1
|
Wang S, Chen H, Xu Y, Peng G, Wang H, Li Q, Zhou X, Li Z, Wang Q, Jin Z. Organic Cation Modulation in Manganese Halides to Optimize Crystallization Process and X-Ray Response Toward Large-Area Scintillator Screen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403234. [PMID: 38963174 DOI: 10.1002/smll.202403234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Manganese halides are one of the most potential candidates for large-area flat-panel detection owing to their biological safety and all-solution preparation. However, reducing photon scattering and enhancing the efficient luminescence of scintillator screens remains a challenge due to their uncontrollable crystallization and serious nonradiative recombination. Herein, an organic cation modulation is reported to control the crystallization process and enhance the luminescence properties of manganese halides. Given the industrial requirements of the X-ray flat-panel detector, the large-area A2MnBr4 screen (900 cm2) with excellent uniformity is blade-coated at 60 °C. Theoretical calculations and in situ measurements reveal that organic cations with larger steric hindrance can slow down the crystallization of the screen, thus neatening the crystal arrangement and reducing the photon scattering. Moreover, larger steric hindrance can also endow the material with higher exciton binding energy, which is beneficial for restraining nonradiative recombination. Therefore, the BPP2MnBr4 (BPP = C25H22P+) screen with larger steric hindrance exhibits a superior spatial resolution (>20 lp mm-1) and ultra-low detection limit (< 250 nGyair s-1). This is the first time steric hindrance modulation is used in blade-coated scintillator screens, and it believes this study will provide some guidance for the development of high-performance manganese halide scintillators.
Collapse
Affiliation(s)
- Shuo Wang
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Huanyu Chen
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Youkui Xu
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guoqiang Peng
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Haoxu Wang
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qijun Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xufeng Zhou
- School of Material Science and Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - ZhenHua Li
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qian Wang
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhiwen Jin
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Shen L, Antonuk LE, El-Mohri Y, Zhao Q. Minimization of image lag in polycrystalline mercuric iodide converters through incorporation of Frisch grid structures for digital breast tomosynthesis. Phys Med Biol 2023; 68. [PMID: 36635788 DOI: 10.1088/1361-6560/aca952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/06/2022] [Indexed: 01/14/2023]
Abstract
Objective. Polycrystalline mercuric iodide photoconductive converters fabricated using particle-in-binder techniques (PIB HgI2) provide significantly more detected charge per x-ray interaction than from a-Se and CsI:Tl converters commonly used with active matrix flat-panel imagers (AMFPIs). This enhanced sensitivity makes PIB HgI2an interesting candidate for applications involving low x-ray exposures-since the relatively high levels of additive electronic noise exhibited by AMFPIs incorporating a-Se and CsI:Tl reduce detective quantum efficiency (DQE) performance under such conditions. A theoretical study is reported on an approach for addressing a major challenge impeding practical use of PIB HgI2converters-the high lag exhibited by the material (over 10%) which would lead to undesirable image artifacts in applications involving acquisition of consecutive images such as digital breast tomosynthesis.Approach. Charge transport modeling accounting for the trapping and release of holes (thought to be the primary contributor to lag) was used to examine signal properties, including lag, of pillar-supported Frisch grids embedded in the photoconductor for 100μm pitch AMFPI pixels. Performance was examined as a function of electrode voltage, grid pitch (center-to-center distance between neighboring grid wires) and the ratio of grid wire width to grid pitch.Main results. Optimum grid designs maximizing suppression of signal generated by hole transport, without significantly affecting the total signal due to electron and hole transport, were identified and MTF was determined. For the most favorable designs, additional modeling was used to determine DQE. The results indicate that, through judicious choice of grid design and operational conditions, first frame lag can be significantly reduced to below 1%-less than the low levels exhibited by a-Se. DQE performance is shown to be largely maintained as exposure decreases-which should help to maintain good image quality.Significance. Substantial reduction of lag in PIB HgI2converters via incorporation of Frisch grids has been demonstrated through modeling.
