1
|
Breglio G, Bernini R, Berruti GM, Bruno FA, Buontempo S, Campopiano S, Catalano E, Consales M, Coscetta A, Cutolo A, Cutolo MA, Di Palma P, Esposito F, Fienga F, Giordano M, Iele A, Iadicicco A, Irace A, Janneh M, Laudati A, Leone M, Maresca L, Marrazzo VR, Minardo A, Pisco M, Quero G, Riccio M, Srivastava A, Vaiano P, Zeni L, Cusano A. Innovative Photonic Sensors for Safety and Security, Part III: Environment, Agriculture and Soil Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:3187. [PMID: 36991894 PMCID: PMC10053851 DOI: 10.3390/s23063187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In order to complete this set of three companion papers, in this last, we focus our attention on environmental monitoring by taking advantage of photonic technologies. After reporting on some configurations useful for high precision agriculture, we explore the problems connected with soil water content measurement and landslide early warning. Then, we concentrate on a new generation of seismic sensors useful in both terrestrial and under water contests. Finally, we discuss a number of optical fiber sensors for use in radiation environments.
Collapse
Affiliation(s)
- Giovanni Breglio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Romeo Bernini
- Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, Via Diocleziano 328, 81024 Napoli, Italy
| | - Gaia Maria Berruti
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Francesco Antonio Bruno
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Salvatore Buontempo
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
- National Institute for Nuclear Physics (INFN), 80125 Napoli, Italy
| | - Stefania Campopiano
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Ester Catalano
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Marco Consales
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Agnese Coscetta
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Antonello Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Maria Alessandra Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Pasquale Di Palma
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Flavio Esposito
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Francesco Fienga
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Michele Giordano
- Istituto per i Polimeri, Compositi e Biomateriali Consiglio Nazionale delle Ricerche, Via Enrico Fermi 1, 80055 Portici, Italy
| | - Antonio Iele
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | - Agostino Iadicicco
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Andrea Irace
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Mohammed Janneh
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | | | - Marco Leone
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Luca Maresca
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Vincenzo Romano Marrazzo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Aldo Minardo
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Marco Pisco
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Giuseppe Quero
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Michele Riccio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Anubhav Srivastava
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Patrizio Vaiano
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Luigi Zeni
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Andrea Cusano
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| |
Collapse
|
2
|
Rodríguez C, García-Pinto D, Martínez LC, López-Fernández A. A new analytical model for the response curve in megavoltage photon beams of the radiochromic EBT3 films measured with flatbed scanners. J Appl Clin Med Phys 2022; 23:e13654. [PMID: 35580051 PMCID: PMC9359044 DOI: 10.1002/acm2.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose The aim of this work is to study a new analytical model which describes the dose–response curve in megavoltage photon beams of the radiochromic EBT3 film measured with two commercially available flatbed scanners. This model takes into account the different increase of the number of two types of absorbents in the film with absorbed dose and it allows to identify parameters that depend on the flatbed scanner and the film model, and parameters that exclusively depend on the production lot. In addition, the new model is also compared with other models commonly used in the literature in terms of its performance in reducing systematic calibration uncertainties. Methods and materials The new analytical model consists on a linear combination of two saturating exponential functions for every color channel. The exponents modeling the growing of each kind of absorbent are film model and scanner model‐dependent, but they do not depend on the manufacturing lot. The proposed model considers the different dose kinetics of each absorbent and the apparent effective behavior of one of the absorbents in the red color channel of the scanner. The dose–response curve has been measured using EBT3 films, a percentage depth dose (PDD) calibration method in a dose range between 0.5 and 25 Gy, and two flatbed scanners: a Microtek 1000 XL and an EPSON 11000 XL. The PDD calibration method allows to obtain a dense collection of calibration points which have been fitted to the proposed response curve model and to other published models. The fit residuals were used to evaluate the performance of each model compared with the new analytical model. Results The model presented here does not introduce any systematic deviations up to the degree of accuracy reached in this work. The residual distribution is normally shaped and with lower variance than the distributions of the other published models. The model separates the parameters reflecting specific characteristics of the dosimetry system from the linear parameters which depend only on the production lot and are related to the relative abundance of each type of absorbent. The calibration uncertainty is reduced by a mean factor of two by using this model compared with the other studied models. Conclusions The proposed model reduces the calibration uncertainty related to systematic deviations introduced by the response curve. In addition, it separates parameters depending on the flatbed scanner and the film model from those depending on the production lot exclusively and therefore provides a better characterization of the dosimetry system and increases its reliability.
Collapse
Affiliation(s)
- César Rodríguez
- Medical Physics, Radiology Department, Complutense University, Madrid, Spain.,Medical Physics and Radiation Protection Service, Fuenlabrada University Hospital, Fuenlabrada, Spain
| | - Diego García-Pinto
- Medical Physics, Radiology Department, Complutense University, Madrid, Spain
| | - Luis Carlos Martínez
- Medical Physics and Radiation Protection Service, Doce de Octubre University Hospital, Madrid, Spain
| | - Alfonso López-Fernández
- Medical Physics and Radiation Protection Service, Fuenlabrada University Hospital, Fuenlabrada, Spain
| |
Collapse
|
3
|
Optical Response of Expired EBT3 Film for Absorbed Dose Measurement in X-ray and Electron Beam Range. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to investigate the optical response of an expired External Beam Therapy (EBT3) film, which expired in 2018, using X-rays and electron beam doses. The film’s optical responses were evaluated for its usability in measuring different radiation sources, energy, and absorbed doses ranging up to 5 Gy. Pieces of the expired EBT3 film were irradiated with 90 kVp, 6 MV X-ray photons, and 6 MeV electron beam. The analysis was performed using the Jaz visible spectrometer and EPSON Perfection V370 Photo scanner to obtain the absorbance and the net relative optical density (ROD) of the film samples respectively. The results showed that spectroscopic measurements of the exposed expired EBT3 films under these radiation sources were able to produce primary secondary peaks at λ = 633.52 nm and λ = 582.3 nm respectively. The best wavelength subsets that presented the best MLR regression fitting for all experiments were 541.48 nm, 561.11 nm, and 600.28 nm. While, for the 6 MV photon and the 6 MeV electron beam they were 600.28 nm, 650.79 nm and 654.10 nm. In case of the irradiation with the 6 MV photon and the 6 MeV electron beam, expired EBT3 film showed no significant differences, which made it suitable for dosimetry in various sources of radiation. The individual calibration of radiation dose produces very high measurement accuracy with coefficient of determination, R2 above 0.99 and root mean square of error, RMSE of 0.038 Gy, 0.113 Gy, and 0.115 Gy for films irradiated with 90 kVp X-rays, 6 MV photon beam, and 6 MeV electron beam respectively. Hence, from the results, the expired EBT3 film used in this study showed promising usability of expired EBT3 films beyond their prescribed expiry dates.
