft tissue background difficult. This manuscript describes the imaging performance of our bench-top MVCT scanner that uses an 80-element detector array consisting of CdWO4-photodiode elements with a DQE of 19% in 6 MV and 26% in Co60 beams [T. T. Monajemi, S. Steciw, B. G. Fallone, and S. Rathee, "Modelling scintillator-photodiodes as detectors for megavoltage CT," Med. Phys. 31, 1225-1234 (2004)] at zero frequency. The imaging experiments presented were carried out mainly in a Co60 teletherapy unit, while the beam hardening characteristics of the system were also presented for a 6 MV beam. During image evaluation, persistent ring artifacts, caused by air gaps at the ends of the eight-element detector blocks, were removed by using a calibration procedure. The measured contrast of a low contrast target with a 20 mm diameter was determined to be independent of dose, between 2.1 and 17 cGy. The measured LCR of a target with a nominal contrast of 2.8% was reduced from 2.3% to 1.2% when the contrast target diameter was reduced from 15 to 5 mm, using 17 cGy for imaging. The signal to noise ratio of this system is shown to be proportional to the square root of dose. Most importantly, a low contrast target with a diameter of 6 mm and a nominal contrast level of 1.5% is resolved with a radiation dose of 2.1 cGy in the Co60 beam. The spatial resolution in the Co60 beam is limited to one line pair per centimeter mainly due to the size of the Co60 source.
Collapse
Affiliation(s)
- T T Monajemi
- Department of Medical Physics, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
23
|
Amies C, Bani-Hashemi A, Celi JC, Grousset G, Ghelmansarai F, Hristov D, Lane D, Mitschke M, Singh A, Shukla H, Stein J, Wofford M. A multi-platform approach to image guided radiation therapy (IGRT). Med Dosim 2006; 31:12-9. [PMID: 16551525 DOI: 10.1016/j.meddos.2005.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2005] [Indexed: 11/28/2022]
Abstract
Siemens Medical Solutions, Oncology Care Systems Group (SMSOCSG) is supporting the development of several technologies that enable image acquisition and decision making processes required for IGRT in various clinical settings. Four such technologies are presented including: (i) the integration of a traditional multi-slice computed tomography (CT) scanner "on rails" with a C-arm gantry linear accelerator; (ii) the development of a high sensitivity, fast, megavoltage (MV) electronic portal imaging device capable of clinical MV Conebeam CT (MVCBCT) reconstruction and fluoroscopy mounted on a C-arm gantry linear accelerator; (iii) the modification of a mobile C-arm with flat panel kilovoltage (kV) diagnostic imager; and (iv) the development of an in-line megavoltage and kilovoltage flat panel imaging system that has the potential to image both anatomical and dosimetric information in "real-time" utilizing the traditional C-arm gantry linear accelerator geometry. Each method of IGRT has unique as well as complementary qualities which are discussed from both a clinical and technical perspective.
Collapse
Affiliation(s)
- Christopher Amies
- Clinical and Collaborative Development, Siemens Medical Solutions, Oncology Care Systems Group, Concord, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mei X, Pang G. Development of high quantum efficiency, flat panel, thick detectors for megavoltage x-ray imaging: An experimental study of a single-pixel prototype. Med Phys 2005; 32:3379-88. [PMID: 16370426 DOI: 10.1118/1.2065487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Our overall goal is to develop a new generation of electronic portal imaging devices (EPIDs) with a quantum efficiency (QE) more than an order of magnitude higher and a spatial resolution equivalent to that of EPIDs currently used for portal imaging. A novel design of such a high QE flat-panel based EPID was introduced recently and its feasibility was investigated theoretically [see Pang and Rowlands, Med. Phys. 31, 3004 (2004)]. In this work, we constructed a prototype single-pixel detector based on the novel design. Some fundamental imaging properties including the QE, spatial resolution, and sensitivity of the prototype detector were measured with a 6 MV beam. It has been shown that the experimental results agree well with theoretical predictions and further development based on the novel design including the construction of a prototype area detector is warranted.
Collapse
Affiliation(s)
- X Mei
- Toronto-Sunnybrook Regional Cancer Centre, 2075 Bayview Avenue, Toronto M4N 3M5, Canada
| | | |
Collapse
|
25
|
Sawant A, Antonuk LE, El-Mohri Y, Zhao Q, Li Y, Su Z, Wang Y, Yamamoto J, Du H, Cunningham I, Klugerman M, Shah K. Segmented crystalline scintillators: An initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging. Med Phys 2005; 32:3067-83. [PMID: 16279059 DOI: 10.1118/1.2008407] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Electronic portal imaging devices (EPIDs) based on indirect detection, active matrix flat panel imagers (AMFPIs) have become the technology of choice for geometric verification of patient localization and dose delivery in external beam radiotherapy. However, current AMFPI EPIDs, which are based on powdered-phosphor screens, make use of only approximately 2% of the incident radiation, thus severely limiting their imaging performance as quantified by the detective quantum efficiency (DQE) (approximately 1%, compared to approximately 75% for kilovoltage AMFPIs). With the rapidly increasing adoption of image-guided techniques in virtually every aspect of radiotherapy, there exist strong incentives to develop high-DQE megavoltage x-ray imagers, capable of providing soft-tissue contrast at very low doses in megavoltage tomographic and, potentially, projection imaging. In this work we present a systematic theoretical and preliminary empirical evaluation of a promising, high-quantum-efficiency, megavoltage x-ray detector design based on a two-dimensional matrix of thick, optically isolated, crystalline scintillator elements. The detector is coupled with an indirect detection-based active matrix array, with the center-to-center spacing of the crystalline elements chosen to match the pitch of the underlying array pixels. Such a design enables the utilization of a significantly larger fraction of the incident radiation (up to 80% for a 6 MV beam), through increases in the thickness of the crystalline elements, without loss of spatial resolution due to the spread of optical photons. Radiation damage studies were performed on test samples of two candidate scintillator materials, CsI(Tl) and BGO, under conditions relevant to radiotherapy imaging. A detailed Monte Carlo-based study was performed in order to examine the signal, spatial spreading, and noise properties of the absorbed energy for several segmented detector configurations. Parameters studied included scintillator material, septal wall material, detector thickness, and the thickness of the septal walls. The results of the Monte Carlo simulations were used to estimate the upper limits of the modulation transfer function, noise power spectrum and the DQE for a select number of configurations. An exploratory, small-area prototype segmented detector was fabricated by infusing crystalline CsI(Tl) in a 2 mm thick tungsten matrix, and the signal response was measured under radiotherapy imaging conditions. Results from the radiation damage studies showed that both CsI(Tl) and BGO exhibited less than approximately 15% reduction in light output after 2500 cGy equivalent dose. The prototype CsI(Tl) segmented detector exhibited high uniformity, but a lower-than-expected magnitude of signal response. Finally, results from Monte Carlo studies strongly indicate that high scintillator-fill-factor configurations, incorporating high-density scintillator and septal wall materials, could achieve up to 50 times higher DQE compared to current AMFPI EPIDs.
