1
|
Kim TH, Cho MS, Shin DS, Shin DH, Kim S. Development of a Real-Time Thermoplastic Mask Compression Force Monitoring System Using Capacitive Force Sensor. Front Robot AI 2022; 9:778594. [PMID: 35875702 PMCID: PMC9298856 DOI: 10.3389/frobt.2022.778594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Thermoplastic masks keep patients in an appropriate position to ensure accurate radiation delivery. For a thermoplastic mask to maintain clinical efficacy, the mask should wrap the patient's surface properly and provide uniform pressure to all areas. However, to our best knowledge, no explicit method for achieving such a goal currently exists. Therefore, in this study, we intended to develop a real-time thermoplastic mask compression force (TMCF) monitoring system to measure compression force quantitatively. A prototype system was fabricated, and the feasibility of the proposed method was evaluated. Methods: The real-time TMCF monitoring system basically consists of four force sensor units, a microcontroller board (Arduino Bluno Mega 2560), a control PC, and an in-house software program. To evaluate the reproducibility of the TMCF monitoring system, both a reproducibility test using a micrometer and a setup reproducibility test using a head phantom were performed. Additionally, the reproducibility tests of mask setup and motion detection tests were carried out with a cohort of six volunteers. Results: The system provided stable pressure readings in all 10 trials during the sensor unit reproducibility test. The largest standard deviation (SD) among trials was about 36 gf/cm2 (∼2.4% of the full-scale range). For five repeated mask setups on the phantom, the compression force variation of the mask was less than 39 gf/cm2 (2.6% of the full-scale range). We were successful in making masks together with the monitoring system connected and demonstrated feasible utilization of the system. Compression force variations were observed among the volunteers and according to the location of the sensor (among forehead, both cheekbones, and chin). The TMCF monitoring system provided the information in real time on whether the mask was properly pressing the human subject as an immobilization tool. Conclusion: With the developed system, it is possible to monitor the effectiveness of the mask in real time by continuously measuring the compression force between the mask and patient during the treatment. The graphical user interface (GUI) of the monitoring system developed provides a warning signal when the compression force of the mask is insufficient. Although the number of volunteers participated in the study was small, the obtained preliminary results suggest that the system could ostensibly improve the setup accuracy of a thermoplastic mask.
Collapse
Affiliation(s)
- Tae-Ho Kim
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Min-Seok Cho
- Department of Radiation Oncology, Yongin Severance Hospital, Yongin, South Korea
| | - Dong-Seok Shin
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Dong Ho Shin
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Siyong Kim
- Department of Radiation Oncology, Virginia Commonwealth University, Virginia, VA, United States
| |
Collapse
|
2
|
Cumur C, Fujibuchi T, Hamada K. Dose estimation for cone-beam computed tomography in image-guided radiation therapy using mesh-type reference computational phantoms and assuming head and neck cancer. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021533. [PMID: 35705020 DOI: 10.1088/1361-6498/ac7914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to estimate the additional dose the cone-beam computed tomography (CBCT) system integrated into the Varian TrueBeam linear accelerator delivers to a patient with head and neck cancer using mesh-type International Commission on Radiological Protection reference computational phantoms. In the first part, for use as a benchmark for the accuracy of the Monte Carlo geometry of CBCT, Particle and Heavy Ion Transport code System (PHITS) calculations were confirmed against measured lateral and depth dose profiles using a computed tomography dose profiler. After obtaining good agreement, organ dose calculations were performed by PHITS using mesh-type reference computational phantom (MRCP) and irradiating the neck region; the effective dose was calculated utilising absorbed organ doses and tissue weighting factors for male and female MRCP. Substantially, it has been found that the effective doses for male and female MRCP are 0.81 and 1.06 mSv, respectively. As this study aimed to assess the imaging dose from the CBCT system used in image-guided radiation therapy, it is required to take into account this dose in terms of both the target organ and surrounding tissues. Although the absorbed organ dose values and effective dose values obtained for both MRCP males and females were small, attention should be paid to the additional dose resulting from CBCT. This study can create awareness on the importance of doses arising from imaging techniques, especially CBCT.
Collapse
Affiliation(s)
- Ceyda Cumur
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City 812-8582, Japan
| | - Toshioh Fujibuchi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City 812-8582, Japan
| | - Keisuke Hamada
- Department of Radiological Technology, National Hospital Organisation Kyushu Cancer Center, 3-1-1, Notame Minami-ku, Fukuoka City 811-1395, Japan
| |
Collapse
|
3
|
Han C, Amini A, Wong JYC, Liang J, Qing K, Watkins WT, Zhang S, Williams TM, Liu A. Comparison of intrafractional motion with two frameless immobilization systems in surface-guided intracranial stereotactic radiosurgery. J Appl Clin Med Phys 2022; 23:e13613. [PMID: 35441441 PMCID: PMC9195026 DOI: 10.1002/acm2.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose/objectives The aim of this study is to compare intrafractional motion using two commercial non‐invasive immobilization systems for linac‐based intracranial stereotactic radiosurgery (SRS) under guidance with a surface‐guided radiotherapy (SGRT) system. Materials/methods Twenty‐one patients who received intracranial SRS were retrospectively selected. Ten patients were immobilized with a vacuum fixation biteplate system, while 11 patients were immobilized with an open‐face mask system. A setup margin of 1 mm was used in treatment planning. Real‐time surface motion data in 37 treatment fractions using the vacuum fixation system and 44 fractions using the open‐face mask were recorded by an SGRT system. Variances of intrafractional motion along three translational directions and three rotational directions were compared between the two immobilization techniques with Levene's tests. Intrafractional motion variation over time during treatments was also evaluated. Results Using the vacuum fixation system, the average and standard deviations of the shifts were 0.01 ± 0.18 mm, ‐0.06 ± 0.30 mm, and 0.02 ± 0.26 mm in the anterior–posterior (AP), superior–inferior (SI), and left–right (LR) directions, and ‐0.02 ± 0.19°, ‐0.01 ± 0.13°, and 0.01 ± 0.13° for rotations in yaw, roll, and pitch, respectively; using the open‐face mask system, the average and standard deviations of the shifts were ‐0.06 ± 0.20 mm, ‐0.02 ± 0.35 mm, and 0.01 ± 0.40 mm in the AP, SI, and LR directions, and were 0.05 ± 0.23°, 0.02 ± 0.21°, and 0.00 ± 0.16° for rotations in yaw, roll, and pitch, respectively. There was a significant increase in intrafractional motion variance over time during treatments. Conclusion Patients with the vacuum fixation system had significantly smaller intrafractional motion variation compared to those with the open‐face mask system. Using intrafractional motion techniques such as surface imaging system is recommended to minimize dose deviation due to intrafractional motion. The increase in intrafractional motion over time indicates clinical benefits with shorter treatment time.
Collapse
Affiliation(s)
- Chunhui Han
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Jeffrey Y C Wong
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Jieming Liang
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Kun Qing
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - W Tyler Watkins
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Sean Zhang
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
4
|
Shanbhag NM, Antypas C, Msaddi AK, Murphy SC, Singh TT. Meningioma Treated With Hypofractionated Stereotactic Radiotherapy Using CyberKnife®: First in the United Arab Emirates. Cureus 2022; 14:e21821. [PMID: 35145829 PMCID: PMC8807952 DOI: 10.7759/cureus.21821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/07/2022] Open
Abstract
A 26-year-old premenopausal lady was referred to the Department of Oncology with headaches and easy fatiguability. She had presented with the same complaints a few years ago. At that time, imaging revealed a right falcine space-occupying lesion (SOL), for which she underwent an unsuccessful attempt of excision. Imaging studies confirmed that the SOL was progressive and arose from the meninges. Previous excision failure was due to a network of blood vessels around the tumor and critical structures such as the thalamus and the brainstem, which made any approach challenging. The patient did not want further surgery and requested a non-surgical intervention. Considering the above, the case was discussed at the Multi-Disciplinary Tumor Board, and treatment with hypofractionated stereotactic radiotherapy using CyberKnife® was agreed upon. The patient received a total of 21 Gy in three fractions over six days and completed the treatment without any adverse reactions. This is the first case treated with hypofractionated stereotactic radiotherapy using the CyberKnife® in the United Arab Emirates, which is an effective and safe modality to treat similar challenging cases.
Collapse
|
5
|
Sun J, Kong L, Chen Z, You D, Mao J, Guan X, Wu X, Sheng Y. Clinical Implementation of a 6D Treatment Chair for Fixed Ion Beam Lines. Front Oncol 2021; 11:694749. [PMID: 34249751 PMCID: PMC8260974 DOI: 10.3389/fonc.2021.694749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To verify the practicality and safety of a treatment chair with six degrees of freedom (6DTC) through demonstrating the efficacy of the workflow in clinical settings and analyzing the obtained technical data, including intra-fraction patient movement during the use of the 6DTC. Materials and Methods A clinical study was designed and conducted to test the clinical treatment workflow and the safety of the 6DTC. Based on the demonstrated dosimetric advantages, fifteen patients with head and neck tumors were selected and treated with the 6DTC. The positional error at the first beam position (PE-B1) and the second beam position (PE-B2) were analyzed and compared with the results from daily quality assurance (QA) procedures of the 6DTC and imaging system performed each day before clinical treatment. The intra-fraction patient movement was derived from the total patient alignment positional error and the QA data based on a Gaussian distribution formulism. Results The QA results showed sub-millimeter mechanical accuracy of the 6DTC over the course of the clinical study. For 150 patient treatment fractions, the mean deviations between PE-B1 and PE-B2 were 0.13mm (SD 0.88mm), 0.25mm (SD 1.17mm), -0.57mm (SD 0.85mm), 0.02° (SD 0.35°), 0.00° (SD 0.37°), and -0.02° (SD 0.37°) in the x, y, z (translational), and u, v, w (rotational) directions, respectively. The calculated intra-fraction patient movement was -0.08mm (SD 0.56mm), 0.71mm (SD 1.12mm), -0.52mm (SD 0.84mm), 0.10° (SD 0.32°), 0.09° (SD 0.36°), and -0.04° (SD 0.36°) in the x, y, z, u, v, w directions, respectively. Conclusions The performance stability of the 6DTC was satisfactory. The position accuracy and intra-fraction patient movement in an upright posture with the 6DTC were verified and found adequate for clinical implementation.
