1
|
Miao T, Zhang R, Jermyn M, Bruza P, Zhu T, Pogue BW, Gladstone DJ, Williams BB. Computational dose visualization & comparison in total skin electron treatment suggests superior coverage by the rotational versus the Stanford technique. J Med Imaging Radiat Sci 2022; 53:612-622. [PMID: 36045017 PMCID: PMC10152509 DOI: 10.1016/j.jmir.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION/BACKGROUND The goal of Total Skin Electron Therapy (TSET) is to achieve a uniform surface dose, although assessment of this is never really done and typically limited points are sampled. A computational treatment simulation approach was developed to estimate dose distributions over the body surface, to compare uniformity of (i) the 6 pose Stanford technique and (ii) the rotational technique. METHODS The relative angular dose distributions from electron beam irradiation was calculated by Monte Carlo simulation for cylinders with a range of diameters, approximating body part curvatures. These were used to project dose onto a 3D body model of the TSET patient's skin surfaces. Computer animation methods were used to accumulate the dose values, for display and analysis of the homogeneity of coverage. RESULTS The rotational technique provided more uniform coverage than the Stanford technique. Anomalies of under dose were observed in lateral abdominal regions, above the shoulders and in the perineum. The Stanford technique had larger areas of low dose laterally. In the rotational technique, 90% of the patient's skin was within ±10% of the prescribed dose, while this percentage decreased to 60% or 85% for the Stanford technique, varying with patient body mass. Interestingly, the highest discrepancy was most apparent in high body mass patients, which can be attributed to the loss of tangent dose at low angles of curvature. DISCUSSION/CONCLUSION This simulation and visualization approach is a practical means to analyze TSET dose, requiring only optical surface body topography scans. Under- and over-exposed body regions can be found, and irradiation could be customized to each patient. Dose Area Histogram (DAH) distribution analysis showed the rotational technique to have better uniformity, with most areas within 10% of the umbilicus value. Future use of this approach to analyze dose coverage is possible as a routine planning tool.
Collapse
Affiliation(s)
- Tianshun Miao
- Thayer School of Engineering, Dartmouth College, Hanover NH, 03755, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH, 03755, USA; Department of Medicine, Radiation Oncology, Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Michael Jermyn
- Thayer School of Engineering, Dartmouth College, Hanover NH, 03755, USA; DoseOptics, LLC, Lebanon NH 03755 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH, 03755, USA; DoseOptics, LLC, Lebanon NH 03755 USA
| | - Timothy Zhu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, 19104 USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH, 03755, USA; DoseOptics, LLC, Lebanon NH 03755 USA; Department of Medical Physics, University of Wisconsin-Madison, Wisconsin WI 53705 USA.
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH, 03755, USA; Department of Medicine, Radiation Oncology, Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Benjamin B Williams
- Thayer School of Engineering, Dartmouth College, Hanover NH, 03755, USA; Department of Medicine, Radiation Oncology, Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA
| |
Collapse
|
2
|
Li R, Tseng W, Wu Q. Validation of the dosimetry of total skin irradiation techniques by Monte Carlo simulation. J Appl Clin Med Phys 2020; 21:107-119. [PMID: 32559022 PMCID: PMC7484841 DOI: 10.1002/acm2.12921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/12/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To validate the dose measurements for two total skin irradiation techniques with Monte Carlo simulation, providing more information on dose distributions, and guidance on further technique optimization. Methods Two total skin irradiation techniques (stand‐up and lay‐down) with different setup were simulated and validated. The Monte Carlo simulation was primarily performed within the EGSnrc environment. Parameters of jaws, MLCs, and a customized copper (Cu) filter were first tuned to match the profiles and output measured at source‐to‐skin distance (SSD) of 100 cm where the secondary source is defined. The secondary source was rotated to simulate gantry rotation. VirtuaLinac, a cloud‐based Monte Carlo package, was used for Linac head simulation as a secondary validation. The following quantities were compared with measurements: for each field/direction at the treatment SSDs, the percent depth dose (PDD), the profiles at the depth of maximum, and the absolute dosimetric output; the composite dose distribution on cylindrical phantoms of 20 to 40 cm diameters. Results Cu filter broadened the FWHM of the electron beam by 44% and degraded the mean energy by 0.7 MeV. At SSD = 100 cm, MC calculated PDDs agreed with measured data within 2%/2 mm (except for the surface voxel) and lateral profiles agreed within 3%. At the treatment SSD, profiles and output factors of individual field matched within 4%; dmax and R80 of the simulated PDDs also matched with measurement within 2 mm. When all fields were combined on the cylindrical phantom, the dmax shifted toward the surface. For lay‐down technique, the maximum x‐ray contamination at the central axis was (MC: 2.2; Measurement: 2.1)% and reduced to 0.2% at 40 cm off the central axis. Conclusions The Monte Carlo results in general agree well with the measurement, which provides support in our commissioning procedure, as well as the full three‐dimensional dose distribution of the patient phantom.