Collapse
|
4
|
Niroomand‐Rad A, Chiu‐Tsao S, Grams MP, Lewis DF, Soares CG, Van Battum LJ, Das IJ, Trichter S, Kissick MW, Massillon‐JL G, Alvarez PE, Chan MF. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG‐55. Med Phys 2020; 47:5986-6025. [DOI: 10.1002/mp.14497] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Indra J. Das
- Radiation Oncology Northwestern University Memorial Hospital Chicago IL USA
| | - Samuel Trichter
- New York‐Presbyterian HospitalWeill Cornell Medical Center New York NY USA
| | | | - Guerda Massillon‐JL
- Instituto de Fisica Universidad Nacional Autonoma de Mexico Mexico City Mexico
| | - Paola E. Alvarez
- Imaging and Radiation Oncology Core MD Anderson Cancer Center Houston TX USA
| | - Maria F. Chan
- Memorial Sloan Kettering Cancer Center Basking Ridge NJ USA
| |
Collapse
|
5
|
Darafsheh A, Zhao T, Khan R. Spectroscopic analysis of irradiated radiochromic EBT-XD films in proton and photon beams. ACTA ACUST UNITED AC 2020; 65:205002. [DOI: 10.1088/1361-6560/aba28e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
León‐Marroquín EY, Mulrow D, Darafsheh A, Khan R. Response characterization of EBT‐XD radiochromic films in megavoltage photon and electron beams. Med Phys 2019; 46:4246-4256. [DOI: 10.1002/mp.13708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/12/2019] [Accepted: 07/03/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- E. Yazmin León‐Marroquín
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Daniel Mulrow
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
- Department of Chemistry Washington University in St. Louis St. Louis MO 63110 USA
| | - Arash Darafsheh
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Rao Khan
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| |
Collapse
|
7
|
Darafsheh A, León-Marroquín EY, Mulrow DJ, Baradaran-Ghahfarokhi M, Zhao T, Khan R. On the spectral characterization of radiochromic films irradiated with clinical proton beams. ACTA ACUST UNITED AC 2019; 64:135016. [DOI: 10.1088/1361-6560/ab23cd] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Alsaee SK, Omar AF, Ahmed NM, Alsadig A, Sulieman A, Alzimami K. EBT3 Films in Low Solar Ultraviolet and X-Ray Dose Measurement: A Comparative Analysis. Dose Response 2019; 17:1559325819855532. [PMID: 31236089 PMCID: PMC6572892 DOI: 10.1177/1559325819855532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 11/14/2022] Open
Abstract
The purpose of this study is to investigate the potentiality of Gafchromic external beam therapy 3 (EBT3) film to measure low dosage of solar ultraviolet (SUV; 0-10 600 mJ/cm2) and x-ray (0-750 mGy) radiation. In this experiment, 2 groups of EBT3 films were prepared with size 2 cm × 1 cm. The first group of films was exposed by incremental SUV dose in the middle of the day. The other group was irradiated by x-ray at 100 kVp, 100 mA, and 2 S of tube voltage, tube current, and exposure time, respectively. The measured SUV consists of 90% ultraviolet A (UVA) and 10% ultraviolet B. The film discoloration was represented by visible absorbance spectroscopy technique using Jaz spectrometer from Ocean Optics Inc. Simple linear regression produced high accuracy with coefficients of determination, r 2 of 0.9804 and root mean square error (RMSE) of 434.88 mJ/cm2 for the measurement of SUV dose. On the other hand, r 2 of 0.98 and RMSE of 31 mGy was produced for the measurement of x-ray dose. The application of multiple linear regression enhanced the measurement accuracy with R 2 of 99% and 99.7% and RMSE of 327.06 mJ/cm2 and 15.045 mGy for SUV and x-ray dose, respectively. The spectral analysis shows a promising measurement at selected wavelengths for SUV and x-ray dose.
Collapse
Affiliation(s)
- Saleh K. Alsaee
- School of Physics, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Naser M. Ahmed
- School of Physics, Universiti Sains Malaysia, Penang, Malaysia
| | - Ahmed Alsadig
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - A. Sulieman
- Radiology and Medical Imaging Department, Collage of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Khalid Alzimami
- Department of Radiological sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Casolaro P, Campajola L, Breglio G, Buontempo S, Consales M, Cusano A, Cutolo A, Di Capua F, Fienga F, Vaiano P. Real-time dosimetry with radiochromic films. Sci Rep 2019; 9:5307. [PMID: 30926839 PMCID: PMC6440967 DOI: 10.1038/s41598-019-41705-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/12/2019] [Indexed: 11/20/2022] Open
Abstract
Radiochromic film dosimetry has been widely employed in most of the applications of radiation physics for over twenty years. This is due to a number of appealing features of radiochromic films, such as reliability, accuracy, ease of use and cost. However, current radiochromic film reading techniques, based on the use of commercial densitometers and scanners, provide values of dose only after the exposure of the films to radiation. In this work, an innovative methodology for the real-time reading of radiochromic films is proposed for some specific applications. The new methodology is based on opto-electronic instrumentation that makes use of an optical fiber probe for the determination of optical changes of the films induced by radiation and allows measurements of dose with high degree of precision and accuracy. Furthermore, it has been demonstrated that the dynamic range of some kinds of films, such as the EBT3 Gafchromic films (intensively used in medical physics), can be extended by more than one order of magnitude. Owing to the numerous advantages with respect to the commonly used reading techniques, a National Patent was filed in January 2018.
Collapse
Affiliation(s)
- Pierluigi Casolaro
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy.
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy.
| | - Luigi Campajola
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Giovanni Breglio
- University of Napoli Federico II, Department of Electronical Engineering, I-80125, Napoli, Italy
| | - Salvatore Buontempo
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Marco Consales
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy.
| | - Andrea Cusano
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Antonello Cutolo
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Francesco Di Capua
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Francesco Fienga
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Patrizio Vaiano
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| |
Collapse
|
10
|
Smith BR, Pankuch M, Hammer CG, DeWerd LA, Culberson WS. LET response variability of Gafchromic TM EBT3 film from a 60 Co calibration in clinical proton beam qualities. Med Phys 2019; 46:2716-2728. [PMID: 30740699 DOI: 10.1002/mp.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/01/2019] [Accepted: 02/02/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To establish a method of accurate dosimetry required to quantify the expected linear energy transfer (LET) quenching effect of EBT3 film used to benchmark the dose distribution for a given treatment field and specified measurement depth. In order to facilitate this technique, a full analysis of film calibration which considers LET variability at the plane of measurement and as a function of proton beam quality is demonstrated. Additionally, the corresponding uncertainty from the process was quantified for several measurement scenarios. MATERIALS AND METHODS The net change in optical density (OD) from a single version of Gafchromic TM EBT3 film was measured using an Epson flatbed scanner and NIST-traceable OD filters. Film OD response was characterized with respect to the known dose to water at the point of measurement for both a NIST-traceable 60 Co beam at the UWADCL and several clinical single-energy and spread-out Bragg peak (SOBP) proton beam qualities at the Northwestern Medicine Chicago Proton Center. Increasing proton LET environments were acquired by placing film at increasing depths of Gammex HE Solid Water® whose water-equivalent thickness was characterized prior to measurement. RESULTS A strong LET dependence was observed near the Bragg peak (BP) consistent with previous studies performed with earlier versions of EBT3 film. The influence of range straggling on the film's LET response appears to have a uniform effect toward the BP regardless of the nominal beam energy. Proximal to this depth, the film's response decreased with decreasing energy at the same dose-average LET. The opposite trend was observed for depths past the BP. Changes in the SOBP energy modulation showed a linear relationship between the film's relative response and dose-averaged LET. Relative effectiveness factors (RE) were observed to range between 2%-7% depending on the width of the SOBP and depth of the film. Using the field-specific calibration technique, a total k = 1 uncertainty in the absorbed dose to water was estimated to range from 4.68%-5.21%. CONCLUSION While EBT3 film's strong LET dependence is a common problem in proton beam dosimetry, this work has shown that the LET dependence can be taken into account by carefully considering the depth and energy modulation across the film using field-specific corrections. RE factors were determined with a combined k = 1 uncertainty of 3.57% for SOBP environments and between 3.17%-4.69% for uniform, monoenergetic fields proximal to the distal 80% of the BP.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark Pankuch
- Division of Medical Physics, Northwestern Medicine Chicago Proton Center, 4455 Weaver Parkway, Warrenville, IL, 60555, USA
| | - Clifford G Hammer
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Larry A DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
11
|
Rodríguez C, Martínez LC. Radiochromic
EBT
2 and
EBT
3 sensitometry based on growth of two color phases of the polymer. Med Phys 2019; 46:1896-1904. [DOI: 10.1002/mp.13424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- César Rodríguez