Collapse
Affiliation(s)
- Jiayao Sun
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Zhi Chen
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Dan You
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jingfang Mao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiyin Guan
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xiaodong Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yinxiangzi Sheng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
6
|
Aoyama T, Uto K, Shimizu H, Ebara M, Kitagawa T, Tachibana H, Suzuki K, Kodaira T. Physical and dosimetric characterization of thermoset shape memory bolus developed for radiotherapy. Med Phys 2020; 47:6103-6112. [PMID: 33012062 PMCID: PMC7821231 DOI: 10.1002/mp.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We developed a thermoset shape memory bolus (shape memory bolus) made from poly-ε-caprolactone (PCL) polymer. This study aimed to investigate whether the shape memory bolus can be applied to radiotherapy as a bolus that conformally adheres to the body surface, can be created in a short time, and can be reused. METHODS The shape memory bolus was developed by cross-linking tetrabranch PCL with reactive acrylate end groups. Dice similarity coefficient (DSC) was used to evaluate shape memory characterization before deformation and after restoration. In addition, the degree of adhesion to the body surface and crystallization time were calculated. Moreover, dosimetric characterization was evaluated using the water equivalent phantom and an Alderson RANDO phantom. RESULTS The DSC value between before deformation and after restoration was close to 1. The degree of adhesion of the shape memory bolus (1.9%) was improved compared with the conventional bolus (45.6%) and was equivalent to three-dimensional (3D) printer boluses (1.3%-3.5%). The crystallization time was approximately 1.5 min, which was clinically acceptable. The dose calculation accuracy, dose distribution, and dose index were the equivalent compared with 3D boluses. CONCLUSION The shape memory bolus has excellent adhesion to the body surface, can be created in a short time, and can be reused. In addition, the shape memory bolus needs can be made from low-cost materials and no quality control systems are required for individual clinical departments, and it is useful as a bolus for radiotherapy.
Collapse
Affiliation(s)
- Takahiro Aoyama
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan.,Graduate School of Medicine, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Hiroyuki Tachibana
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| |
Collapse
|
7
|
Mangesius J, Seppi T, Weigel R, Arnold CR, Vasiljevic D, Goebel G, Lukas P, Ganswindt U, Nevinny-Stickel M. Intrafractional 6D head movement increases with time of mask fixation during stereotactic intracranial RT-sessions. Radiat Oncol 2019; 14:231. [PMID: 31852497 PMCID: PMC6921566 DOI: 10.1186/s13014-019-1425-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/22/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The present study investigates the intrafractional accuracy of a frameless thermoplastic mask used for head immobilization during stereotactic radiotherapy. Non-invasive masks cannot completely prohibit head movements. Previous studies attempted to estimate the magnitude of intrafractional inaccuracy by means of pre- and postfractional measurements only. However, this might not be sufficient to accurately map also intrafractional head movements. MATERIALS AND METHODS Intrafractional deviation of mask-fixed head positions was measured in five patients during a total of 94 fractions by means of close-meshed repeated ExacTrac measurements (every 1.4 min) conducted during the entire treatment session. A median of six (range: 4 to 11) measurements were recorded per fraction, delivering a dataset of 453 measurements. RESULTS Random errors (SD) for the x, y and z axes were 0.27 mm, 0.29 mm and 0.29 mm, respectively. Median 3D deviation was 0.29 mm. Of all 3D intrafractional motions, 5.5 and 0.4% exceeded 1 mm and 2 mm, respectively. A moderate correlation between treatment duration and mean 3D displacement was determined (rs = 0.45). Mean 3D deviation increased from 0.21 mm (SD = 0.26 mm) in the first 2 min to a maximum of 0.53 mm (SD = 0.31 mm) after 10 min of treatment time. CONCLUSION Pre- and post-treatment measurement is not sufficient to adequately determine the range of intrafractional head motion. Thermoplastic masks provide both reliable interfractional and intrafractional immobilization for image-guided stereotactic hypofractionated radiotherapy. Greater positioning accuracy may be obtained by reducing treatment duration (< 6 min) and applying intrafractional correction. TRIAL REGISTRATION Clinicaltrials.gov, NCT03896555, Registered 01 April 2019 - retrospectively registered.
Collapse
Affiliation(s)
- Julian Mangesius
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Thomas Seppi
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Rocco Weigel
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Christoph Reinhold Arnold
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Danijela Vasiljevic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Georg Goebel
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Lukas
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Meinhard Nevinny-Stickel
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
Sarkar B, Munshi A, Ganesh T, Manikandan A, Krishnankutty S, Chitral L, Pradhan A, Kalyan Mohanti B. Technical Note: Rotational positional error corrected intrafraction set-up margins in stereotactic radiotherapy: A spatial assessment for coplanar and noncoplanar geometry. Med Phys 2019; 46:4749-4754. [PMID: 31495931 DOI: 10.1002/mp.13810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this study is to calculate setup margin based on six-dimensional (6D) corrected residual positional errors from kV cone beam computed tomography (CBCT) and from intrafraction projection kV imaging in coplanar and in noncoplanar couch positions in stereotactic radiotherapy. METHODS Six dimensional positional corrections were carried out before patient treatments, using a robotic couch and CBCT matching. A CBCT and stereoscopic ExacTrac image were acquired post-table position correction. Further, a series of intrafraction ExacTrac images were obtained for the variable couch position. Translational and rotational errors were identified as lateral (X), longitudinal (Y), vertical (Z); roll (Ɵ°), pitch (Φ°) and yaw (Ψ°). A total of 699 intrafraction image sets (361 coplanar and 338 noncoplanar) for 51 SRS/SRT patients were analysed. Rotational errors were corrected in terms of translational coordinates. Residual set-up margins were calculated from CBCT shifts. ExacTrac shifts give residual + intrafraction setup margins as a function of coplanar and noncoplanar couch positions. RESULTS The average residual positional error obtained from CBCT in X, Y, Z, Ɵ, Φ, Ψ were 0.1 ± 0.4 mm, 0.0 ± 0.6 mm, 0.0 ± 0.5 mm, 0.2 ± 0.8°, 0.1 ± 0.6° and -0.1 ± 0.7° respectively. For ExacTrac, the shits were -0.5 ± 0.9 mm, -0.0 ± 1mm, -0.6 ± 1.0mm, 0.4 ± 0.9°, -0.2 ± 0.6°, and -0.0 ± 0.8°. CBCT calculated linear setup margins in X, Y, Z direction were 0.5, 1.2, and 1 mm respectively. ExacTrac yielded coplanar and noncoplanar linear setup margins were 1.2, 1.3, 1.5, 1.4, 1.5, and 2.1 mm respectively. CONCLUSION CBCT-based gross residual set-up margin is equal to 1 mm. ExacTrac calculated residual plus intrafraction setup margin falls within a 2 mm range; attributed to intrafraction patient movement, table position inaccuracies, and poor image fusion in noncoplanar geometry. There could be variations in the required additional margin between centers and between machines, which require further studies.
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Anusheel Munshi
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Tharmarnadar Ganesh
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Arjunan Manikandan
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, 600096, Tamil Nadu, India
| | - Saneg Krishnankutty
- Department of Radiation Oncology, Fortis Memorial Research Institute, Gurgaon, 122002, Haryana, India
| | - Latika Chitral
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Anirudh Pradhan
- Department of Mathematics, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Bidhu Kalyan Mohanti
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| |
Collapse
|
9
|
An Accurate Recognition of Infrared Retro-Reflective Markers in Surgical Navigation. J Med Syst 2019; 43:153. [PMID: 31020459 DOI: 10.1007/s10916-019-1257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/27/2019] [Indexed: 10/26/2022]
Abstract
Marker-based optical tracking systems (OTS) are widely used in clinical image-guided therapy. However, the emergence of ghost markers, which is caused by the mistaken recognition of markers and the incorrect correspondences between marker projections, may lead to tracking failures for these systems. Therefore, this paper proposes a strategy to prevent the emergence of ghost markers by identifying markers based on the features of their projections, finding the correspondences between marker projections based on the geometric information provided by markers, and fast-tracking markers in a 2D image between frames based on the sizes of their projections. Apart from validating its high robustness, the experimental results show that the proposed strategy can accurately recognize markers, correctly identify their correspondences, and meet the requirements of real-time tracking.
Collapse
|
10
|
Characterization of EPID software for VMAT transit dosimetry. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:1021-1027. [DOI: 10.1007/s13246-018-0693-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
11
|
Kang CL, Liu SC, Wang JC, Liao KC, Huang YJ, Fang FM, Liao TI, Juan KJ, Huang CC. Comparison of Skull Motions in Six Degrees of Freedom Between Two Head Supports During Frameless Radiosurgery by CyberKnife. Front Oncol 2018; 8:359. [PMID: 30234018 PMCID: PMC6131575 DOI: 10.3389/fonc.2018.00359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
Introduction: Maintaining immobilization to minimize skull motion is important during frameless radiosurgery. This study aimed to compare the intrafractional skull motions between two head supports. Methods: With 6D skull tracking system, 4,075 image records from 45 patients receiving radiosurgery by CyberKnife were obtained. Twenty-three patients used TIMO head supports (CIVCO) (Group A) and twenty-two patients used Silverman head supports (CIVCO) with MoldCare cushions (ALCARE) (Group B). The skull motions in X (superior-inferior), Y (right-left), Z (anterior-posterior) axes, 3D (three-dimensional) vector, Roll, Pitch and Yaw between the two groups were compared and the margins of planning target volume were estimated. Results: The translational motions in Group A were similar in three axes at initial but became different after 10 min, and those in Group B were less prominent in the Y axis. The rotational errors in Group A were most obvious in Yaw, but those in Group B were stationary in three axes. The motions in the X axis, 3D vector, Pitch and Yaw in Group B were significantly smaller than those in Group A; conversely, the motions in the Z axis in Group B were larger. To cover the 95% confidence intervals, margins of 0.77, 0.79, and 0.40 mm in the X, Y, and Z axes, respectively, were needed in Group A, and 0.69, 0.50, and 0.51 mm were needed in Group B. Conclusions: Both head supports could provide good immobilization during the frameless radiosurgery. Silverman head support with MoldCare cushion was better than TIMO head support in the superior-inferior direction, 3D vector, Pitch and Yaw axes, but worse in the anterior-posterior direction.