Collapse
Affiliation(s)
- Amit Sawant
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Su Z, Antonuk LE, El-Mohri Y, Hu L, Du H, Sawant A, Li Y, Wang Y, Yamamoto J, Zhao Q. Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions. Phys Med Biol 2005; 50:2907-28. [PMID: 15930610 DOI: 10.1088/0031-9155/50/12/012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The signal properties of polycrystalline mercuric iodide (HgI2) film detectors, under irradiation conditions relevant to mammographic, radiographic, fluoroscopic and radiotherapy x-ray imaging, are reported. Each film detector consists of an approximately 230 to approximately 460 microm thick layer of HgI2 (fabricated through physical vapour deposition or a screen-print process) and a thin barrier layer, sandwiched between a pair of opposing electrode plates. The high atomic number, high density and low effective ionization energy, W(EFF), of HgI2 make it an attractive candidate for significantly improving the performance of active matrix, flat-panel imagers (AMFPIs) for several x-ray imaging applications. The temporal behaviour of current from the film detectors in the presence and in the absence of radiation was used to examine dark current levels, the lag and reciprocity of the signal response, x-ray sensitivity and W(EFF). The results are discussed in the context of present AMFPI performance. This study provides performance data for a wide range of potential medical x-ray imaging applications from a single set of detectors and represents the first investigation of the signal properties of polycrystalline mercuric iodide for the radiotherapy application.
Collapse
Affiliation(s)
- Zhong Su
- Department of Radiation Oncology, University of Michigan, 519 W. William St., Argus Building 1, Ann Arbor, MI 48103-4943, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sawant A, Antonuk LE, El-Mohri Y, Li Y, Su Z, Wang Y, Yamamoto J, Zhao Q, Du H, Daniel J, Street R. Segmented phosphors: MEMS-based high quantum efficiency detectors for megavoltage x-ray imaging. Med Phys 2005; 32:553-65. [PMID: 15789602 DOI: 10.1118/1.1854774] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Current electronic portal imaging devices (EPIDs) based on active matrix flat panel imager (AMFPI) technology use a metal plate+phosphor screen combination for x-ray conversion. As a result, these devices face a severe trade-off between x-ray quantum efficiency (QE) and spatial resolution, thus, significantly limiting their imaging performance. In this work, we present a novel detector design for indirect detection-based AMFPI EPIDs that aims to circumvent this trade-off. The detectors were developed using micro-electro-mechanical system (MEMS)-based fabrication techniques and consist of a grid of up to approximately 2 mm tall, optically isolated cells of a photoresist material, SU-8. The cells are dimensionally matched to the pixels of the AMFPI array, and packed with a scintillating phosphor. In this paper, various design considerations for such detectors are examined. An empirical evaluation of three small-area (approximately 7 x 7 cm2) prototype detectors is performed in order to study the effects of two design parameters--cell height and phosphor packing density, both of which are important determinants of the imaging performance. Measurements of the x-ray sensitivity, modulation transfer function (MTF) and noise power spectrum (NPS) were performed under radiotherapy conditions (6 MV), and the detective quantum efficiency (DQE) was determined for each prototype SU-8 detector. In addition, theoretical calculations using Monte Carlo simulations were performed to determine the QE of each detector, as well as the inherent spatial resolution due to the spread of absorbed energy. The results of the present studies were compared with corresponding measurements published in an earlier study using a Lanex Fast-B phosphor screen coupled to an indirect detection array of the same design. The SU-8 detectors exhibit up to 3 times higher QE, while achieving spatial resolution comparable or superior to Lanex Fast-B. However, the DQE performance of these early prototypes is significantly lower than expected due to high levels of optical Swank noise. Consequently, the SU-8 detectors presently exhibit DQE values comparable to Lanex Fast-B at zero spatial frequency and significantly lower than Fast-B at higher frequencies. Finally, strategies for reducing Swank noise are discussed and theoretical calculations, based on the cascaded systems model, are presented in order to estimate the performance improvement that can be achieved through such noise reduction.
Collapse
Affiliation(s)
- Amit Sawant
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|