- Medical Physics and Radiation Protection Service Fuenlabrada University Hospital Camino del Molino, 2 Fuenlabrada Madrid 28942 Spain
| | - Luis Carlos Martínez
- Medical Physics and Radiation Protection Service 12 de Octubre University Hospital Av Cordoba s/n Madrid 28041 Spain
| |
Collapse
|
12
|
León‐Marroquín EY, Mulrow DJ, Khan R, Darafsheh A. Spectral analysis of the EBT3 radiochromic films for clinical photon and electron beams. Med Phys 2019; 46:973-982. [DOI: 10.1002/mp.13330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Elsa Y. León‐Marroquín
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Daniel J. Mulrow
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
- Department of Chemistry Washington University in St. Louis St. Louis MO 63110 USA
| | - Rao Khan
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Arash Darafsheh
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| |
Collapse
|
13
|
Callens MB, Crijns W, Depuydt T, Haustermans K, Maes F, D’Agostino E, Wevers M, Pfeiffer H, Van Den Abeele K. Modeling the dose dependence of the vis-absorption spectrum of EBT3 GafChromic™ films. Med Phys 2017; 44:2532-2543. [DOI: 10.1002/mp.12246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/16/2017] [Accepted: 03/14/2017] [Indexed: 11/10/2022] Open
Affiliation(s)
- Maarten B. Callens
- Wave Propagation and Signal Processing; KU Leuven - KULAK; Kortrijk 8500 Belgium
| | - Wouter Crijns
- Department of Radiation Oncology; University Hospitals Leuven; Leuven 3000 Belgium
| | - Tom Depuydt
- Department of Radiation Oncology; University Hospitals Leuven; Leuven 3000 Belgium
| | - Karin Haustermans
- Department of Radiation Oncology; University Hospitals Leuven; Leuven 3000 Belgium
| | - Frederik Maes
- Department of Electrical Engineering; ESAT/PSI, KU Leuven; Leuven 3001 Belgium
| | | | - Martine Wevers
- Department of Materials Engineering; KU Leuven; Leuven 3001 Belgium
| | - Helge Pfeiffer
- Department of Materials Engineering; KU Leuven; Leuven 3001 Belgium
| | - Koen Van Den Abeele
- Wave Propagation and Signal Processing; KU Leuven - KULAK; Kortrijk 8500 Belgium
| |
Collapse
|
14
|
Marroquin EYL, Herrera González JA, Camacho López MA, Barajas JEV, García-Garduño OA. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density. J Appl Clin Med Phys 2016; 17:466-481. [PMID: 27685125 PMCID: PMC5874103 DOI: 10.1120/jacmp.v17i5.6262] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/19/2016] [Accepted: 05/16/2016] [Indexed: 11/23/2022] Open
Abstract
Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty of the film orientation and film homogeneity.
Collapse
|
15
|
León-Marroquín EY, Camacho-López MA, García-Garduño OA, Herrera-González JA, Villarreal-Barajas JE, Gutiérrez-Fuentes R, Contreras-Bulnes R. Spectral analysis of the EBT3 radiochromic film irradiated with 6 MV X-ray radiation. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Callens M, Crijns W, Simons V, De Wolf I, Depuydt T, Maes F, Haustermans K, D'hooge J, D'Agostino E, Wevers M, Pfeiffer H, Van Den Abeele K. A spectroscopic study of the chromatic properties of GafChromic™EBT3 films. Med Phys 2016; 43:1156-66. [DOI: 10.1118/1.4941312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- M. Callens
- Wave Propagation and Signal Processing, KU Leuven–KULAK, Kortrijk 8500, Belgium
| | - W. Crijns
- Department of Radiation Oncology, University Hospitals Leuven, Leuven 3000, Belgium
| | - V. Simons
- imec, Kapeldreef 75, Leuven 3001, Belgium
| | - I. De Wolf
- imec, Kapeldreef 75, Leuven 3001, Belgium and Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - T. Depuydt
- Department of Radiation Oncology, University Hospitals Leuven, Leuven 3000, Belgium
| | - F. Maes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3001, Belgium
| | - K. Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Leuven 3000, Belgium
| | - J. D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| | | | - M. Wevers
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - H. Pfeiffer
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - K. Van Den Abeele
- Wave Propagation and Signal Processing, KU Leuven–KULAK, Kortrijk 8500, Belgium
| |
Collapse
|
17
|
van Battum LJ, Huizenga H, Verdaasdonk RM, Heukelom S. How flatbed scanners upset accurate film dosimetry. Phys Med Biol 2015; 61:625-49. [PMID: 26689962 DOI: 10.1088/0031-9155/61/2/625] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.
Collapse
Affiliation(s)
- L J van Battum
- Physics and Medical Technology, VU University Medical Center, Support Radiotherapy, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
18
|
Reyhan ML, Chen T, Zhang M. Characterization of the effect of MRI on Gafchromic film dosimetry. J Appl Clin Med Phys 2015; 16:325–332. [PMID: 26699587 PMCID: PMC5690986 DOI: 10.1120/jacmp.v16i6.5743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/14/2015] [Accepted: 08/10/2015] [Indexed: 11/23/2022] Open
Abstract
Magnetic resonance (MR) imaging of Gafchromic film causes perturbation to absolute dosimetry measurements; the purpose of this work was to characterize the perturbation and develop a correction method for it. Three sets of Gafchromic EBT2 film were compared: radiation (control), radiation followed by MR imaging (RAD+B), and MR imaging followed by radiation (B+RAD). The T1‐weighted and T2‐weighted MR imaging was performed using a 1.5T scanner with the films wedged between two chicken legs. Doses from 0 to 800 cGy were delivered with a 6MV linac. The time interval between radiation and MR imaging was less than 10 min. Film calibration was generated from the red channel. Microscopic imaging was performed on two pieces of film. The effect of specific absorption rate (SAR) was determined by exposing another three sets of films to low, medium, and high levels of SAR through a series of pulse sequences. No discernible preferential alignment was detected on the microscopic images of the irradiated film exposed to MRI. No imaging artifacts were introduced by Gafchromic film on any MR images. On average, 4% dose difference was observed between B+RAD or RAD+B and the control, using the same calibration curve. The pixel values between the B+RAD or RAD+B and the control films were found to follow a linear relationship pixel(Control)=1.02×pixel(B+RAD or RAD+B). By applying this correction, the average dose error was reduced to approximately 2%. The SAR experiment revealed a dose overestimation with increasing SAR even when the correction was applied. It was concluded that MR imaging introduces perturbation on Gafchromic film dose measurements by 4% on average, compared to calibrating the film without the presence of MRI. This perturbation can be corrected by applying a linear correction to the pixel values. Additionally, Gafchromic film did not introduce any imaging artifacts in any of the MR images acquired. PACS number: 87.50.cm
Collapse
|
19
|
|
20
|
Chiu-Tsao ST, Napoli JJ, Davis SD, Hanley J, Rivard MJ. Dosimetry for 131Cs and 125I seeds in solid water phantom using radiochromic EBT film. Appl Radiat Isot 2014; 92:102-14. [PMID: 25038559 DOI: 10.1016/j.apradiso.2014.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE To measure the 2D dose distributions with submillimeter resolution for (131)Cs (model CS-1 Rev2) and (125)I (model 6711) seeds in a Solid Water phantom using radiochromic EBT film for radial distances from 0.06cm to 5cm. To determine the TG-43 dosimetry parameters in water by applying Solid Water to liquid water correction factors generated from Monte Carlo simulations. METHODS Each film piece was positioned horizontally above and in close contact with a (131)Cs or (125)I seed oriented horizontally in a machined groove at the center of a Solid Water phantom, one film at a time. A total of 74 and 50 films were exposed to the (131)Cs and (125)I seeds, respectively. Different film sizes were utilized to gather data in different distance ranges. The exposure time varied according to the seed air-kerma strength and film size in order to deliver doses in the range covered by the film calibration curve. Small films were exposed for shorter times to assess the near field, while larger films were exposed for longer times in order to assess the far field. For calibration, films were exposed to either 40kV (M40) or 50kV (M50) x-rays in air at 100.0cm SSD with doses ranging from 0.2Gy to 40Gy. All experimental, calibration and background films were scanned at a 0.02cmpixel resolution using a CCD camera-based microdensitometer with a green light source. Data acquisition and scanner uniformity correction were achieved with Microd3 software. Data analysis was performed using ImageJ, FV, IDL and Excel software packages. 2D dose distributions were based on the calibration curve established for 50kV x-rays. The Solid Water to liquid water medium correction was calculated using the MCNP5 Monte Carlo code. Subsequently, the TG-43 dosimetry parameters in liquid water medium were determined. RESULTS Values for the dose-rate constants using EBT film were 1.069±0.036 and 0.923±0.031cGyU(-1)h(-1) for (131)Cs and (125)I seed, respectively. The corresponding values determined using the Monte Carlo method were 1.053±0.014 and 0.924±0.016cGyU(-1)h(-1) for (131)Cs and (125)I seed, respectively. The radial dose functions obtained with EBT film measurements and Monte Carlo simulations were plotted for radial distances up to 5cm, and agreed within the uncertainty of the two methods. The 2D anisotropy functions obtained with both methods also agreed within their uncertainties. CONCLUSION EBT film dosimetry in a Solid Water phantom is a viable method for measuring (131)Cs (model CS-1 Rev2) and (125)I (model 6711) brachytherapy seed dose distributions with submillimeter resolution. With the Solid Water to liquid water correction factors generated from Monte Carlo simulations, the measured TG-43 dosimetry parameters in liquid water for these two seed models were found to be in good agreement with those in the literature.