Collapse
Affiliation(s)
- Chen-Lin Kang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Information Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shyh-Chang Liu
- Department of Information Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Chu Wang
- Department of Anatomical Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Cho Liao
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Jie Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsung-I Liao
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Jung Juan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Gurney-Champion OJ, McQuaid D, Dunlop A, Wong KH, Welsh LC, Riddell AM, Koh DM, Oelfke U, Leach MO, Nutting CM, Bhide SA, Harrington KJ, Panek R, Newbold KL. MRI-based Assessment of 3D Intrafractional Motion of Head and Neck Cancer for Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 100:306-316. [PMID: 29229323 PMCID: PMC5777665 DOI: 10.1016/j.ijrobp.2017.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/25/2023]
Abstract
PURPOSE To determine the 3-dimensional (3D) intrafractional motion of head and neck squamous cell carcinoma (HNSCC). METHODS AND MATERIALS Dynamic contrast-enhanced magnetic resonance images from 56 patients with HNSCC in the treatment position were analyzed. Dynamic contrast-enhanced magnetic resonance imaging consisted of 3D images acquired every 2.9 seconds for 4 minutes 50 seconds. Intrafractional tumor motion was studied in the 3 minutes 43 seconds of images obtained after initial contrast enhancement. To assess tumor motion, rigid registration (translations only) was performed using a region of interest (ROI) mask around the tumor. The results were compared with bulk body motion from registration to all voxels. Motion was split into systematic motion and random motion. Correlations between the tumor site and random motion were tested. The within-subject coefficient of variation was determined from 8 patients with repeated baseline measures. Random motion was also assessed at the end of the first week (38 patients) and second week (25 patients) of radiation therapy to investigate trends of motion. RESULTS Tumors showed irregular occasional rapid motion (eg, swallowing or coughing), periodic intermediate motion (respiration), and slower systematic drifts throughout treatment. For 95% of the patients, displacements due to systematic and random motion were <1.4 mm and <2.1 mm, respectively, 95% of the time. The motion without an ROI mask was significantly (P<.0001, Wilcoxon signed rank test) less than the motion with an ROI mask, indicating that tumors can move independently from the bony anatomy. Tumor motion was significantly (P=.005, Mann-Whitney U test) larger in the hypopharynx and larynx than in the oropharynx. The within-subject coefficient of variation for random motion was 0.33. The average random tumor motion did not increase notably during the first 2 weeks of treatment. CONCLUSIONS The 3D intrafractional tumor motion of HNSCC is small, with systematic motion <1.4 mm and random motion <2.1 mm 95% of the time.
Collapse
Affiliation(s)
- Oliver J Gurney-Champion
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - Dualta McQuaid
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Alex Dunlop
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Kee H Wong
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Liam C Welsh
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Angela M Riddell
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Dow-Mu Koh
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Martin O Leach
- CR UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Christopher M Nutting
- Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Shreerang A Bhide
- Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Kevin J Harrington
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Rafal Panek
- Department of Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Kate L Newbold
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Goldsworthy S, Leslie-Dakers M, Higgins S, Barnes T, Jankowska P, Dogramadzi S, Latour JM. A Pilot Study Evaluating the Effectiveness of Dual-Registration Image-Guided Radiotherapy in Patients with Oropharyngeal Cancer. J Med Imaging Radiat Sci 2017; 48:377-384. [PMID: 31047473 DOI: 10.1016/j.jmir.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE The purpose of the article was to determine the impact of Dual Registration (DR) image-guided radiotherapy (IGRT) on clinical judgement and treatment delivery for patients with oropharyngeal cancer before implementation. METHODS Ninety cone beam computed tomography images from 10 retrospective patients were matched using standard clipbox registration (SCR) and DR. Three IGRT specialist radiographers performed all registrations and evaluated by intraclass correlation to determine inter-rater agreement, Bland-Altman with 95% limits of agreement to determine differences between SCR and DR procedures, changes in clinical judgment, time taken to perform registrations, and radiographer satisfaction. RESULTS Inter-rater agreement between radiographers using both SCR and DR was high (0.867 and 0.917, P ≤ .0001). The 95% limits of agreement between SCR and DR procedures in the mediolateral, cranial-caudal, and ventrodorsal translational directions were -6.40 to +4.91, -7.49 to +6.05, and -7.00 to +5.44 mm, respectively. The mediolateral direction demonstrated significant proportional bias (P ≤ .001) suggesting non-agreement between SCR and DR. Eighty percent of DR matches resulted in a change in clinical judgement to ensure maximum target coverage. Mean registration times for SCR and DR were 94 and 115 seconds, respectively, and radiographers found DR feasible and satisfactory. CONCLUSION The standard method using SCR in patients with oropharyngeal cancer underestimates the deviation in the lower neck. In these patients, DR is an effective IGRT tool to ensure target coverage of the inferior neck nodes and has demonstrated acceptability to radiotherapy clinical practice.
Collapse
Affiliation(s)
- Simon Goldsworthy
- Radiotherapy, Beacon Centre, Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust, Taunton, UK; Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK.
| | - Marcus Leslie-Dakers
- Radiotherapy, Beacon Centre, Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust, Taunton, UK
| | - Steven Higgins
- Radiotherapy, Beacon Centre, Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust, Taunton, UK
| | - Terri Barnes
- Radiotherapy, Beacon Centre, Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust, Taunton, UK
| | - Petra Jankowska
- Radiotherapy, Beacon Centre, Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust, Taunton, UK
| | - Sanja Dogramadzi
- Bristol Robotics laboratory, University of the West of England, Bristol, UK
| | - Jos M Latour
- Clinical School, Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust, Taunton, UK; School of Nursing and Midwifery, Faculty of Health and Human Sciences, Plymouth University, Plymouth, UK
| |
Collapse
|
14
|
Ostyn M, Dwyer T, Miller M, King P, Sacks R, Cruikshank R, Rosario M, Martinez D, Kim S, Yeo WH. An electromechanical, patient positioning system for head and neck radiotherapy. Phys Med Biol 2017; 62:7520-7531. [PMID: 28816703 DOI: 10.1088/1361-6560/aa86e3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cancer treatment with radiation, accurate patient setup is critical for proper dose delivery. Improper arrangement can lead to disease recurrence, permanent organ damage, or lack of disease control. While current immobilization equipment often helps for patient positioning, manual adjustment is required, involving iterative, time-consuming steps. Here, we present an electromechanical robotic system for improving patient setup in radiotherapy, specifically targeting head and neck cancer. This positioning system offers six degrees of freedom for a variety of applications in radiation oncology. An analytical calculation of inverse kinematics serves as fundamental criteria to design the system. Computational mechanical modeling and experimental study of radiotherapy compatibility and x-ray-based imaging demonstrates the device feasibility and reliability to be used in radiotherapy. An absolute positioning accuracy test in a clinical treatment room supports the clinical feasibility of the system.
Collapse
Affiliation(s)
- Mark Ostyn
- Department of Radiation Oncology, Medical Physics Graduate Program, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States of America. Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kai Y, Toya R, Saito T, Kuraoka A, Shimohigashi Y, Nakaguchi Y, Maruyama M, Murakami R, Yamashita Y, Oya N. Plan quality and delivery time comparisons between volumetric modulated arc therapy and intensity modulated radiation therapy for scalp angiosarcoma: A planning study. J Med Radiat Sci 2017; 65:39-47. [PMID: 28755441 PMCID: PMC5846018 DOI: 10.1002/jmrs.239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/08/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022] Open
Abstract
Introduction Due to its spherical surface, scalp angiosarcoma requires careful consideration for radiation therapy planning and dose delivery. Herein, we investigated whether volumetric modulated arc therapy (VMAT) is superior to intensity modulated radiation therapy (IMRT) in terms of the plan quality and delivery time. Methods Three different coplanar treatment plans were created for four patients, comprising a two‐arc VMAT plan as well as 5‐field and 9‐field IMRT plans with 6 MV beams. The X‐ray Voxel Monte Carlo algorithm was employed for dose calculation. A radiation therapy dose of 60 Gy was prescribed to the planning target volume (PTV) in 30 fractions. The homogeneity indexes (HIs) and conformity indexes (CIs) of the PTV, organs at risk (OARs) doses and delivery times were calculated and compared. Results For the VMAT, 5‐field and 9‐field IMRT plans, the mean HIs were 0.14, 0.16 and 0.15; CIs100% were 0.63, 0.61 and 0.64; CIs98% were 0.72, 0.66 and 0.70 and CIs95% were 0.74, 0.67 and 0.71 respectively. All mean dose parameters of the VMAT and 9‐field IMRT plans for the brain were equal to or lower than those of the 5‐field IMRT plan. For the 5‐field IMRT plan, the dose constraints for the left lens were not satisfied in two patients. The mean delivery times were 3.3, 11.1 and 14.7 min for the VMAT, 5‐field and 9‐field IMRT plans respectively. Conclusion The VMAT plan quality is comparable to that of 9‐field IMRT, with a reduced delivery time. Therefore, VMAT represents a valuable, sophisticated irradiation technique for treating scalp angiosarcoma.
Collapse
Affiliation(s)
- Yudai Kai
- Department of Radiological Technology, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryo Toya
- Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan.,Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tetsuo Saito
- Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan
| | - Akiko Kuraoka
- Department of Radiological Technology, Kumamoto University Hospital, Kumamoto, Japan
| | | | - Yuji Nakaguchi
- Department of Radiological Technology, Kumamoto University Hospital, Kumamoto, Japan
| | - Masato Maruyama
- Department of Radiological Technology, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Natsuo Oya
- Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
16
|
Ostyn M, Kim S, Yeo WH. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy. SENSORS 2016; 16:s16040534. [PMID: 27089342 PMCID: PMC4851048 DOI: 10.3390/s16040534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
Abstract
One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.
Collapse
Affiliation(s)
- Mark Ostyn
- Radiation Oncology, Medical Physics Graduate Program, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Siyong Kim
- Radiation Oncology, Medical Physics Graduate Program, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Woon-Hong Yeo
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
- Center for Rehabilitation Science and Engineering, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
17
|
Inata H, Araki F, Kuribayashi Y, Hamamoto Y, Nakayama S, Sodeoka N, Kiriyama T, Nishizaki O. Development of a real-time monitoring system for intra-fractional motion in intracranial treatment using pressure sensors. Phys Med Biol 2015; 60:7229-43. [PMID: 26348273 DOI: 10.1088/0031-9155/60/18/7229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study developed a dedicated real-time monitoring system to detect intra-fractional head motion in intracranial radiotherapy using pressure sensors. The dedicated real-time monitoring system consists of pressure sensors with a thickness of 0.6 mm and a radius of 9.1 mm, a thermoplastic mask, a vacuum pillow, and a baseplate. The four sensors were positioned at superior-inferior and right-left sides under the occipital area. The sampling rate of pressure sensors was set to 5 Hz. First, we confirmed that the relationship between the force and the displacement of the vacuum pillow follows Hook's law. Next, the spring constant for the vacuum pillow was determined from the relationship between the force given to the vacuum pillow and the displacement of the head, detected by Cyberknife target locating system (TLS) acquisitions in clinical application. Finally, the accuracy of our system was evaluated by using the 2 × 2 confusion matrix. The regression lines between the force, y, and the displacement, x, of the vacuum pillow were given by y = 3.8x, y = 4.4x, and y = 5.0x when the degree of inner pressure was -12 kPa,-20 kPa, and -27 kPa, respectively. The spring constant of the vacuum pillow was 1.6 N mm(-1) from the 6D positioning data of a total of 2999 TLS acquisitions in 19 patients. Head motions of 1 mm, 1.5 mm, and 2 mm were detected in real-time with the accuracies of 67%, 84%, and 89%, respectively. Our system can detect displacement of the head continuously during every interval of TLS with a resolution of 1-2 mm without any radiation exposure.