Collapse
Affiliation(s)
- Ruiqi Li
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wenchih Tseng
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Diamantopoulos S, Kagkiouzis I, Patatoukas G, Kypraiou E, Kouloulias V, Efstathopoulos E, Platoni K. Three dimensional printed electron beam modifier for total skin electron treatments. Med Dosim 2018; 44:173-178. [PMID: 31079619 DOI: 10.1016/j.meddos.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022]
Abstract
Total Skin Electron Beam (TSEB) treatment, despite its proven effectiveness in skin malignancies, is a rather exhausting irradiation method, especially for feeble patients. In an effort to reduce treatment time by creating a clinically acceptable single TSEB field, various beam modifiers of different materials and shapes were tested. Using the TSEB immobilization device of our department and 3D printing technology, aluminum and thermoplastic modifiers were designed and constructed, according to the resulting profiles at treatment distance. Electron beam characteristics were measured and calculated both at SSD = 100 cm and at treatment level. Aluminum scatterers of the same thickness caused different modification according to the area of blocking. Aluminum modifiers reduced significantly central dose deposition for the same amount of MUs and therefore they expanded treatment time in undesirable levels. Plastic modifiers offer a good combination of field dimensions and treatment time. The final 3D printed modifier shaped the electron beam as desired resulting to a clinically acceptable 6 MeV field of 176 × 70 cm field with 10% inhomogeneity in vertical and 3% in the lateral dimension with adequate skin coverage at SSD = 400 cm. This modification offered approximately a two-minute treatment time reduction compared to the current technique. Underdosed areas appear near the edge of the field, but in regions that are far from the torso of the patient. Bremsstrahlung radiation was kept at clinically accepted levels (< 5%). This modification of the original six dual-field technique of our hospital could probably benefit fragile patients who could not easily tolerate a twenty-minute standing position without compromising the quality of their treatment.
Collapse
Affiliation(s)
- S Diamantopoulos
- 2nd Department of Radiology, Radiotherapy Unit, University General Hospital "Attikon", National and Kapodistrian University of Athens, Greece, 1 Rimini str., 12462 Chaidari, Greece.
| | - I Kagkiouzis
- 2nd Department of Radiology, Radiotherapy Unit, University General Hospital "Attikon", National and Kapodistrian University of Athens, Greece, 1 Rimini str., 12462 Chaidari, Greece
| | - G Patatoukas
- 2nd Department of Radiology, Radiotherapy Unit, University General Hospital "Attikon", National and Kapodistrian University of Athens, Greece, 1 Rimini str., 12462 Chaidari, Greece
| | - E Kypraiou
- 2nd Department of Radiology, Radiotherapy Unit, University General Hospital "Attikon", National and Kapodistrian University of Athens, Greece, 1 Rimini str., 12462 Chaidari, Greece
| | - V Kouloulias
- 2nd Department of Radiology, Radiotherapy Unit, University General Hospital "Attikon", National and Kapodistrian University of Athens, Greece, 1 Rimini str., 12462 Chaidari, Greece
| | - E Efstathopoulos
- 2nd Department of Radiology, Radiotherapy Unit, University General Hospital "Attikon", National and Kapodistrian University of Athens, Greece, 1 Rimini str., 12462 Chaidari, Greece
| | - K Platoni
- 2nd Department of Radiology, Radiotherapy Unit, University General Hospital "Attikon", National and Kapodistrian University of Athens, Greece, 1 Rimini str., 12462 Chaidari, Greece
| |
Collapse
|
4
|
Park JI, Ha SW, Kim JI, Lee H, Lee J, Kim IH, Ye SJ. Design and evaluation of electron beam energy degraders for breast boost irradiation. Radiat Oncol 2016; 11:112. [PMID: 27580698 PMCID: PMC5007734 DOI: 10.1186/s13014-016-0686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/19/2016] [Indexed: 11/25/2022] Open
Abstract
Background For breast cancer patients who require electron boost energies between 6 and 9 MeV, an energy degraders (ED) in the 9 MeV beamline was specially designed and manufactured to increase the skin dose of 6 MeV and to reduce the penetration depth of 9 MeV beams. Methods We used Monte Carlo (MC) techniques as a guide in the design of ED for use with linear accelerators. In order to satisfy percent depth dose (PDD) characteristics and dose profile uniformity in water, the shape and thickness of Lucite® ED in the 9 MeV beamline was iteratively optimized and then manufactured. The ED geometry consists of a truncated cone attached on top of a plane plate, with total central thickness of 1.0 cm. The ED was placed on the lower most scraper of the electron applicator. The PDDs, profiles, and output factors were measured in water to validate the MC-based design. Results Skin doses with the EDs increased by 8–9 %, compared to those of the 9 MeV beam. The outputs with the EDs were 0.882 and 0.972 for 10 × 10 and 15 × 15 cm2 cones, respectively, as compared to that of a conventional 9 MeV beam for a 10 × 10 cm2 cone. The X-ray contamination remained less than 1.5 %. In-vivo measurements were also performed for three breast boost patients and showed close agreement with expected values. Conclusions The optimally designed ED in the 9 MeV beamline provides breast conserving patients with a new energy option of 7 MeV for boost of the shallow tumor bed. It would be an alternative to bolus and thus eliminate inconvenience and concern about the daily variation of bolus setup.