Collapse
Affiliation(s)
| | - John J Napoli
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Stephen D Davis
- Medical Physics, McGill University Health Centre, Montreal, QC, Canada H3G 1A4
| | - Joseph Hanley
- Princeton Radiation Oncology Center, Monroe, NJ 08831, USA
| | - Mark J Rivard
- Department of Radiation Oncology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
21
|
Bekerat H, Devic S, DeBlois F, Singh K, Sarfehnia A, Seuntjens J, Shih S, Yu X, Lewis D. Improving the energy response of external beam therapy (EBT) GafChromicTM
dosimetry films at low energies (≤100 keV). Med Phys 2014; 41:022101. [DOI: 10.1118/1.4860157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Perles LA, Mirkovic D, Anand A, Titt U, Mohan R. LET dependence of the response of EBT2 films in proton dosimetry modeled as a bimolecular chemical reaction. Phys Med Biol 2013; 58:8477-91. [DOI: 10.1088/0031-9155/58/23/8477] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Carrasco MA, Perucha M, Luis FJ, Baeza M, Herrador M. A comparison between radiochromic EBT2 film model and its predecessor EBT film model. Phys Med 2012; 29:412-22. [PMID: 22738767 DOI: 10.1016/j.ejmp.2012.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022] Open
Abstract
The manufacturer has introduced the new EBT2 film model so as to improve its predecessor, the EBT radiochromic film model. According to the manufacturer, some of its main advantages include a higher tolerance to light exposure and it can correct non-uniformity of the active layer thickness using a marker dye. However, the equivalence in uniformity between both models was questioned by some authors, and the asymmetrical configuration of layers of the EBT2 film model produces a new dependence on the film side being scanned (front and back orientation). In this study, the EBT2 radiochromic film model was compared with the EBT model and the new marker dye feature was assessed. We also compared this correction method with a pre-irradiated pixel value correction method. An Epson Expression 10000XL scanner in transmission mode was used to scan the films and the red channel response was analyzed. We confirmed the lower-measured signal dependence on the visible light exposure of the EBT2 film model. Differences in pixel values remained below 0.5% for a minimum of 15 days. In regard to the uniformity, similar results for EBT2 and EBT film models were obtained; in both cases inhomogeneity was found to be less than 1%, in relative pixel value from the mean. However, we found that the signal-to-noise ratio was reduced for low doses by 37% for old EBT2 batch and by 21% for new EBT2 batch compared to signal-to-noise ratio for EBT. The EBT2 film model's pixel value difference for the front and back orientation reached up to 1.0% in the red channel. Our results did not show a clear advantage between to use a pre-irradiated pixel value correction and to use the manufacturer's correction.
Collapse
Affiliation(s)
- M A Carrasco
- Department of Medical Physics, Virgen del Rocío Hospital (Seville), Sevilla, Spain.
| | | | | | | | | |
Collapse
|
24
|
Kim J, Wen N, Jin JY, Walls N, Kim S, Li H, Ren L, Huang Y, Doemer A, Faber K, Kunkel T, Balawi A, Garbarino K, Levin K, Patel S, Ajlouni M, Miller B, Nurushev T, Huntzinger C, Schulz R, Chetty IJ, Movsas B, Ryu S. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys 2012; 13:3729. [PMID: 22584170 PMCID: PMC5716565 DOI: 10.1120/jacmp.v13i3.3729] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/14/2011] [Accepted: 01/25/2012] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to perform comprehensive measurements and testing of a Novalis Tx linear accelerator, and to develop technical guidelines for com-missioning from the time of acceptance testing to the first clinical treatment. The Novalis Tx (NTX) linear accelerator is equipped with, among other features, a high-definition MLC (HD120 MLC) with 2.5 mm central leaves, a 6D robotic couch, an optical guidance positioning system, as well as X-ray-based image guidance tools to provide high accuracy radiation delivery for stereotactic radiosurgery and stereotactic body radiation therapy procedures. We have performed extensive tests for each of the components, and analyzed the clinical data collected in our clinic. We present technical guidelines in this report focusing on methods for: (1) efficient and accurate beam data collection for commissioning treatment planning systems, including small field output measurements conducted using a wide range of detectors; (2) commissioning tests for the HD120 MLC; (3) data collection for the baseline characteristics of the on-board imager (OBI) and ExacTrac X-ray (ETX) image guidance systems in conjunction with the 6D robotic couch; and (4) end-to-end testing of the entire clinical process. Established from our clinical experience thus far, recommendations are provided for accurate and efficient use of the OBI and ETX localization systems for intra- and extracranial treatment sites. Four results are presented. (1) Basic beam data measurements: Our measurements confirmed the necessity of using small detectors for small fields. Total scatter factors varied significantly (30% to approximately 62%) for small field measurements among detectors. Unshielded stereotactic field diode (SFD) overestimated dose by ~ 2% for large field sizes. Ion chambers with active diameters of 6 mm suffered from significant volume averaging. The sharpest profile penumbra was observed for the SFD because of its small active diameter (0.6 mm). (2) MLC commissioning: Winston Lutz test, light/radiation field congruence, and Picket Fence tests were performed and were within criteria established by the relevant task group reports. The measured mean MLC transmission and dynamic leaf gap of 6 MV SRS beam were 1.17% and 0.36 mm, respectively. (3) Baseline characteristics of OBI and ETX: The isocenter localization errors in the left/right, posterior/anterior, and superior/inferior directions were, respectively, -0.2 ± 0.2 mm, -0.8 ± 0.2 mm, and -0.8 ± 0.4 mm for ETX, and 0.5 ± 0.7 mm, 0.6 ± 0.5 mm, and 0.0 ± 0.5 mm for OBI cone-beam computed tomography. The registration angular discrepancy was 0.1 ± 0.2°, and the maximum robotic couch error was 0.2°. (4) End-to-end tests: The measured isocenter dose differences from the planned values were 0.8% and 0.4%, measured respectively by an ion chamber and film. The gamma pass rate, measured by EBT2 film, was 95% (3% DD and 1 mm DTA). Through a systematic series of quantitative commissioning experiments and end-to-end tests and our initial clinical experience, described in this report, we demonstrate that the NTX is a robust system, with the image guidance and MLC requirements to treat a wide variety of sites - in particular for highly accurate delivery of SRS and SBRT-based treatments.