Collapse
Affiliation(s)
- Hiroki Inata
- Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto, 862-0976, Japan. Department of Radiology, Saiseikai Imabari Hospital, 7-1-6 Kitamura, Imabari, Ehime, 799-1592, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang CW, Lin YC, Tseng HM, Xiao F, Chen CM, Cheng WL, Lu SH, Lan KH, Chen WY, Liang HK, Kuo SH. Prolonged treatment time deteriorates positioning accuracy for stereotactic radiosurgery. PLoS One 2015; 10:e0123359. [PMID: 25894841 PMCID: PMC4404334 DOI: 10.1371/journal.pone.0123359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
Introduction The accuracy of radiation delivery is increasingly important as radiotherapy technology continues to develop. The goal of this study was to evaluate intrafractional motion during intracranial radiosurgery and the relationship between motion change and treatment time. Methods and Materials A total of 50 treatment records with 5988 images, all acquired during treatments with the CyberKnife Radiosurgery System, were retrospectively analyzed in this study. We measured translation and rotation motion including superior-inferior (SI), right-left (RL), anterior-posterior (AP), roll, tilt and yaw. All of the data was obtained during the first 45 minutes of treatment. The records were divided into 3 groups based on 15-min time intervals following the beginning of treatment: group A (0-15 min), group B (16-30 min) and group C (31-45 min). The mean deviations, systematic errors, random errors and margin for planning target volume (PTV) were calculated for each group. Results The mean deviations were less than 0.1 mm in all three translation directions in the first 15 minutes. Greater motion occurred with longer treatment times, especially in the SI direction. For the 3D vector, a time-dependent change was observed, from 0.34 mm to 0.77 mm (p=0.01). There was no significant correlation between the treatment time and deviations in the AP, LR and rotation axes. Longer treatment times were associated with increases in systematic error, but not in random error. The estimated PTV margin for groups A, B and C were 0.86 / 1.14 / 1.31 mm, 0.75 / 1.12 / 1.20 mm, and 0.43 / 0.54 / 0.81 mm in the SI, RL, and AP directions, respectively. Conclusions During intracranial radiosurgery, a consistent increase in the positioning deviation over time was observed, especially in the SI direction. If treatment time is greater than 15 minutes, we recommend increasing the PTV margins to ensure treatment precision.
Collapse
Affiliation(s)
- Chun-Wei Wang
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Chun Lin
- CyberKnife Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ham-Min Tseng
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Furen Xiao
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Mu Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Li Cheng
- CyberKnife Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Huai Lu
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Keng-Hsueh Lan
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Yu Chen
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang-Kuang Liang
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Yan G, Li J, Huang Y, Mittauer K, Lu B, Liu C. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy. Med Phys 2014; 41:101713. [DOI: 10.1118/1.4896126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
20
|
Koubuchi S, Takakura T, Nakamura M, Mizowaki T, Nakata M, Hiraoka M. Accuracy of positional correction for the floor-mounted kV X-ray IGRT system in angled couch positions. Radiol Phys Technol 2014; 7:373-8. [PMID: 24925088 DOI: 10.1007/s12194-014-0275-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Stereotactic irradiation (STI) requires high geometric accuracy. We evaluated the positional correction accuracy after treatment couch rotation for non-coplanar STI with a frameless mask. A steel ball was embedded as a virtual target in a head phantom with a human cranial bone structure, and the head phantom was placed in the isocenter of the treatment-planning system with the image-guide system. The Winston-Lutz test at treatment couch angles of ±90°, ±45°, and 0° was performed, and the amount of displacement from the center position at the treatment couch angle of 0° was calculated. After treatment couch rotation through each treatment couch angle, the amount of center displacement was compared between cases with and without a positional correction by the image-guide system, and then the accuracy of the positional correction after treatment couch rotation was examined. The maximum amount of three-dimensional displacement without and with positional correction after treatment couch rotation was 0.52 mm at a treatment couch angle of -90° and 0.49 mm at a treatment couch angle of -45°. These results indicate that the image-guide system provides accuracy within about 0.50 mm regardless of the positional correction even after rotation of the treatment couch.
Collapse
Affiliation(s)
- Satoshi Koubuchi
- Division of Therapeutic Radiology and Oncology, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Badakhshi H, Barelkowski T, Wust P, Budach V, Boehmer D, Graf R. Intrafraction variations in linac-based image-guided radiosurgery of intracranial lesions. Cancer Radiother 2013; 17:664-7. [PMID: 24176665 DOI: 10.1016/j.canrad.2013.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/17/2013] [Accepted: 05/25/2013] [Indexed: 11/20/2022]
Abstract
PURPOSE This study investigated image-guided patient positioning during frameless, mask-based, single-fraction stereotactic radiosurgery of intracranial lesions and intrafractional translational and rotational variations in patient positions. PATIENTS AND METHODS A non-invasive head and neck thermoplastic mask was used for immobilization. The Exactrac/Novalis Body system (BrainLAB AG, Germany) was used for kV X-ray imaging guided positioning. Intrafraction displacement data, obtained by imaging after each new table position, were evaluated. RESULTS There were 269 radiosurgery treatments performed on 190 patients and a total of 967 setups within different angles. The first measured error after each table rotation (mean 2.6) was evaluated (698 measurements). Intrafraction translational errors were (1 standard deviation [SD]) on average 0.8, 0.8, and 0.7mm for the left-right, superior-inferior, and anterior-posterior directions, respectively, with a mean 3D-vector of 1.0mm (SD 0.9mm) and a range from -5mm to +5mm. On average, 12%, 3%, and 1% of the translational deviations exceeded 1, 2, and 3mm, respectively, in the three directions. CONCLUSION The range of intrafraction patient motion in frameless image-guided stereotactic radiosurgery is often not fully mapped by pre- and post-treatment imaging. In the current study, intrafraction motion was assessed by performing measurements at several time points during the course of stereotactic radiosurgery. It was determined that 12% of the intrafraction values in the three dimensions are above 1mm, the usual safety margin applied in stereotactic radiosurgery.
Collapse
Affiliation(s)
- H Badakhshi
- Department of Radiation Oncology, Charité School of Medicine and University Hospital, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Li G, Lovelock DM, Mechalakos J, Rao S, Della-Biancia C, Amols H, Lee N. Migration from full-head mask to "open-face" mask for immobilization of patients with head and neck cancer. J Appl Clin Med Phys 2013; 14:243-54. [PMID: 24036878 PMCID: PMC5714571 DOI: 10.1120/jacmp.v14i5.4400] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/20/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022] Open
Abstract
To provide an alternative device for immobilization of the head while easing claustrophobia and improving comfort, an “open‐face” thermoplastic mask was evaluated using video‐based optical surface imaging (OSI) and kilovoltage (kV) X‐ray radiography. A three‐point thermoplastic head mask with a precut opening and reinforced strips was developed. After molding, it provided sufficient visible facial area as the region of interest for OSI. Using real‐time OSI, the head motion of ten volunteers in the new mask was evaluated during mask locking and 15 minutes lying on the treatment couch. Using a nose mark with reference to room lasers, forced head movement in open‐face and full‐head masks (with a nose hole) was compared. Five patients with claustrophobia were immobilized with open‐face masks, set up using OSI and kV, and treated in 121 fractions, in which 61 fractions were monitored during treatment using real‐time OSI. With the open‐face mask, head motion was found to be 1.0 ± 0.6 mm and 0.4° ± 0.2° in volunteers during the experiment, and 0.8 ± 0.3 mm and 0.4° ± 0.2° in patients during treatment. These agree with patient motion calculated from pre‐/post‐treatment OSI and kV data using different anatomical landmarks. In volunteers, the head shift induced by mask‐locking was 2.3 ± 1.7 mm and 1.8° ± 0.6°, and the range of forced movements in the open‐face and full‐head masks were found to be similar. Most (80%) of the volunteers preferred the open‐face mask to the full‐head mask, while claustrophobic patients could only tolerate the open‐face mask. The open‐face mask is characterized for its immobilization capability and can immobilize patients sufficiently (< 2 mm) during radiotherapy. It provides a clinical solution to the immobilization of patients with head and neck (HN) cancer undergoing radiotherapy, and is particularly beneficial for claustrophobic patients. This new open‐face mask is readily adopted in radiotherapy clinic as a superior alternative to the standard full‐head mask. PACS numbers: 87.19.xj, 87.63.L‐, 87.59.‐e, 87.55.tg, 87.55.‐x
Collapse
Affiliation(s)
- Guang Li
- Memorial Sloan-Kettering Cancer Center.
| | | | | | | | | | | | | |
Collapse
|
23
|
Tagaste B, Riboldi M, Spadea MF, Bellante S, Baroni G, Cambria R, Garibaldi C, Ciocca M, Catalano G, Alterio D, Orecchia R. Comparison Between Infrared Optical and Stereoscopic X-Ray Technologies for Patient Setup in Image Guided Stereotactic Radiotherapy. Int J Radiat Oncol Biol Phys 2012; 82:1706-14. [DOI: 10.1016/j.ijrobp.2011.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/24/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022]
|
24
|
Jeon W, Wu HG, Song SH, Kim JI. Radial displacement of clinical target volume in node negative head and neck cancer. Radiat Oncol J 2012; 30:36-42. [PMID: 23120742 PMCID: PMC3475961 DOI: 10.3857/roj.2012.30.1.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/04/2022] Open
Abstract
Purpose To evaluate the radial displacement of clinical target volume in the patients with node negative head and neck (H&N) cancer and to quantify the relative positional changes compared to that of normal healthy volunteers. Materials and Methods Three node-negative H&N cancer patients and five healthy volunteers were enrolled in this study. For setup accuracy, neck thermoplastic masks and laser alignment were used in each of the acquired computed tomography (CT) images. Both groups had total three sequential CT images in every two weeks. The lymph node (LN) level of the neck was delineated based on the Radiation Therapy Oncology Group (RTOG) consensus guideline by one physician. We use the second cervical vertebra body as a reference point to match each CT image set. Each of the sequential CT images and delineated neck LN levels were fused with the primary image, then maximal radial displacement was measured at 1.5 cm intervals from skull base (SB) to caudal margin of LN level V, and the volume differences at each node level were quantified. Results The mean radial displacements were 2.26 (±1.03) mm in the control group and 3.05 (±1.97) in the H&N cancer patients. There was a statistically significant difference between the groups in terms of the mean radial displacement (p = 0.03). In addition, the mean radial displacement increased with the distance from SB. As for the mean volume differences, there was no statistical significance between the two groups. Conclusion This study suggests that a more generous radial margin should be applied to the lower part of the neck LN for better clinical target coverage and dose delivery.