Collapse
Affiliation(s)
- Liuxing Shen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Larry E Antonuk
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Youcef El-Mohri
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Qihua Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
3
|
Anam C, Triadyaksa P, Naufal A, Arifin Z, Muhlisin Z, Setiawati E, Budi WS. Impact of ROI Size on the Accuracy of Noise Measurement in CT on Computational and ACR Phantoms. J Biomed Phys Eng 2022; 12:359-368. [PMID: 36059282 PMCID: PMC9395624 DOI: 10.31661/jbpe.v0i0.2202-1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The effect of region of interest (ROI) size variation on producing accurate noise levels is not yet studied. OBJECTIVE This study aimed to evaluate the influence of ROI sizes on the accuracy of noise measurement in computed tomography (CT) by using images of a computational and American College of Radiology (ACR) phantoms. MATERIAL AND METHODS In this experimental study, two phantoms were used, including computational and ACR phantoms. A computational phantom was developed by using Matlab R215a software (Mathworks Inc., Natick, MA Natick, MA) with a homogeneously +100 Hounsfield Unit (HU) value and an added-Gaussian noise with various levels of 5, 10, 25, 50, 75, and 100 HU. The ACR phantom was scanned with a Philips MX-16 slice CT scanner in different slice thicknesses of 1.5, 3, 5, and 7 mm to obtain noise variation. Noise measurement was conducted at the center of the phantom images and four locations close to the edge of the phantom images using different ROI sizes from 3 × 3 to 41 × 41 pixels, with an increased size of 2 × 2 pixels. RESULTS The use of a minimum ROI size of 21 × 21 pixels shows noise in the range of ± 5% ground truth noise. The measured noise increases above the ± 5% range if the used ROI is smaller than 21 × 21 pixels. CONCLUSION A minimum acceptable ROI size is required to maintain the accuracy of noise measurement with a size of 21 × 21 pixels.
Collapse
Affiliation(s)
- Choirul Anam
- PhD, Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
| | - Pandji Triadyaksa
- PhD, Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
| | - Ariij Naufal
- MSc, Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
| | - Zaenal Arifin
- MSc, Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
| | - Zaenul Muhlisin
- MSc, Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
| | - Evi Setiawati
- MSc, Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
| | - Wahyu Setia Budi
- PhD, Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
| |
Collapse
|
4
|
Wu P, Boone JM, Hernandez AM, Mahesh M, Siewerdsen JH. Theory, method, and test tools for determination of 3D MTF characteristics in cone-beam CT. Med Phys 2021; 48:2772-2789. [PMID: 33660261 DOI: 10.1002/mp.14820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The modulation transfer function (MTF) is widely used as an objective metric of spatial resolution of medical imaging systems. Despite advances in capability for three-dimensional (3D) isotropic spatial resolution in computed tomography (CT) and cone-beam CT (CBCT), MTF evaluation for such systems is typically reported only in the axial plane, and practical methodology for assessment of fully 3D spatial resolution characteristics is lacking. This work reviews fundamental theoretical relationships of two-dimensional (2D) and 3D spread functions and reports practical methods and test tools for analysis of 3D MTF in CBCT. METHODS Fundamental aspects of 2D and 3D MTF measurement are reviewed within a common notational framework, and three MTF test tools with analysis code are reported and made available online (https://istar.jhu.edu/downloads/): (a) a multi-wire tool for measurement of the axial plane MTF [denoted as M T F ( f r ; φ = 0 ∘ ) , where φ is the measurement angle out of the axial plane] as a function of position in the axial plane; (b) a wedge tool for measurement of the MTF in any direction in the 3D Fourier domain [e.g., φ = 45°, denoted as M T F ( f r ; φ = 45 ∘ ) ]; and (c) a sphere tool for measurement of the MTF in any or all directions in the 3D Fourier domain. Experiments were performed on a mobile C-arm with CBCT capability, showing that M T F ( f r ; φ = 45 ∘ ) yields an informative one-dimensional (1D) representation of the overall 3D spatial resolution characteristics, capturing important characteristics of the 3D MTF that might be missed in conventional analysis. The effects of anisotropic filters and detector readout mode were investigated, and the extent to which a system can be said to provide "isotropic" resolution was evaluated by quantitative comparison of MTF at various φ . RESULTS All three test tools provided consistent measurement of M T F ( f r ; φ = 0 ∘ ) , and the