Collapse
Affiliation(s)
- Jinkoo Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brady SL, Yoshizumi TT, Anderson-Evans C, Nguyen G. Isodose curve mappings measured while undergoing rotation for quality assurance testing of a 137Cs irradiator. HEALTH PHYSICS 2012; 102 Suppl 1:S8-12. [PMID: 22249472 PMCID: PMC3319067 DOI: 10.1097/hp.0b013e31823c9671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To enable accurate and reproducible dosimetry for biological sample irradiation in a 137Cs irradiator, routine quality assurance of the dose rate and isodose distributions should be considered. Our previous work demonstrated a means for accurate dose rate quality assurance and for quality assurance of isodose distributions of non-rotational samples. This work presents a means to accurately and cost effectively measure dose distributions within a 137Cs irradiator using rotational geometry, which geometry represent a more typical use of these irradiators. A simple apparatus was developed to hold radiochromic film and was constructed of polymethyl methacrylate. The rotational quality assurance device allowed the comparison of measured radiochromic film vs. manufacturer provided isodose distributions. A good agreement was discovered between the two data sets along the central vertical axis of rotation in the 137Cs irradiator, but a 40-50% smaller 100% isodose region in the horizontal direction. These findings may lead to limiting the overall size of a sample capable of being uniformly irradiated by the 137Cs irradiator at this research institution. The authors propose the construction and use of a simple rotational quality assurance device for routine quality assurance of 137Cs irradiators.
Collapse
Affiliation(s)
- Samuel L Brady
- Medical Physics Graduate Program, Duke University, Durham, NC 27705, USA.
| | | | | | | |
Collapse
|
26
|
Aldelaijan S, Mohammed H, Tomic N, Liang LH, Deblois F, Sarfehnia A, Abdel-Rahman W, Seuntjens J, Devic S. Radiochromic film dosimetry of HDR (192)Ir source radiation fields. Med Phys 2012; 38:6074-83. [PMID: 22047372 DOI: 10.1118/1.3651482] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A radiochromic film based dosimetry system for high dose rate (HDR) Iridium-192 brachytherapy source was described. A comparison between calibration curves established in water and Solid Water™ was provided. METHODS Pieces of EBT-2 model GAFCHROMIC™ film were irradiated in both water and Solid Water™ with HDR (192)Ir brachytherapy source in a dose range from 0 to 50 Gy. Responses of EBT-2 GAFCHROMIC™ film were compared for irradiations in water and Solid Water™ by scaling the dose between media through Monte Carlo calculated conversion factor for both setups. To decrease uncertainty in dose delivery due to positioning of the film piece with respect to the radiation source, traceable calibration irradiations were performed in a parallel-opposed beam setup. RESULTS The EBT-2 GAFCHROMIC™ film based dosimetry system described in this work can provide an overall one-sigma dose uncertainty of 4.12% for doses above 1 Gy. The ratio of dose delivered to the sensitive layer of the film in water to the dose delivered to the sensitive layer of the film in Solid Water™ was calculated using Monte Carlo simulations to be 0.9941 ± 0.0007. CONCLUSIONS A radiochromic film based dosimetry system using only the green color channel of a flatbed document scanner showed superior precision if used alone in a dose range that extends up to 50 Gy, which greatly decreases the complexity of work. In addition, Solid Water™ material was shown to be a viable alternative to water in performing radiochromic film based dosimetry with HDR (192)Ir brachytherapy sources.
Collapse
Affiliation(s)
- Saad Aldelaijan
- McGill University, Department of Radiation Oncology, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Uniyal SC, Naithani UC, Sharma SD, Srivastava AK. Radiochromic film dosimetry of rectal inhomogeneity and applicator attenuation in high dose rate brachytherapy of uterine cervix. J Appl Clin Med Phys 2012; 13:3654. [PMID: 22231217 PMCID: PMC5716133 DOI: 10.1120/jacmp.v13i1.3654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 01/08/2023] Open
Abstract
Heterogeneities existing in the patient during treatment are neglected, as the treated subject is considered homogeneous in most of the commercially‐available treatment planning systems (TPSs) used for high dose rate (HDR) brachytherapy. The choice of a suitable dosimeter for experimental dosimetry near the HDR source is crucial, mainly due to existence of steep dose gradients. The present work aimed to assess the effect of rectal air heterogeneity and applicator attenuation in the HDR Ir‐192 brachytherapy treatment of carcinoma uterine cervix by utilizing GAFCHROMIC EBT2 film dosimetry. The dose to rectal walls under the condition of rectal air heterogeneity was measured experimentally using EBT2 film in a rectal phantom, and the measurements were validated by the Monte Carlo (MC) simulations. The applicator attenuation was measured by EBT2 film for a commonly used stainless steel uterine tube in a homogeneous water equivalent phantom. The measured doses were compared with the TPS calculated values. In case of the air cavity, the measured dose at the closest rectal surface was 12.8% less than the TPS calculated value due to lack of back scattering, whereas at the farthest rectal surface, it was higher by 24.5% due to no attenuation. The magnitude of attenuation due to the metal applicator was measured as high as 2% when compared with the TPS calculation. The dose reduction at the nearest rectal surface due to the effect of rectal air has indicated a clinically favorable dose distribution within the rectum, whereas the shielding effect posed by the metallic applicator was found to be less significant. Mutual agreement of the measured doses with the MC calculated dose values confirmed the suitability of EBT2 film for clinical dosimetry in HDR brachytherapy. PACS numbers: 87.53.Bn, 87.53.Jw, 87.56.bg, 87.55.Qr
Collapse
Affiliation(s)
- Satish C Uniyal
- Department of Radiology, Himalayan Institute of Medical Sciences, HIHT University, Jolly Grant, Dehradun 248140, India.
| | | | | | | |
Collapse
|
28
|
Devic S. Radiochromic film dosimetry: Past, present, and future. Phys Med 2011; 27:122-34. [DOI: 10.1016/j.ejmp.2010.10.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/16/2010] [Accepted: 10/04/2010] [Indexed: 11/15/2022] Open
|
29
|
Crotty DJ, Brady SL, Jackson DC, Toncheva GI, Anderson CE, Yoshizumi TT, Tornai MP. Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam. Med Phys 2011; 38:3232-45. [PMID: 21815398 PMCID: PMC3125086 DOI: 10.1118/1.3574875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. METHODS Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. RESULTS Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. CONCLUSIONS Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging.
Collapse
Affiliation(s)
- Dominic J Crotty
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Practical use of Gafchromic® EBT films in electron beams for in-phantom dose distribution measurements and monitor units verification. Phys Med 2011; 27:81-8. [DOI: 10.1016/j.ejmp.2010.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/29/2010] [Accepted: 04/28/2010] [Indexed: 11/21/2022] Open
|
31
|
Kamomae T, Miyabe Y, Sawada A, Matoba O, Nakata M, Yano S, Takakura T, Mizowaki T, Itoh A, Hiraoka M. Simulation for improvement of system sensitivity of radiochromic film dosimetry with different band-pass filters and scanner light intensities. Radiol Phys Technol 2011; 4:140-7. [PMID: 21409612 DOI: 10.1007/s12194-011-0113-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 02/07/2011] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
Abstract
The delivered dose of high-energy photon beams is measured with radiochromic film. Previous studies sought to improve the system sensitivity of radiochromic film dosimetry by use of band-pass filters. However, band-pass filters reduce the scanning light intensity. To avoid a reduction of the signal-to-noise ratio, one must increase the scanner light intensity. Our purposes in this study were to develop an optical system model of GAFCHROMIC EBT2 radiochromic film dosimetry, and to estimate the system sensitivity characteristics by employing a combination of band-pass filters and scanner light intensities. The spectra of the scanner light source, band-pass filter, and irradiated EBT2 films were measured with a spectrometer. Meanwhile, the intensity of a light path from the scanner light source to the scanner detector was simulated. Then, the dose-response curves were computed with six simulated virtual band-pass filters of varying bandwidth. The simulated dose-response curves were in good agreement with the experimental values. The slope of the simulated dose-response curve was steeper when a filter of narrower bandwidth was used; however, at the same time, saturation was observed at a lower dose. For achieving the same dose response as was observed without a band-pass filter, it was necessary to increase the scanner light intensity. We proved that our proposed optical system model was valid, suggesting that a realistic simulation may be feasible with the proposed model. For improvement of the system sensitivity of radiochromic film dosimetry, it is necessary to select a well-balanced combination of band-pass filter and scanner light intensity.