Collapse
Affiliation(s)
- Wan Jeon
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
25
|
Clinical comparison of positional accuracy and stability between dedicated versus conventional masks for immobilization in cranial stereotactic radiotherapy using 6-degree-of-freedom image guidance system-integrated platform. Radiother Oncol 2011; 102:198-205. [PMID: 22100656 DOI: 10.1016/j.radonc.2011.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 11/22/2022]
Abstract
PURPOSE To compare the positioning accuracy and stability of two distinct noninvasive immobilization devices, a dedicated (D-) and conventional (C-) mask, and to evaluate the applicability of a 6-degrees-of-freedom (6D) correction, especially to the C-mask, based on our initial experience with cranial stereotactic radiotherapy (SRT) using ExacTrac (ET)/Robotics integrated into the Novalis Tx platform. MATERIALS AND METHODS The D- and C-masks were the BrainLAB frameless mask system and a general thermoplastic mask used for conventional radiotherapy such as whole brain irradiation, respectively. A total of 148 fractions in 71 patients and 125 fractions in 20 patients were analyzed for the D- and C-masks, respectively. For the C-mask, 3D correction was applied to the initial 10 patients, and thereafter, 6D correction was adopted. The 6D residual errors (REs) in the initial setup, after correction (pre-treatment), and during post-treatment were measured and compared. RESULTS The D-mask provided no significant benefit for initial setup. The post-treatment median 3D vector displacements (interquatile range) were 0.38 mm (0.22, 0.60) and 0.74 mm (0.49, 1.04) for the D- and C-masks, respectively (p<0.001). The post-treatment maximal translational REs were within 1 mm and 2 mm for the D- and C-masks, respectively, and notably within 1.5 mm for the C-mask with 6D correction. The pre-treatment 3D vector displacements were significantly correlated with those for post-treatment in both masks. CONCLUSIONS The D-mask confers positional stability acceptable for SRT. For the C-mask, 6D correction is also recommended, and an additional setup margin of 0.5 mm to that for the D-mask would be sufficient. The tolerance levels for the pre-treatment REs should similarly be set as small as possible for both systems.
Collapse
|
26
|
Kim H, Park YK, Kim IH, Lee K, Ye SJ. Development of an optical-based image guidance system: technique detecting external markers behind a full facemask. Med Phys 2011; 38:3006-12. [PMID: 21815374 DOI: 10.1118/1.3589137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Optical image-guided systems (e.g., AlignRT, frameless SonArray, ExacTrac) have been used with advantages of avoiding excessive radiation exposure and real-time patient monitoring. Although these systems showed proven accuracy, they need to modify a full facemask for patients with H&N cancer and brain tumor. We developed an optical-based guidance system to manage interfractional and intrafractional setup errors by tracking external markers behind a full facemask. METHODS Infra-red (IR) reflecting markers were attached on the face of a head phantom and then the phantom was immobilized by a full face thermoplastic mask. A stereo camera system consisting of two CCD cameras was mounted on the inferior wall of treatment room. The stereo camera system was calibrated to reconstruct 3D coordinates of multiple markers with respect to the isocenter using the direct linear transform (DLT) algorithm. The real-time position of the phantom was acquired, through the stereo camera system, by detecting the IR markers behind the full facemask. The detection errors with respect to the reference positions of planning CT images were calculated in six degrees of freedom (6-DOF) by a rigid-body registration technique. RESULTS The calibration accuracy of the system was in submillimeter (0.33 mm +/- 0.27 mm), which was comparable to others. The mean distance between each of marker positions of optical images and planning CT images was 0.50 mm +/- 0.67 mm. The maximum deviations of 6-DOF registration were less than 1 mm and 1 degrees for the couch translation and rotation, respectively. CONCLUSIONS The developed system showed the accuracy and consistency comparable to the commercial optical guided systems, while allowing us to simultaneously immobilize patients with a full face thermoplastic mask.
Collapse
Affiliation(s)
- Hwiyoung Kim
- Department of Radiation Applied Life Science, Seoul National University, Seoul 110-744, Korea
| | | | | | | | | |
Collapse
|
27
|
Spadea MF, Tagaste B, Riboldi M, Preve E, Alterio D, Piperno G, Garibaldi C, Orecchia R, Pedotti A, Baroni G. Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population. Radiat Oncol 2011; 6:38. [PMID: 21496255 PMCID: PMC3096920 DOI: 10.1186/1748-717x-6-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/15/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging. METHOD AND MATERIALS We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion. RESULTS According to optical measurements, the size of intra-fraction motion was (median ± quartile) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly. CONCLUSION Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques.
Collapse
Affiliation(s)
- Maria Francesca Spadea
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gevaert T, Verellen D, Tournel K, Linthout N, Bral S, Engels B, Collen C, Depuydt T, Duchateau M, Reynders T, Storme G, De Ridder M. Setup accuracy of the Novalis ExacTrac 6DOF system for frameless radiosurgery. Int J Radiat Oncol Biol Phys 2011; 82:1627-35. [PMID: 21477937 DOI: 10.1016/j.ijrobp.2011.01.052] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/29/2010] [Accepted: 01/12/2011] [Indexed: 11/26/2022]
Abstract
PURPOSE Stereotactic radiosurgery using frame-based positioning is a well-established technique for the treatment of benign and malignant lesions. By contrast, a new trend toward frameless systems using image-guided positioning techniques is gaining mainstream acceptance. This study was designed to measure the detection and positioning accuracy of the ExacTrac/Novalis Body (ET/NB) for rotations and to compare the accuracy of the frameless with the frame-based radiosurgery technique. METHODS AND MATERIALS A program was developed in house to rotate reference computed tomography images. The angles measured by the system were compared with the known rotations. The accuracy of ET/NB was evaluated with a head phantom with seven lead beads inserted, mounted on a treatment couch equipped with a robotic tilt module, and was measured with a digital water level and portal films. Multiple hidden target tests (HTT) were performed to measure the overall accuracy of the different positioning techniques for radiosurgery (i.e., frameless and frame-based with relocatable mask or invasive ring, respectively). RESULTS The ET/NB system can detect rotational setup errors with an average accuracy of 0.09° (standard deviation [SD] 0.06°), 0.02° (SD 0.07°), and 0.06° (SD 0.14°) for longitudinal, lateral, and vertical rotations, respectively. The average positioning accuracy was 0.06° (SD 0.04°), 0.08° (SD 0.06°), and 0.08° (SD 0.07°) for longitudinal, lateral and vertical rotations, respectively. The results of the HTT showed an overall three-dimensional accuracy of 0.76 mm (SD 0.46 mm) for the frameless technique, 0.87 mm (SD 0.44 mm) for the relocatable mask, and 1.19 mm (SD 0.45 mm) for the frame-based technique. CONCLUSIONS The study showed high detection accuracy and a subdegree positioning accuracy. On the basis of phantom studies, the frameless technique showed comparable accuracy to the frame-based approach.
Collapse
Affiliation(s)
- Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The accuracy of frameless stereotactic intracranial radiosurgery. Radiother Oncol 2010; 97:390-4. [PMID: 21047692 DOI: 10.1016/j.radonc.2010.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/31/2010] [Accepted: 06/07/2010] [Indexed: 11/23/2022]
Abstract
PURPOSE To determine the accuracy of frameless stereotactic radiosurgery using the BrainLAB ExacTrac system and robotic couch by measuring the individual contributions such as the accuracy of the imaging and couch correction system, the linkage between this system and the linac isocenter and the possible intrafraction motion of the patient in the frameless mask. MATERIALS AND METHODS An Alderson head phantom with hidden marker was randomly positioned 31 times. Automated 6D couch shifts were performed according to ExacTrac and the deviation with respect to the linac isocenter was measured using the hidden marker. ExacTrac-based set-up was performed for 46 patients undergoing hypofractionated stereotactic radiotherapy for 135 fractions, followed by verification X-rays. Forty-three of these patients received post-treatment X-ray verification for 79 fractions to determine the intrafraction motion. RESULTS The hidden target test revealed a systematic error of 1.5 mm in one direction, which was corrected after replacement of the system calibration phantom. The accuracy of the ExacTrac positioning is approximately 0.3 mm in each direction, 1 standard deviation. The intrafraction motion was 0.35±0.21 mm, maximum 1.15 mm. CONCLUSION Intrafraction motion in the BrainLAB frameless mask is very small. Users are strongly advised to perform an independent verification of the ExacTrac isocenter in order to avoid systematic deviations.