wedge and sphere tools demonstrated how measurement of the MTF in directions outside the axial plane ( φ > 0 ∘ ) can reveal spatial resolution characteristics to which conventional axial MTF measurement is blind. The wedge tool was shown to reduce statistical measurement error compared to the sphere tool due to improved sampling, and the sphere tool was shown to provide a basis for measurement of the MTF in any or all directions (outside the null cone) from a single scan. The C-arm system exhibited non-isotropic spatial resolution with conventional non-isotropic 1D apodization filters (i.e., frequency cutoff filters) - which is common in CBCT - and implementation of isotropic 2D apodization yielded quantifiably isotropic MTF. Asymmetric pixel binning modes were similarly shown to impart non-isotropic effects on the 3D MTF, and the overall 3D MTF characteristics were evident in each case with a single, 1D measurement of the 1D M T F ( f r ; φ = 45 ∘ ). CONCLUSION Three test tools and corresponding MTF analysis methods were presented within a consistent framework for analysis of 3D spatial resolution characteristics in a manner amenable to routine, practical measurements. Experiments on a CBCT C-arm validated many intuitive aspects of 3D spatial resolution and quantified the extent to which a CBCT system may be considered to have isotropic resolution. Measurement of M T F ( f r ; φ = 45 ∘ ) provided a practical 1D measure of the underlying 3D MTF characteristics and is extensible to other CT or CBCT systems offering high, isotropic spatial resolution.
Collapse
Affiliation(s)
- Pengwei Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - John M Boone
- Department of Radiology, University of California, Davis, Davis, CA, 95616, USA
| | - Andrew M Hernandez
- Department of Radiology, University of California, Davis, Davis, CA, 95616, USA
| | - Mahadevappa Mahesh
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
5
|
Lohrabian V, Kamali-Asl A, Arabi H, Mamashi F, Hemmati HR, Zaidi H. Design and construction of a variable resolution cone-beam small animal mini-CT prototype for in vivo studies. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2018.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Arabi H, Kamali Asl AR, Ay MR, Zaidi H. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner. Phys Med 2015; 31:510-6. [PMID: 25873195 DOI: 10.1016/j.ejmp.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. METHODS A realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle. RESULTS Optimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°-12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles. CONCLUSION It can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV.
Collapse
Affiliation(s)
- Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Ali Reza Kamali Asl
- Department of Radiation Medicine, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Mohammad Reza Ay
- Research Centre for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland; Geneva Neuroscience Center, Geneva University, CH-1205, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700, RB Groningen, Netherlands.
| |
Collapse
|
7
|
Arabi H, Asl ARK, Ay MR, Zaidi H. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: a Monte Carlo study. Med Phys 2011; 38:1389-96. [PMID: 21520850 DOI: 10.1118/1.3555035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. METHODS Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. RESULTS The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. CONCLUSIONS The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.
Collapse
Affiliation(s)
- Hosein Arabi
- Department of Radiation Medicine, Shahid Beheshti University, 1983963113 Tehran, Iran
| | | | | | | |
Collapse
|
8
|
Inoue K, Liu F, Hoppin J, Lunsford EP, Lackas C, Hesterman J, Lenkinski RE, Fujii H, Frangioni JV. High-resolution computed tomography of single breast cancer microcalcifications in vivo. Mol Imaging 2011; 10:295-304. [PMID: 21504703 DOI: 10.2310/7290.2010.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/29/2010] [Indexed: 11/18/2022] Open
Abstract
Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested: a voxel-driven "fast" cone beam algorithm (FCBA) and a detector-driven "exact" cone beam algorithm (ECBA). By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 μm full width at half-maximum (FWHM). At an optimal detector sampling frequency, the ECBA provided a 28 μm (21%) FWHM improvement in resolution over the FCBA. In vitro, we were able to image a single 300 μm × 100 μm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo "gold standard" for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification.
Collapse
Affiliation(s)
- Kazumasa Inoue
- Division of Hematology/Oncology and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|