Collapse
Affiliation(s)
- Takeshi Kamomae
- Department of Nuclear Engineering, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tumour bed irradiation of human tumour xenografts in a nude rat model using a common X-ray tube. J Biosci 2011; 35:203-7. [PMID: 20689176 DOI: 10.1007/s12038-010-0024-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Studies that investigate the radiation of human tumour xenografts require an appropriate radiation source and highly standardized conditions during radiation. This work reports on the design of a standardized irradiation device using a commercially available X-ray tube with a custom constructed lead collimator with two circular apertures and an animal bed plate, permitting synchronous irradiation of two animals. Dosimetry and the corresponding methodology for radiotherapy of human non-small cell lung cancer xenograft tumours transplanted to and growing subcutaneously on the right lower limb in a nude rat model were investigated. Procedures and results described herein prove the feasibility of use of the device, which is applicable for any investigation involving irradiation of non-tumorous and tumorous lesions in small animals.
Collapse
|
33
|
Andrés C, del Castillo A, Tortosa R, Alonso D, Barquero R. A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Med Phys 2010; 37:6271-8. [DOI: 10.1118/1.3512792] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
34
|
Brady SL, Gunasingha R, Yoshizumi TT, Howell CR, Crowell AS, Fallin B, Tonchev AP, Dewhirst MW. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry. Phys Med Biol 2010; 55:4977-92. [PMID: 20693612 PMCID: PMC3730278 DOI: 10.1088/0031-9155/55/17/007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the (2)H(d,n)(3)He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.
Collapse
Affiliation(s)
- Samuel L Brady
- Medical Physics Graduate Program, Duke University, Durham, NC 27705, USA
| | | | - Terry T Yoshizumi
- Radiation Safety Division, Duke University, Durham, NC 27705, USA
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Calvin R Howell
- Department of Physics, Duke University, Durham, NC 27706, USA
- Triangle Universities Nuclear Laboratory, Duke University, Durham, NC 27706, USA
| | - Alexander S Crowell
- Department of Physics, Duke University, Durham, NC 27706, USA
- Triangle Universities Nuclear Laboratory, Duke University, Durham, NC 27706, USA
| | - Brent Fallin
- Medical Physics Graduate Program, Duke University, Durham, NC 27705, USA
- Triangle Universities Nuclear Laboratory, Duke University, Durham, NC 27706, USA
| | - Anton P Tonchev
- Department of Physics, Duke University, Durham, NC 27706, USA
- Triangle Universities Nuclear Laboratory, Duke University, Durham, NC 27706, USA
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Brady S, Yoshizumi T, Toncheva G, Frus D. Implementation of radiochromic film dosimetry protocol for volumetric dose assessments to various organs during diagnostic CT procedures. Med Phys 2010; 37:4782-92. [PMID: 20964198 PMCID: PMC2937053 DOI: 10.1118/1.3476455] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/15/2010] [Accepted: 07/18/2010] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors present a means to measure high-resolution, two-dimensional organ dose distributions in an anthropomorphic phantom of heterogeneous tissue composition using XRQA radiochromic film. Dose distributions are presented for the lungs, liver, and kidneys to demonstrate the organ volume dosimetry technique. XRQA film response accuracy was validated using thermoluminescent dosimeters (TLDs). METHODS XRQA film and TLDs were first exposed at the center of two CTDI head phantoms placed end-to-end, allowing for a simple cylindrical phantom of uniform scatter material for verification of film response accuracy and sensitivity in a computed tomography (CT) exposure geometry; the TLD and film dosimeters were exposed separately. In a similar manner, TLDs and films were placed between cross-sectional slabs of a 5 yr old anthropomorphic phantom's thorax and abdomen regions. The anthropomorphic phantom was used to emulate real pediatric patient geometry and scatter conditions. The phantom consisted of five different tissue types manufactured to attenuate the x-ray beam within 1%-3% of normal tissues at CT beam energies. Software was written to individually calibrate TLD and film dosimeter responses for different tissue attenuation factors, to spatially register dosimeters, and to extract dose responses from film for TLD comparison. TLDs were compared to film regions of interest extracted at spatial locations corresponding to the TLD locations. RESULTS For the CTDI phantom exposure, the film and TLDs measured an average difference in dose response of 45% (SD +/- 2%). Similar comparisons within the anthropomorphic phantom also indicated a consistent difference, tracking along the low and high dose regions, for the lung (28%) (SD +/- 8%) and liver and kidneys (15%) (SD +/- 4%). The difference between the measured film and TLD dose values was due to the lower response sensitivity of the film that arose when the film was oriented with its large surface area parallel to the main axis of the CT beam. The consistency in dose response difference allowed for a tissue specific correction to be applied. Once corrected, the average film response agreed to better than 3% (SD +/- 2%) for the CTDI scans, and for the anthropomorphic phantom scans: 3% (SD +/- 3%) for the lungs, 5% (SD +/- 3%) for the liver, and 4% (SD +/- 3%) for the kidneys. Additionally, XRQA film measured a heterogeneous dose distribution within the organ volumes. The extent of the dose distribution heterogeneity was not measurable with the TLDs due to the limitation on the number of TLDs loadable in the regions of the phantom organs. In this regard, XRQA film demonstrated an advantage over the TLD method by discovering a 15% greater maximum dose to lung in a region unmeasured by TLDs. CONCLUSIONS The films demonstrated a lower sensitivity to absorbed dose measurements due to the geometric inefficiency of measuring dose from a beam situated end-on to the film. Once corrected, the film demonstrated equivalent dose measurement accuracy as TLD detectors with the added advantage of relatively simple measurement of high-resolution dose distributions throughout organ volumes.
Collapse
Affiliation(s)
- Samuel Brady
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705, USA.
| | | | | | | |
Collapse
|
36
|
Desroches J, Bouchard H, Lacroix F. Potential errors in optical density measurements due to scanning side in EBT and EBT2 Gafchromic film dosimetry. Med Phys 2010; 37:1565-70. [PMID: 20443477 DOI: 10.1118/1.3355895] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study is to determine the effect on the measured optical density of scanning on either side of a Gafchromic EBT and EBT2 film using an Epson (Epson Canada Ltd., Toronto, Ontario) 10000XL flat bed scanner. METHODS Calibration curves were constructed using EBT2 film scanned in landscape orientation in both reflection and transmission mode on an Epson 10000XL scanner. Calibration curves were also constructed using EBT film. Potential errors due to an optical density difference from scanning the film on either side ("face up" or "face down") were simulated. RESULTS Scanning the film face up or face down on the scanner bed while keeping the film angular orientation constant affects the measured optical density when scanning in reflection mode. In contrast, no statistically significant effect was seen when scanning in transmission mode. This effect can significantly affect relative and absolute dose measurements. As an application example, the authors demonstrate potential errors of 17.8% by inverting the film scanning side on the gamma index for 3%-3 mm criteria on a head and neck intensity modulated radiotherapy plan, and errors in absolute dose measurements ranging from 10% to 35% between 2 and 5 Gy. CONCLUSIONS Process consistency is the key to obtaining accurate and precise results in Gafchromic film dosimetry. When scanning in reflection mode, care must be taken to place the film consistently on the same side on the scanner bed.