Collapse
|
30
|
Kang H, Lovelock DM, Yorke ED, Kriminski S, Lee N, Amols HI. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance. J Appl Clin Med Phys 2010. [PMID: 21330971 PMCID: PMC3065820 DOI: 10.1120/jacmp.v12i1.3270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our goal is to determine an optimized image‐guided setup by comparing setup errors determined by two‐dimensional (2D) and three‐dimensional (3D) image guidance for head and neck cancer (HNC) patients immobilized by customized thermoplastic masks. Nine patients received weekly imaging sessions, for a total of 54, throughout treatment. Patients were first set up by matching lasers to surface marks (initial) and then translationally corrected using manual registration of orthogonal kilovoltage (kV) radiographs with DRRs (2D‐2D) on bony anatomy. A kV cone beam CT (kVCBCT) was acquired and manually registered to the simulation CT using only translations (3D‐3D) on the same bony anatomy to determine further translational corrections. After treatment, a second set of kVCBCT was acquired to assess intrafractional motion. Averaged over all sessions, 2D‐2D registration led to translational corrections from initial setup of 3.5±2.2 (range 0–8) mm. The addition of 3D‐3D registration resulted in only small incremental adjustment (0.8±1.5mm). We retrospectively calculated patient setup rotation errors using an automatic rigid‐body algorithm with 6 degrees of freedom (DoF) on regions of interest (ROI) of in‐field bony anatomy (mainly the C2 vertebral body). Small rotations were determined for most of the imaging sessions; however, occasionally rotations >3° were observed. The calculated intrafractional motion with automatic registration was <3.5 mm for eight patients, and <2° for all patients. We conclude that daily manual 2D‐2D registration on radiographs reduces positioning errors for mask‐immobilized HNC patients in most cases, and is easily implemented. 3D‐3D registration adds little improvement over 2D‐2D registration without correcting rotational errors. We also conclude that thermoplastic masks are effective for patient immobilization. PACS number: 87.53.Kn
Collapse
Affiliation(s)
- Hyejoo Kang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Beltran C, Krasin MJ, Merchant TE. Inter- and intrafractional positional uncertainties in pediatric radiotherapy patients with brain and head and neck tumors. Int J Radiat Oncol Biol Phys 2010; 79:1266-74. [PMID: 20605345 DOI: 10.1016/j.ijrobp.2009.12.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 12/25/2022]
Abstract
PURPOSE To estimate radiation therapy planning margins based on inter- and intrafractional uncertainty for pediatric brain and head and neck tumor patients at different imaging frequencies. METHODS Pediatric patients with brain (n = 83) and head and neck (n = 17) tumors (median age = 7.2 years) were enrolled on an internal review board-approved localization protocol and stratified according to treatment position and use of anesthesia. Megavoltage cone-beam CT (CBCT) was performed before each treatment and after every other treatment. The pretreatment offsets were used to calculate the interfractional setup uncertainty (SU), and posttreatment offsets were used to calculate the intrafractional residual uncertainty (RU). The SU and RU are the patient-related components of the setup margin (SM), which is part of the planning target volume (PTV). SU data was used to simulate four intervention strategies using different imaging frequencies and thresholds. RESULTS The SM based on all patients treated on this study was 2.1 mm (SU = 0.9 mm, RU = 1.9 mm) and varied according to treatment position (supine = 1.8 mm, prone = 2.6 mm) and use of anesthesia (with = 1.7 mm, without = 2.5 mm) because of differences in the RU. The average SU for a 2-mm threshold based on no imaging, once per week imaging, initial five images, and daily imaging was 3.6, 2.1, 2.2, and 0.9 mm, respectively. CONCLUSION On the basis of this study, the SM component of the PTV may be reduced to 2 mm for daily CBCT compared with 3.5 mm for weekly CBCT. Considering patients who undergo daily pretreatment CBCT, the SM is larger for those treated in the prone position or smaller for those treated under anesthesia because of differences in the RU.
Collapse
Affiliation(s)
- Chris Beltran
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | | | |
Collapse
|
32
|
Wilbert J, Guckenberger M, Polat B, Sauer O, Vogele M, Flentje M, Sweeney RA. Semi-robotic 6 degree of freedom positioning for intracranial high precision radiotherapy; first phantom and clinical results. Radiat Oncol 2010; 5:42. [PMID: 20504338 PMCID: PMC2890022 DOI: 10.1186/1748-717x-5-42] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/26/2010] [Indexed: 11/28/2022] Open
Abstract
Background To introduce a novel method of patient positioning for high precision intracranial radiotherapy. Methods An infrared(IR)-array, reproducibly attached to the patient via a vacuum-mouthpiece(vMP) and connected to the table via a 6 degree-of-freedom(DoF) mechanical arm serves as positioning and fixation system. After IR-based manual prepositioning to rough treatment position and fixation of the mechanical arm, a cone-beam CT(CBCT) is performed. A robotic 6 DoF treatment couch (HexaPOD™) then automatically corrects all remaining translations and rotations. This absolute position of infrared markers at the first fraction acts as reference for the following fractions where patients are manually prepositioned to within ± 2 mm and ± 2° of this IR reference position prior to final HexaPOD-based correction; consequently CBCT imaging is only required once at the first treatment fraction. The preclinical feasibility and attainable repositioning accuracy of this method was evaluated on a phantom and human volunteers as was the clinical efficacy on 7 pilot study patients. Results Phantom and volunteer manual IR-based prepositioning to within ± 2 mm and ± 2° in 6DoF was possible within a mean(± SD) of 90 ± 31 and 56 ± 22 seconds respectively. Mean phantom translational and rotational precision after 6 DoF corrections by the HexaPOD was 0.2 ± 0.2 mm and 0.7 ± 0.8° respectively. For the actual patient collective, the mean 3D vector for inter-treatment repositioning accuracy (n = 102) was 1.6 ± 0.8 mm while intra-fraction movement (n = 110) was 0.6 ± 0.4 mm. Conclusions This novel semi-automatic 6DoF IR-based system has been shown to compare favourably with existing non-invasive intracranial repeat fixation systems with respect to handling, reproducibility and, more importantly, intra-fraction rigidity. Some advantages are full cranial positioning flexibility for single and fractionated IGRT treatments and possibly increased patient comfort.
Collapse
Affiliation(s)
- Jürgen Wilbert
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Beltran C, Naik M, Merchant TE. Dosimetric effect of setup motion and target volume margin reduction in pediatric ependymoma. Radiother Oncol 2010; 96:216-22. [PMID: 20347495 DOI: 10.1016/j.radonc.2010.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/17/2010] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Quantify the dosimetric effect of inter- and intrafractional motion on intensity-modulated radiation therapy (IMRT) and three-dimensional (3D) planning via changes in the generalized equivalent uniform dose (gEUD), predicted tumor control probability (TCP) and normal tissue complication probability (NTCP) for pediatric ependymoma. METHODS AND MATERIALS Twenty patients treated between 1998 and 2002 with a 3D plan (CTV = 1 cm, PTV = 5 mm) were selected. Two IMRT plans were created for the 1 cm CTV (PTV = 5 mm and PTV = 0 mm), and a third IMRT plan for a 5 mm CTV (PTV = 0 mm). Direct simulation with inter- and intrafractional motion was performed for 3D and IMRT plans based on daily pre and post-treatment cone beam CT information obtained from 20 well-matched patients (age, supine/prone, use of GA) on a localization protocol. Calculated TCP, NTCP, Conformity Index (CI), and predictive IQ were compared. RESULTS IMRT improved the calculated TCP by 2.8+/-2.8 vs. 3D (p<0.001). Inter- and intrafractional motion results in a TCP loss of 0.4+/-0.7 (p=0.02) and 0.0+/-0.1 (p=0.14) for the IMRT plan with PTV = 0 mm. Mean NTCP for 3D and IMRT with PTV = 5 mm, PTV = 0 mm, and CTV = 5 mm for the cochlea was: 66.6, 29.4, 8.7. Mean NTCP change due to motion was <5%. CI was 0.70+/-0.06 for IMRT and 0.5+/-0.10 for 3D. Predictive IQ was 10.0+/-10.3 points higher for IMRT vs. 3D. CONCLUSIONS IMRT improves calculated TCP vs. 3D. Daily localization can allow for a safe reduction in the PTV margin, while maintaining target coverage; reducing the CTV margin can further reduce NTCP and may reduce future side-effects.
Collapse
Affiliation(s)
- Chris Beltran
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN 38120, USA.
| | | | | |
Collapse
|
34
|
Velec M, Waldron JN, O'Sullivan B, Bayley A, Cummings B, Kim JJ, Ringash J, Breen SL, Lockwood GA, Dawson LA. Cone-Beam CT Assessment of Interfraction and Intrafraction Setup Error of Two Head-and-Neck Cancer Thermoplastic Masks. Int J Radiat Oncol Biol Phys 2010; 76:949-55. [PMID: 20056344 DOI: 10.1016/j.ijrobp.2009.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 07/01/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
|
35
|
van Beek S, van Kranen S, Mencarelli A, Remeijer P, Rasch C, van Herk M, Sonke JJ. First clinical experience with a multiple region of interest registration and correction method in radiotherapy of head-and-neck cancer patients. Radiother Oncol 2010; 94:213-7. [DOI: 10.1016/j.radonc.2009.12.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/14/2009] [Accepted: 12/20/2009] [Indexed: 11/15/2022]
|
36
|
Truong MT, Grillone G, Tschoe C, Chin L, Kachnic LA, Jalisi S. Emerging applications of stereotactic radiotherapy in head and neck cancer. Neurosurg Focus 2009; 27:E11. [DOI: 10.3171/2009.9.focus09199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Advances in the management of locally advanced head and neck cancer (HNC) have been focused on treatment intensification, including concomitant chemoradiotherapy, biological agents, and combining surgery with chemoradiotherapy. Despite these improvements, locoregional recurrence still constitutes the main pattern of treatment failure. As improvements in radiotherapy delivery and image-guided therapy have come to fruition, the principles of stereotactic radiosurgery are now being applied to extracranial sites, leading to stereotactic body radiotherapy. This article focuses on the emerging evidence for the use of stereotactic body radiotherapy for treatment of HNC as a boost after conventional external-beam radiotherapy, and also as reirradiation in recurrent or second primary HNC.
Collapse
Affiliation(s)
| | | | - Christine Tschoe
- 3Neurosurgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Lawrence Chin
- 3Neurosurgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | | | - Scharukh Jalisi
- 2Otolaryngology, and
- 3Neurosurgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
37
|
Kapanen M, Collan J, Saarilahti K, Heikkonen J, Kairemo K, Tenhunen M. Accuracy requirements for head and neck intensity-modulated radiation therapy based on observed dose response of the major salivary glands. Radiother Oncol 2009; 93:109-14. [DOI: 10.1016/j.radonc.2009.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/02/2009] [Accepted: 04/24/2009] [Indexed: 11/28/2022]
|
38
|
Ahunbay EE, Peng C, Godley A, Schultz C, Li XA. An on-line replanning method for head and neck adaptive radiotherapya). Med Phys 2009; 36:4776-90. [DOI: 10.1118/1.3215532] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
39
|
Recent advances in image-guided radiotherapy for head and neck carcinoma. JOURNAL OF ONCOLOGY 2009; 2009:752135. [PMID: 19644564 PMCID: PMC2717698 DOI: 10.1155/2009/752135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 11/17/2022]
Abstract
Radiotherapy has a well-established role in the management of head and neck cancers. Over the past decade, a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. These technologies are collectively referred to as image-guided radiotherapy and may lead to significant gains in tumor control and radiation side effect profiles. In the following review, these techniques as they are applied to head and neck cancer patients are described, and clinical studies analyzing their use in target delineation, patient positioning, and adaptive radiotherapy are highlighted. Finally, we conclude with a brief discussion of potential areas of further radiotherapy advancement.