Collapse
Affiliation(s)
- Jong In Park
- Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, 151-742, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.,Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Whan Ha
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.,Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Korea
| | - Hyunseok Lee
- Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, 151-742, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jaegi Lee
- Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, 151-742, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea.,Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Joon Ye
- Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, 151-742, Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea. .,Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea. .,Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Korea. .,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Korea.
| |
Collapse
|
5
|
Nevelsky A, Borzov E, Daniel S, Bar-Deroma R. Validation of total skin electron irradiation (TSEI) technique dosimetry data by Monte Carlo simulation. J Appl Clin Med Phys 2016; 17:418-429. [PMID: 27455502 PMCID: PMC5690047 DOI: 10.1120/jacmp.v17i4.6230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/10/2016] [Accepted: 02/04/2016] [Indexed: 12/01/2022] Open
Abstract
Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc‐based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. The MC‐calculated multiplication factor (B12‐factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12‐factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X‐ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X‐ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.ne
Collapse
|
6
|
Guidi G, Gottardi G, Ceroni P, Costi T. Review of the results of the in vivo dosimetry during total skin electron beam therapy. Rep Pract Oncol Radiother 2014; 19:144-50. [PMID: 24936333 PMCID: PMC4054982 DOI: 10.1016/j.rpor.2013.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/31/2013] [Accepted: 07/16/2013] [Indexed: 11/20/2022] Open
Abstract
This work reviews results of in vivo dosimetry (IVD) for total skin electron beam (TSEB) therapy, focusing on new methods, data emerged within 2012. All quoted data are based on a careful review of the literature reporting IVD results for patients treated by means of TSEB therapy. Many of the reviewed papers refer mainly to now old studies and/or old guidelines and recommendations (by IAEA, AAPM and EORTC), because (due to intrinsic rareness of TSEB-treated pathologies) only a limited number of works and reports with a large set of numerical data and proper statistical analysis is up-to-day available in scientific literature. Nonetheless, a general summary of the results obtained by the now numerous IVD techniques available is reported; innovative devices and methods, together with areas of possible further and possibly multicenter investigations for TSEB therapies are highlighted.
Collapse
Affiliation(s)
- Gabriele Guidi
- Department of Medical Physics, Az. Ospedaliero-Universitaria di Modena, Modena, Italy
| | | | | | | |
Collapse
|
7
|
Park JM, Kim JI, Heon Choi C, Chie EK, Kim IH, Ye SJ. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study. Med Phys 2013; 39:1265-77. [PMID: 22380358 DOI: 10.1118/1.3682172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of photon energy-modulated radiotherapy during beam-on time. METHODS A cylindrical device made of aluminum was conceptually proposed as an energy modulator. The frame of the device was connected with 20 tubes through which mercury could be injected or drained to adjust the thickness of mercury along the beam axis. In Monte Carlo (MC) simulations, a flattening filter of 6 or 10 MV linac was replaced with the device. The thickness of mercury inside the device varied from 0 to 40 mm at the field sizes of 5 × 5 cm(2) (FS5), 10 × 10 cm(2) (FS10), and 20 × 20 cm(2) (FS20). At least 5 billion histories were followed for each simulation to create phase space files at 100 cm source to surface distance (SSD). In-water beam data were acquired by additional MC simulations using the above phase space files. A treatment planning system (TPS) was commissioned to generate a virtual machine using the MC-generated beam data. Intensity modulated radiation therapy (IMRT) plans for six clinical cases were generated using conventional 6 MV, 6 MV flattening filter free, and energy-modulated photon beams of the virtual machine. RESULTS As increasing the thickness of mercury, Percentage depth doses (PDD) of modulated 6 and 10 MV after the depth of dose maximum were continuously increased. The amount of PDD increase at the depth of 10 and 20 cm for modulated 6 MV was 4.8% and 5.2% at FS5, 3.9% and 5.0% at FS10 and 3.2%-4.9% at FS20 as increasing the thickness of mercury from 0 to 20 mm. The same for modulated 10 MV was 4.5% and 5.0% at FS5, 3.8% and 4.7% at FS10 and 4.1% and 4.8% at FS20 as increasing the thickness of mercury from 0 to 25 mm. The outputs of modulated 6 MV with 20 mm mercury and of modulated 10 MV with 25 mm mercury were reduced into 30%, and 56% of conventional linac, respectively. The energy-modulated IMRT plans had less integral doses than 6 MV IMRT or 6 MV flattening filter free plans for tumors located in the periphery while maintaining the similar quality of target coverage, homogeneity, and conformity. CONCLUSIONS The MC study for the designed energy modulator demonstrated the feasibility of energy-modulated photon beams available during beam-on time. The planning study showed an advantage of energy-and intensity modulated radiotherapy in terms of integral dose without sacrificing any quality of IMRT plan.