Collapse
Affiliation(s)
- Joannie Desroches
- Département de Radio-Oncologie, Centre hospitalier de l'Université de Montreal, Montréal, Quebec H2L 4M1, Canada
| | | | | |
Collapse
|
37
|
Devic S, Aldelaijan S, Mohammed H, Tomic N, Liang LH, DeBlois F, Seuntjens J. Absorption spectra time evolution of EBT-2 model GAFCHROMIC™ film. Med Phys 2010; 37:2207-14. [DOI: 10.1118/1.3378675] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Brady SL, Brown WE, Clift CG, Yoo S, Oldham M. Investigation into the feasibility of using PRESAGE/optical-CT dosimetry for the verification of gating treatments. Phys Med Biol 2010; 55:2187-201. [PMID: 20348606 PMCID: PMC3018756 DOI: 10.1088/0031-9155/55/8/005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This work presents an investigation into the use of PRESAGE dosimeters with an optical-CT scanner as a 3D dosimetry system for quantitative verification of respiratory-gated treatments. The CIRS dynamic thorax phantom was modified to incorporate a moving PRESAGE dosimeter-simulating respiration motion in the lungs. A simple AP/PA lung treatment plan was delivered three times to the phantom containing a different but geometrically identical PRESAGE insert each time. Each delivery represented a treatment scenario: static, motion (free-breathing) and gated. The dose distributions, in the three dosimeters, were digitized by the optical-CT scanner. Improved optical-CT readout yielded an increased signal-to-noise ratio by a factor of 3 and decreased reconstruction artifacts compared with prior work. Independent measurements of dose distributions were obtained in the central plane using EBT film. Dose distributions were normalized to a point corresponding to the 100% isodose region prior to the measurement of dose profiles and gamma maps. These measurements were used to quantify the agreement between measured and ECLIPSE(R) dose distributions. Average gamma pass rates between PRESAGE and EBT were >99% (criteria 3% dose difference and 1.2 mm distance-to-agreement) for all three treatments. Gamma pass rates between PRESAGE and ECLIPSE(R) 3D dose distributions showed excellent agreement for the gated treatment (100% pass rate), but poor for the motion scenario (85% pass rate). This work demonstrates the feasibility of using PRESAGE/optical-CT 3D dosimetry to verify gating-enabled radiation treatments. The capability of the Varian gating system to compensate for motion in this treatment scenario was demonstrated.
Collapse
Affiliation(s)
- Samuel L Brady
- Medical Physics Graduate Program, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
39
|
Richley L, John AC, Coomber H, Fletcher S. Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy. Phys Med Biol 2010; 55:2601-17. [PMID: 20393235 DOI: 10.1088/0031-9155/55/9/012] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new radiochromic film, the yellow Gafchromic EBT2, has been marketed as a drop-in replacement for the discontinued blue EBT film. In order to verify the manufacturer's claims prior to clinical use, EBT2 was characterized in transmission, and the less commonly used, reflection modes with an Epson Expression 10000XL A3 flatbed scanner. The red channel was confirmed to provide the greatest sensitivity and was used for all measurements. The post-irradiation darkening of the film was investigated, and the relative response was found to be dose dependent with higher doses stabilizing earlier than lower doses. After 13 h all dose levels had stabilized to within 1% of their value at 24 h. Uniformity of irradiated EBT2 films was within 0.8% and 1.2% (2SD of signal), in reflection and transmission modes, respectively. The light scattering effect, arising from the structure and thickness of EBT2, was found to give rise to an apparent scanner non-uniformity of up to 5.5% in signal. In reflection mode, differences of up to 1.2% were found between the signal obtained from a small film fragment (5 x 5 cm(2)) and the signal obtained from the same fragment bordered by extra film. Further work is needed to determine the origin of this effect, as there will be implications for reflection dosimetry of intensity modulated fields; reflection mode cannot yet be regarded as a viable alternative to transmission mode. Our results suggest that EBT2 film is a valid alternative, rather than a direct replacement for EBT film.
Collapse
Affiliation(s)
- L Richley
- Bristol Haematology and Oncology Centre, Bristol BS28ED, UK.
| | | | | | | |
Collapse
|
40
|
Kirby D, Green S, Palmans H, Hugtenburg R, Wojnecki C, Parker D. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry. Phys Med Biol 2009; 55:417-33. [DOI: 10.1088/0031-9155/55/2/006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Miras H, Arrans R. An easy method to account for light scattering dose dependence in radiochromic films. Med Phys 2009; 36:3866-9. [PMID: 19810458 DOI: 10.1118/1.3176892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To date no detector can offer the unbeatable characteristics of film dosimetry in terms of spatial resolution and this is why it has been chosen by many institutions for treatment verification and, in that respect, radiochromic films are becoming increasingly popular due to their advantageous properties. It is the aim of this work to suggest an easy method to overcome one of the drawbacks in radiochromic film dosimetry associated with the scanning device, namely, the nonuniform dose dependent response, mainly due to the light scattering effect. METHODS The suggested procedure consists of building four correction matrices by sequentially scanning one, two, three, and four unexposed blank films. The color level of these four matrices is compatible with four points in the calibration curve dose range. Therefore, the dose dependent correction to the scanned irradiated film will be obtained by interpolating between the four correction matrices. RESULTS The validity of the suggested method is checked against an ion chamber 2D array. The use of the proposed flattening correction improves considerably the dose agreement when compared with the cases in which no correction is applied. CONCLUSIONS The method showed to be fast and easy and practically overcomes the dependence on the dose of light scattering of flatbed scanners.
Collapse
Affiliation(s)
- Hector Miras
- Department of Medical Physics, Virgen Macarena Hospital, Seville E-41009, Spain.
| | | |
Collapse
|
42
|
del Moral F, Vázquez JA, Ferrero JJ, Willisch P, Ramírez RD, Teijeiro A, López Medina A, Andrade B, Vázquez J, Salvador F, Medal D, Salgado M, Muñoz V. From the limits of the classical model of sensitometric curves to a realistic model based on the percolation theory for GafChromic EBT films. Med Phys 2009; 36:4015-26. [PMID: 19810474 DOI: 10.1118/1.3187226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Modern radiotherapy uses complex treatments that necessitate more complex quality assurance procedures. As a continuous medium, GafChromic EBT films offer suitable features for such verification. However, its sensitometric curve is not fully understood in terms of classical theoretical models. In fact, measured optical densities and those predicted by the classical models differ significantly. This difference increases systematically with wider dose ranges. Thus, achieving the accuracy required for intensity-modulated radiotherapy (IMRT) by classical methods is not possible, plecluding their use. As a result, experimental parametrizations, such as polynomial fits, are replacing phenomenological expressions in modern investigations. This article focuses on identifying new theoretical ways to describe sensitometric curves and on evaluating the quality of fit for experimental data based on four proposed models. METHODS A whole mathematical formalism starting with a geometrical version of the classical theory is used to develop new expressions for the sensitometric curves. General results from the percolation theory are also used. A flat-bed-scanner-based method was chosen for the film analysis. Different tests were performed, such as consistency of the numeric results for the proposed model and double examination using data from independent researchers. RESULTS Results show that the percolation-theory-based model provides the best theoretical explanation for the sensitometric behavior of GafChromic films. The different sizes of active centers or monomer crystals of the film are the basis of this model, allowing acquisition of information about the internal structure of the films. Values for the mean size of the active centers were obtained in accordance with technical specifications. In this model, the dynamics of the interaction between the active centers of GafChromic film and radiation is also characterized by means of its interaction cross-section value. CONCLUSIONS The percolation model fulfills the accuracy requirements for quality-control procedures when large ranges of doses are used and offers a physical explanation for the film response.