Collapse
|
40
|
van Kranen S, van Beek S, Rasch C, van Herk M, Sonke JJ. Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance. Int J Radiat Oncol Biol Phys 2009; 73:1566-73. [PMID: 19306753 DOI: 10.1016/j.ijrobp.2008.11.035] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/10/2008] [Accepted: 11/08/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To quantify local geometrical uncertainties in anatomical sub-regions during radiotherapy for head-and-neck cancer patients. METHODS AND MATERIALS Local setup accuracy was analyzed for 38 patients, who had received intensity-modulated radiotherapy and were regularly scanned during treatment with cone beam computed tomography (CBCT) for offline patient setup correction. In addition to the clinically used large region of interest (ROI), we defined eight ROIs in the planning CT that contained rigid bony structures: the mandible, larynx, jugular notch, occiput bone, vertebrae C1-C3, C3-C5, and C5-C7, and the vertebrae caudal of C7. By local rigid registration to successive CBCT scans, the local setup accuracy of each ROI was determined and compared with the overall setup error assessed with the large ROI. Deformations were distinguished from rigid body movements by expressing movement relative to a reference ROI (vertebrae C1-C3). RESULTS The offline patient setup correction protocol using the large ROI resulted in residual systematic errors (1 SD) within 1.2 mm and random errors within 1.5 mm for each direction. Local setup errors were larger, ranging from 1.1 to 3.4 mm (systematic) and 1.3 to 2.5 mm (random). Systematic deformations ranged from 0.4 mm near the reference C1-C3 to 3.8 mm for the larynx. Random deformations ranged from 0.5 to 3.6 mm. CONCLUSION Head-and-neck cancer patients show considerable local setup variations, exceeding residual global patient setup uncertainty in an offline correction protocol. Current planning target volume margins may be inadequate to account for these uncertainties. We propose registration of multiple ROIs to drive correction protocols and adaptive radiotherapy to reduce the impact of local setup variations.
Collapse
Affiliation(s)
- Simon van Kranen
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Bednarz G, Machtay M, Werner-Wasik M, Downes B, Bogner J, Hyslop T, Galvin J, Evans J, Curran W, Andrews D. Report on a randomized trial comparing two forms of immobilization of the head for fractionated stereotactic radiotherapy. Med Phys 2009; 36:12-7. [PMID: 19235368 DOI: 10.1118/1.3030950] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Fractionated stereotactic radiotherapy (SRT) requires accurate and reproducible immobilization of the patient's head. This randomized study compared the efficacy of two commonly used forms of immobilization used for SRT. Two routinely used methods of immobilization, which differ in their approach to reproduce the head position from day to day, are the Gill-Thomas-Cosman (GTC) frame and the BrainLab thermoplastic mask. The GTC frame fixates on the patient's upper dentition and thus is in direct mechanical contact with the cranium. The BrainLab mask is a two-part masking system custom fitted to the front and back of the patient's head. After patients signed an IRB-approved informed consent form, eligible patients were randomized to either GTC frame or mask for their course of SRT. Patients were treated as per standard procedure; however, prior to each treatment a set of digital kilovolt images (ExacTrac, BrainLabAB, Germany) was taken. These images were fused with reference digitally reconstructed radiographs obtained from treatment planning CT to yield lateral, longitudinal, and vertical deviations of isocenter and head rotations about respective axes. The primary end point of the study was to compare the two systems with respect to mean and standard deviations using the distance to isocenter measure. A total of 84 patients were enrolled (69 patients evaluable with detailed positioning data). A mixed-effect linear regression and two-tiled t test were used to compare the distance measure for both the systems. There was a statistically significant (p < 0.001) difference between mean distances for these systems, suggesting that the GTC frame was more accurate. The mean 3D displacement and standard deviations were 3.17+1.95 mm for mask and 2.00+1.04 mm for frame. Both immobilization techniques were highly effective, but the GTC frame was more accurate. To optimize the accuracy of SRT, daily kilovolt image guidance is recommended with either immobilization system.
Collapse
Affiliation(s)
- Greg Bednarz
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Beltran C, Trussell J, Merchant TE. Dosimetric impact of intrafractional patient motion in pediatric brain tumor patients. Med Dosim 2009; 35:43-8. [PMID: 19931014 PMCID: PMC3800030 DOI: 10.1016/j.meddos.2009.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to determine the dosimetric consequences of intrafractional patient motion on the clinical target volume (CTV), spinal cord, and optic nerves for non-sedated pediatric brain tumor patients. The patients were immobilized for treatment using a customized thermoplastic full-face mask and bite-block attached to an array of reflectors. The array was optically tracked by infra-red cameras at a frequency of 10 Hz. Patients were localized based on skin/mask marks and weekly films were taken to ensure proper setup. Before each noncoplanar field was delivered, the deviation from baseline of the array was recorded. The systematic error (SE) and random error (RE) were calculated. Direct simulation of the intrafractional motion was used to quantify the dosimetric changes to the targets and critical structures. Nine patients utilizing the optical tracking system were evaluated. The patient cohort had a mean of 31 +/- 1.5 treatment fractions; motion data were acquired for a mean of 26 +/- 6.2 fractions. The mean age was 15.6 +/- 4.1 years. The SE and RE were 0.4 and 1.1 mm in the posterior-anterior, 0.5 and 1.0 mm in left-right, and 0.6 and 1.3 mm in superior-inferior directions, respectively. The dosimetric effects of the motion on the CTV were negligible; however, the dose to the critical structures was increased. Patient motion during treatment does affect the dose to critical structures, therefore, planning risk volumes are needed to properly assess the dose to normal tissues. Because the motion did not affect the dose to the CTV, the 3-mm PTV margin used is sufficient to account for intrafractional motion, given the patient is properly localized at the start of treatment.
Collapse
Affiliation(s)
- Chris Beltran
- Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | | | |
Collapse
|
43
|
Feygelman V, Walker L, Chinnaiyan P, Forster K. Simulation of intrafraction motion and overall geometrical accuracy of a frameless intracranial radiosurgery process. J Appl Clin Med Phys 2008; 9:68-86. [PMID: 19020489 PMCID: PMC5722363 DOI: 10.1120/jacmp.v9i4.2828] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 06/09/2008] [Accepted: 06/17/2008] [Indexed: 12/25/2022] Open
Abstract
We conducted a comprehensive evaluation of the clinical accuracy of an image-guided frameless intracranial radiosurgery system. All links in the process chain were tested. Using healthy volunteers, we evaluated a novel method to prospectively quantify the range of target motion for optimal determination of the planning target volume (PTV) margin. The overall system isocentric accuracy was tested using a rigid anthropomorphic phantom containing a hidden target. Intrafraction motion was simulated in 5 healthy volunteers. Reinforced head-and-shoulders thermoplastic masks were used for immobilization. The subjects were placed in a treatment position for 15 minutes (the maximum expected time between repeated isocenter localizations) and the six-degrees-of-freedom target displacements were recorded with high frequency by tracking infrared markers. The markers were placed on a customized piece of thermoplastic secured to the head independently of the immobilization mask. Additional data were collected with the subjects holding their breath, talking, and deliberately moving. As compared with fiducial matching, the automatic registration algorithm did not introduce clinically significant errors (<0.3 mm difference). The hidden target test confirmed overall system isocentric accuracy of < or =1 mm (total three-dimensional displacement). The subjects exhibited various patterns and ranges of head motion during the mock treatment. The total displacement vector encompassing 95% of the positional points varied from 0.4 mm to 2.9 mm. Pre-planning motion simulation with optical tracking was tested on volunteers and appears promising for determination of patient-specific PTV margins. Further patient study is necessary and is planned. In the meantime, system accuracy is sufficient for confident clinical use with 3 mm PTV margins.
Collapse
Affiliation(s)
- Vladimir Feygelman
- H. Lee Moffitt Cancer Center and Research InstituteDivision of Radiation OncologyTampaFloridaU.S.A.
| | - Luke Walker
- H. Lee Moffitt Cancer Center and Research InstituteDivision of Radiation OncologyTampaFloridaU.S.A.
| | - Prakash Chinnaiyan
- H. Lee Moffitt Cancer Center and Research InstituteDivision of Radiation OncologyTampaFloridaU.S.A.
| | - Kenneth Forster
- H. Lee Moffitt Cancer Center and Research InstituteDivision of Radiation OncologyTampaFloridaU.S.A.
| |
Collapse
|
44
|
Court LE, Wolfsberger L, Allen AM, James S, Tishler RB. Clinical experience of the importance of daily portal imaging for head and neck IMRT treatments. J Appl Clin Med Phys 2008; 9:26-33. [PMID: 18716586 PMCID: PMC5722295 DOI: 10.1120/jacmp.v9i3.2756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 02/14/2008] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to evaluate patient setup in head and neck IMRT using daily portal imaging. At our institution, orthogonal digital portal images are taken daily to check patient positioning prior to head and neck IMRT treatment. Isocenter misalignments are corrected using a couch shift (3mm action level). Therapists also compare the DRRs and portal images looking at points more distant from the isocenter, particular in the supraclavicular region, and re-position the patient's shoulders in the mask if considered necessary. The daily isocenter shifts (C2 region) and frequency of patient repositioning were investigated by review of record-and-verify records for 15 patients. The magnitude of the shoulder repositioning was evaluated for 10 of these patients by comparing portal images and plan DRRs for a point 8 cm inferior of isocenter (T2-T4). For all patients, pretreatment isocenter discrepancies 3mm or smaller were recorded for a median of 92.5% of fractions (range: 71.4 -100%). Patients were repositioned in the immobilization mask before treatment for a median of 14% of fractions (3-34%). Thirty percent of these were for shoulder shifts of 1cm or larger. Twenty percent of patients needed shoulder shifts of 1cm or more for more than 7/35 fractions, meaning that without setup based on daily imaging, parts of the CTV would have received less than 95% of the prescribed dose. In conclusion, with our current immobilization, isocenter positioning accuracy is excellent, while correct shoulder position is more variable, particularly for a small subset of patients. Frequent imaging of head and neck IMRT patients is essential to accurate delivery of therapy, with shoulder position an important factor.