Collapse
|
8
|
Diamantopoulos S, Platoni K, Dilvoi M, Nazos I, Geropantas K, Maravelis G, Tolia M, Beli I, Efstathopoulos E, Pantelakos P, Panayiotakis G, Kouloulias V. Clinical implementation of total skin electron beam (TSEB) therapy: A review of the relevant literature. Phys Med 2011; 27:62-8. [DOI: 10.1016/j.ejmp.2010.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/15/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022] Open
|
9
|
Abstract
For over 50 years, electron beams have been an important modality for providing an accurate dose of radiation to superficial cancers and disease and for limiting the dose to underlying normal tissues and structures. This review looks at many of the important contributions of physics and dosimetry to the development and utilization of electron beam therapy, including electron treatment machines, dose specification and calibration, dose measurement, electron transport calculations, treatment and treatment-planning tools, and clinical utilization, including special procedures. Also, future changes in the practice of electron therapy resulting from challenges to its utilization and from potential future technology are discussed.
Collapse
Affiliation(s)
- Kenneth R Hogstrom
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA.
| | | |
Collapse
|
10
|
Popple RA, Weinberg R, Antolak JA, Ye SJ, Pareek PN, Duan J, Shen S, Brezovich IA. Comprehensive evaluation of a commercial macro Monte Carlo electron dose calculation implementation using a standard verification data set. Med Phys 2006; 33:1540-51. [PMID: 16872061 DOI: 10.1118/1.2198328] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A commercial electron dose calculation software implementation based on the macro Monte Carlo algorithm has recently been introduced. We have evaluated the performance of the system using a standard verification data set comprised of two-dimensional (2D) dose distributions in the transverse plane of a 15 X 15 cm2 field. The standard data set was comprised of measurements performed for combinations of 9-MeV and 20-MeV beam energies and five phantom geometries. The phantom geometries included bone and air heterogeneities, and irregular surface contours. The standard verification data included a subset of the data needed to commission the dose calculation. Additional required data were obtained from a dosimetrically equivalent machine. In addition, we performed 2D dose measurements in a water phantom for the standard field sizes, a 4 cm X 4 cm field, a 3 cm diameter circle, and a 5 cm X 13 cm triangle for the 6-, 9-, 12-, 15-, and 18-MeV energies of a Clinac 21EX. Output factors were also measured. Synthetic CT images and structure contours duplicating the measurement configurations were generated and transferred to the treatment planning system. Calculations for the standard verification data set were performed over the range of each of the algorithm parameters: statistical precision, grid-spacing, and smoothing. Dose difference and distance-to-agreement were computed for the calculation points. We found that the best results were obtained for the highest statistical precision, for the smallest grid spacing, and for smoothed dose distributions. Calculations for the 21EX data were performed using parameters that the evaluation of the standard verification data suggested would produce clinically acceptable results. The dose difference and distance-to-agreement were similar to that observed for the standard verification data set except for the portion of the triangle field narrower than 3 cm for the 6- and 9-MeV electron beams. The output agreed with measurements to within 2%, with the exception of the 3-cm diameter circle and the triangle for 6 MeV, which were within 5%. We conclude that clinically acceptable results may be obtained using a grid spacing that is no larger than approximately one-tenth of the distal falloff distance of the electron depth dose curve (depth from 80% to 20% of the maximum dose) and small relative to the size of heterogeneities. For judicious choices of parameters, dose calculations agree with measurements to better than 3% dose difference and 3-mm distance-to-agreement for fields with dimensions no less than about 3 cm.
Collapse
Affiliation(s)
- Richard A Popple
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama 35233, USA.
| | | | | | | | | | | | | | | |
Collapse
|