Collapse
Affiliation(s)
- F del Moral
- Department of Medical Physics, Hospital do Meixoeiro, Pontevedra 36200, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Buchauer K, Hillbrand E, de Vries A. GAFCHROMIC®
EBT photospectral dose response dependence on temperature and implications for flat bed scanning. Med Phys 2009; 36:5044-51. [DOI: 10.1118/1.3231825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Brady SL, Toncheva G, Dewhirst MW, Yoshizumi TT. Characterization of a 137Cs irradiator from a new perspective with modern dosimetric tools. HEALTH PHYSICS 2009; 97:195-205. [PMID: 19667802 PMCID: PMC3721518 DOI: 10.1097/hp.0b013e3181a9bd42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To provide for accurate dosimetry in a 137Cs irradiator, the following were investigated: (1) correct mapping of the irradiator cavity's dose distribution, (2) rotated versus stationary dose rate measurements, (3) exposure-to-dose calibration selection for exposure time calculation, and (4) irradiator-timer error correction. This work introduces techniques to map dose distributions and measure dose rates with new high-sensitivity radiochromic films and a small-volume ion chamber constructed for in-beam, high-intensity gamma irradiation. Measured film distributions were compared to manufacturer-provided data and independent measurements from an ion chamber and TLD-100 chips. Measured film distributions agreed with the manufacturer-provided data in the central-vertical region, but disagreed by as much as 95% in surrounding regions. The independent measurements agreed within 96% with the measured dose distribution. Dose rates varied by approximately 11% for a rotational versus stationary setup, by approximately 10% for the dose-to-medium correction between air and soft tissue, and by approximately 4-12% for irradiation times from 0.2-0.7 min due to timer error. In conclusion, a critical irradiator characterization should be performed, initially, as a part of the acceptance testing of a newly installed irradiator, and periodically as an ongoing quality assurance protocol. We investigated, and recommend as part of a comprehensive irradiator verification protocol, the inclusion of radiochromic film-measured dose distributions, dose rates measured during rotation when samples are likewise rotated for exposure, timer error corrections for short-time irradiation, and exposure-to-dose corrections that reflect typical sample compositions, e.g., soft tissue or air.
Collapse
Affiliation(s)
- Samuel L Brady
- Medical Physics Graduate Program, Duke University, Durham, NC 27705, USA
| | | | | | | |
Collapse
|
45
|
Schneider F, Polednik M, Wolff D, Steil V, Delana A, Wenz F, Menegotti L. Optimization of the gafchromic EBT protocol for IMRT QA. Z Med Phys 2009; 19:29-37. [PMID: 19459583 DOI: 10.1016/j.zemedi.2008.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quality assurance of external beam (radio)therapy (EBT) requires tools with specific characteristics. A radiochromic film dubbed "Gafchromic EBT" (G-EBT) that is particularly suited for external beam therapy because of its features was introduced in 2004. Its characteristics, especially the high spatial resolution, make it suitable for measurement of dose distributions in radiotherapy, especially intensity-modulated radiation therapy (IMRT). While several aspects of the film characteristics have been previously reported separately, we present a comprehensive evaluation centered on practical IMRT verification, leading to an optimized protocol. Therefore the constancy within one batch, the relationship between optical density (OD) and dose (dose range between 1.4 Gy and 8.4 Gy) and the dose rate dependence for four dose rates (55, 108, 217, 441 MU/min) were investigated. In addition to these characteristics, energy dependence between two energies (50kV and 6 MV), tissue equivalency, post irradiation coloration over one month, pressure and temperature sensitivity were evaluated. We then optimized the protocol using the G-EBT films, in combination with an EPSON-Expression 1680 pro flatbed scanner, for IMRT QA, while either striving to keep the compound error as small as possible or trying to reduce evaluation time. As a basis for this protocol optimization, the characteristics of the scanner (such as inhomogeneity of the scanning field) and its software (such as consequences of extracting only the red color channel) had to be determined first. The interaction of film and scanner (variation of the OD depending on the scanning direction or the scanning resolution) was assessed as well. Using the optimized protocol for IMRT QA, the compound error could be reduced to approximately 2% for a quality-driven approach and maximum 5.5% for an approach attempting to reduce procedure time. While the quality-driven approach provides appropriate accuracy for individual patient QA, the procedure-time driven approach can only be used for preliminary measurements.
Collapse
Affiliation(s)
- Frank Schneider
- Department of Radiation Oncology of the University Medical Center Mannheim, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Devic S, Tomic N, Soares CG, Podgorsak EB. Optimizing the dynamic range extension of a radiochromic film dosimetry system. Med Phys 2009; 36:429-37. [PMID: 19291981 DOI: 10.1118/1.3049597] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.
Collapse
Affiliation(s)
- Slobodan Devic
- Medical Physics Department, McGill University Health Centre, Montréal, Québec H3G 1A4, Canada.
| | | | | | | |
Collapse
|
47
|
Babic S, McNiven A, Battista J, Jordan K. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning. Phys Med Biol 2009; 54:2463-81. [PMID: 19336848 DOI: 10.1088/0031-9155/54/8/014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing optical CT-scanned radiochromic gels allows for the acquisition of a self-consistent volumetric data set in a single exposure, with sufficient spatial resolution to accurately characterize small fields.
Collapse
Affiliation(s)
- Steven Babic
- Department of Physics and Engineering, London Regional Cancer Program at London Health Sciences Centre, 790 Commissioners Road East, London, Ontario N6 A 4L6, Canada.
| | | | | | | |
Collapse
|
48
|
Chiu-Tsao ST, Medich D, Munro J. The use of new GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water phantom. Med Phys 2008; 35:3787-99. [PMID: 18777938 DOI: 10.1118/1.2955746] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Radiochromic film dosimetry has been extensively used for intravascular brachytherapy applications for near field within 1 cm from the sources. With the recent introduction of new model of radiochromic films, GAFCHROMIC EBT, with higher sensitivity than earlier models, it is promising to extend the distances out to 5 cm for low dose rate (LDR) source dosimetry. In this study, the use of new model GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water was evaluated for radial distances from 0.06 cm out to 5 cm. A multiple film technique was employed for four 125I seeds (Implant Sciences model 3500) with NIST traceable air kerma strengths. Each experimental film was positioned in contact with a 125I seed in a Solid Water phantom. The products of the air kerma strength and exposure time ranged from 8 to 3158 U-h, with the initial air kerma strength of 6 U in a series of 25 experiments. A set of 25 calibration films each was sequentially exposed to one 125I seed at about 0.58 cm distance for doses from 0.1 to 33 Gy. A CCD camera based microdensitometer, with interchangeable green (520 nm) and red (665 nm) light boxes, was used to scan all the films with 0.2 mm pixel resolution. The dose to each 125I calibration film center was calculated using the air kerma strength of the seed (incorporating decay), exposure time, distance from seed center to film center, and TG43U1S1 recommended dosimetric parameters. Based on the established calibration curve, dose conversion from net optical density was achieved for each light source. The dose rate constant was determined as 0.991 cGy U(-1)h(-1) (+/-6.9%) and 1.014 cGy U(-1)h(-1) (+/-6.8%) from films scanned using green and red light sources, respectively. The difference between these two values was within the uncertainty of the measurement. Radial dose function and 2D anisotropy function were also determined. The results obtained using the two light sources corroborated each other. We found good agreement with the TG43U1S1 recommended values of radial dose function and 2D anisotropy function, to within the uncertainty of the measurement. We also verified the dosimetric parameters in the near field calculated by Rivard using Monte Carlo method. The radial dose function values in Solid Water were lower than those in water recommended by TG43U1S1, by about 2%, 3%, 7%, and 14% at 2, 3, 4, and 5 cm, respectively, partially due to the difference in the phantom material composition. Radiochromic film dosimetry using GAFCHROMIC EBT model is feasible in determining 2D dose distributions around low dose rate 125I seed. It is a viable alternative to TLD dosimetry for 125I seed dose characterization.
Collapse
|
49
|
Keller BM, Peressotti C, Pignol JP. Optical imaging analysis of microscopic radiation dose gradients in Gafchromic EBT film using a digital microscope. Med Phys 2008; 35:3740-7. [DOI: 10.1118/1.2953565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
50
|
van Battum LJ, Hoffmans D, Piersma H, Heukelom S. Accurate dosimetry with GafChromic™ EBT film of a 6MV photon beam in water: What level is achievable? Med Phys 2008; 35:704-16. [PMID: 18383692 DOI: 10.1118/1.2828196] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- L J van Battum
- Physics and Medical Technology, Academic Hospital Free University Amsterdam, P.O. Box 7057 1007 MB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|