Collapse
Affiliation(s)
- Laurence E Court
- Department of Radiation OncologyDana‐Farber / Brigham & Women's Cancer CenterBostonMAUSA
| | - Luciant Wolfsberger
- Department of Radiation OncologyDana‐Farber / Brigham & Women's Cancer CenterBostonMAUSA
| | - Aaron M Allen
- Department of Radiation OncologyDana‐Farber / Brigham & Women's Cancer CenterBostonMAUSA
| | - Steven James
- Department of Radiation OncologyDana‐Farber / Brigham & Women's Cancer CenterBostonMAUSA
| | - Roy B Tishler
- Department of Radiation OncologyDana‐Farber / Brigham & Women's Cancer CenterBostonMAUSA
| |
Collapse
|
45
|
Spadea MF, Baroni G, Riboldi M, Luraschi R, Tagaste B, Garibaldi C, Catalano G, Orecchia R, Pedotti A. Benefits of Six Degrees of Freedom for Optically Driven Patient Set-up Correction in SBRT. Technol Cancer Res Treat 2008; 7:187-95. [DOI: 10.1177/153303460800700304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To quantify the advantages of a 6 degrees of freedom (dof) versus the conventional 3- or 4-dof correction modality for stereotactic body radiation therapy (SBRT) treatments. Eighty-five patients were fitted with 5–7 infra-red passive markers for optical localization. Data, acquired during the treatment, were analyzed retrospectively to simulate and evaluate the best approach for correcting patient misalignments. After the implementation of each correction, the new position of the target (tumor's center of mass) was estimated by means of a dedicated stereotactic algorithm. The Euclidean distance between the corrected and the planned location of target point was calculated and compared to the initial mismatching. Initial and after correction median±quartile displacements affecting external control points were 3.74±2.55 mm (initial), 2.45±0.91 mm (3-dof), 2.37±0.95 mm (4-dof), and 2.03±1.47 mm (6-dof). The benefit of a six-parameter adjustment was particularly evident when evaluating the results relative to the target position before and after the re-alignment. In this context, the Euclidean distance between the planned and the current target point turned to 0.82±1.12mm (median±quartile values) after the roto-translation versus the initial displacement of 2.98±2.32mm. No statistical improvements were found after 3- and 4-dof correction (2.73±1.22 mm and 2.60±1.31 mm, respectively). Angular errors were 0.09±0.93° (mean±std). Pitch rotation in abdomen site showed the most relevant deviation, being − 0.46±1.27° with a peak value of 5.46°. Translational misalignments were −0.68±2.60 mm (mean±std) with the maximum value of 12 mm along the cranio-caudal direction. We conclude that positioning system platforms featuring 6-dof are preferred for high precision radiation therapy. Data are in line with previous results relative to other sites and represent a relevant record in the framework of SBRT.
Collapse
Affiliation(s)
- Maria Francesca Spadea
- Department of Experimental and Clinical Medicine Università degli Studi Magna Græcia Catanzaro, Italy
- Department of Bioengineering Politecnico di Milano University Milano, Italy
| | - Guido Baroni
- Department of Bioengineering Politecnico di Milano University Milano, Italy
| | - Marco Riboldi
- Department of Bioengineering Politecnico di Milano University Milano, Italy
| | - Rosa Luraschi
- Medical Physics Department Istituto Europeo Oncologico Milano, Italy
| | - Barbara Tagaste
- Medical Physics Department Istituto Europeo Oncologico Milano, Italy
| | | | | | | | - Antonio Pedotti
- Department of Bioengineering Politecnico di Milano University Milano, Italy
| |
Collapse
|
46
|
Time Dependence of Intrafraction Patient Motion Assessed by Repeat Stereoscopic Imaging. Int J Radiat Oncol Biol Phys 2008; 70:609-18. [DOI: 10.1016/j.ijrobp.2007.08.066] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 08/30/2007] [Accepted: 08/31/2007] [Indexed: 11/22/2022]
|
47
|
Abstract
To account for geometric uncertainties during radiotherapy, safety margins are applied. In many cases, these margins overlap organs at risk, thereby limiting dose escalation. The aim of image-guided radiotherapy is to improve the accuracy by imaging tumors and critical structures on the machine just before irradiation. The availability of high-quality imaging systems and automatic image registration on the machine leads to many new clinical applications, such as high-precision hypofractionated treatments of brain metastases and solitary long tumors with online tumor position corrections. In this review, the prerequisites for image guidance in terms of planning, image acquisition, and processing are first described. Then, the various methods of correction are discussed such as table shifts and rotation and direct adaptation of machine parameters. Then, online, offline, and intrafraction correction strategies are discussed. Finally, some imaging dose issues are discussed showing that kilovoltage cone-beam computed tomography guidance has a net positive impact on the integral dose; the gain caused by margin reduction is larger than the image dose. We can conclude that image-guided radiotherapy is very much a clinical reality and that the development of optimal clinical protocols should currently be the focus of research.
Collapse
Affiliation(s)
- Marcel van Herk
- Radiotherapy Department, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Mechalakos JG, Hunt MA, Lee NY, Hong LX, Ling CC, Amols HI. Using an onboard kilovoltage imager to measure setup deviation in intensity-modulated radiation therapy for head-and-neck patients. J Appl Clin Med Phys 2007; 8:28-44. [PMID: 18449150 PMCID: PMC5722619 DOI: 10.1120/jacmp.v8i4.2439] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 06/11/2007] [Accepted: 06/01/2007] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present study was to use a kilovoltage imaging device to measure interfractional and intrafractional setup deviations in patients with head-and-neck or brain cancers receiving intensity-modulated radiotherapy (IMRT) treatment. Before and after IMRT treatment, approximately 3 times weekly, 7 patients were imaged using the Varian On-Board Imager (OBI: Varian Medical Systems, Palo Alto, CA), a kilovoltage imaging device permanently mounted on the gantry of a Varian 21EX LINAC (Varian Medical Systems). Because of commissioning of the remote couch correction of the OBI during the study, online setup corrections were performed on 2 patients. For the other 5 patients, weekly corrections were made based on a sliding average of the measured data. From these data, we determined the interfractional setup deviation (defined as the shift from the original setup position suggested by the daily image), the residual error associated with the weekly correction protocol, and the intrafractional setup deviation, defined as the difference between the post-treatment and pretreatment images. We also used our own image registration software to determine interfractional and intrafractional rotational deviations from the images based on the template-matching method. In addition, we evaluated the influence of inter-observer variation on our results, and whether the use of various registration techniques introduced differences. Finally, translational data were compared with rotational data to search for correlations. Translational setup errors from all data were 0.0 +/- 0.2 cm, -0.1 +/- 0.3 cm, and -0.2 +/- 0.3 cm in the right-left (RL), anterior-posterior (AP), and superior-inferior (SI) directions respectively. Residual error for the 5 patients with a weekly correction protocol was -0.1 +/- 0.2 cm (RL), 0.0 +/- 0.3 cm (AP), and 0.0 +/- 0.2 cm (SI). Intrafractional translation errors were small, amounting to 0.0 +/- 0.1 cm, -0.1 +/- 0.2 cm, and 0.0 +/- 0.1 cm in the RL, AP, and SI directions respectively. In the sagittal and coronal views respectively, interfractional rotational errors were -1.1 +/- 1.7 degrees and -0.5 +/- 0.9 degrees, and intrafractional rotational errors were 0.3 +/- 0.6 degrees and 0.2 +/- 0.5 degrees. No significant correlation was seen between translational and rotational data. The OBI image data were used to study setup error in the head-and-neck patients. Nonzero systematic errors were seen in the interfractional translational and rotational data, but not in the intrafractional data, indicating that the mask is better at maintaining head position than at reproducing it.
Collapse
Affiliation(s)
- James G Mechalakos
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, U.S.A
| | - Margie A Hunt
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, U.S.A
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, U.S.A
| | - Linda X Hong
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, U.S.A
| | - C Clifton Ling
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, U.S.A
| | - Howard I Amols
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, U.S.A
| |
Collapse
|
49
|
Court LE, Allen A, Tishler R. Evaluation of the precision of portal-image-guided head-and-neck localization: An intra- and interobserver study. Med Phys 2007; 34:2704-7. [PMID: 17821978 DOI: 10.1118/1.2747050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is increasing evidence that, for some patients, image-guided intensity-modulated radiation therapy (IMRT) for head-and-neck cancer patients may maintain target dose coverage and critical organ (e.g., parotids) dose closer to the planned doses than setup using lasers alone. We investigated inter- and intraobserver uncertainties in patient setup in head-and-neck cancer patients. Twenty-two sets of orthogonal digital portal images (from five patients) were selected from images used for daily localization of head-and-neck patients treated with IMRT. To evaluate interobserver variations, five radiation therapists compared the portal images with the plan digitally reconstructed radiographs and reported shifts for the isocenter (approximately C2) and for a supraclavicular reference point. One therapist repeated the procedure a month later to evaluate intraobserver variations. The procedure was then repeated with teams of two therapists. The frequencies for which agreement between the shift reported by the observer and the daily mean shift (average of all observers for a given image set) were less than 1.5 and 2.5 mm were calculated. Standard errors of measurement for the intra- and interobserver uncertainty (SEMintra and SEMinter) for the individual and teams were calculated. The data showed that there was very little difference between individual therapists and teams. At isocenter, 80%-90% of all reported shifts agreed with the daily average within 1.5 mm, showing consistency in the ways both individuals and teams interpret the images (SEMinter approximately 1 mm). This dropped to 65% for the supraclavicular point (SEMinter approximately 1.5 mm). Uncertainties increased for larger setup errors. In conclusion, image-guided patient positioning allows head-and-neck patients to be controlled within 3-4 mm. This is similar to the setup uncertainties found for most head-and-neck patients, but may provide some improvement for the subset of patients with larger setup uncertainties.
Collapse
Affiliation(s)
- Laurence E Court
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
50
|
Linthout N, Verellen D, Tournel K, Reynders T, Duchateau M, Storme G. Assessment of secondary patient motion induced by automated couch movement during on-line 6 dimensional repositioning in prostate cancer treatment. Radiother Oncol 2007; 83:168-74. [PMID: 17499870 DOI: 10.1016/j.radonc.2007.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/22/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of this study is to assess retrospectively secondary patient motion induced by 6D patient setup correction. MATERIALS AND METHODS For 104 patients, treated with Novalis, 6D setup correction prior to treatment was performed by ExacTrac5.0/NovalisBody in combination with the Robotic Tilt Module mounted underneath the Exact Couch top. This 6D correction might induce additional setup errors due to patient reaction against the rotations. To evaluate induced secondary motion, the 6D setup correction is verified and evaluated with respect to the tolerance limits. RESULTS The majority of measured secondary motions are found within the tolerance limits. Detected secondary motions are mostly found in longitudinal shifts and lateral rotations, and mainly found in only 1 dimension during the same verification. The verifications indicate that the patient population can be divided into a group that hardly moves and a group that moves throughout all 6D setup corrections. The patient's behavior can be predicted by the evaluation of the first five fractions as none of the patients demonstrate a learning curve during the treatment. CONCLUSIONS 6D setup correction does not induce secondary motion for the majority of the patients and can therefore be applied for all treatment indications.
Collapse
Affiliation(s)
- Nadine Linthout
- Radiotherapy Department, Oncologisch Centrum, Universitair Ziekenhuis Brussel, Belgium.
| | | | | | | | | | | |
Collapse
|