1
|
Safigholi H, Chamberland MJP, Taylor REP, Allen CH, Martinov MP, Rogers DWO, Thomson RM. Update of the CLRP TG‐43 parameter database for low‐energy brachytherapy sources. Med Phys 2020; 47:4656-4669. [DOI: 10.1002/mp.14249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/08/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Habib Safigholi
- Carleton Laboratory for Radiotherapy Physics (CLRP) Department of Physics Carleton University Ottawa ON K1S 5B6 Canada
| | - Marc J. P. Chamberland
- Carleton Laboratory for Radiotherapy Physics (CLRP) Department of Physics Carleton University Ottawa ON K1S 5B6 Canada
| | - Randle E. P. Taylor
- Carleton Laboratory for Radiotherapy Physics (CLRP) Department of Physics Carleton University Ottawa ON K1S 5B6 Canada
| | - Christian H. Allen
- Carleton Laboratory for Radiotherapy Physics (CLRP) Department of Physics Carleton University Ottawa ON K1S 5B6 Canada
| | - Martin P. Martinov
- Carleton Laboratory for Radiotherapy Physics (CLRP) Department of Physics Carleton University Ottawa ON K1S 5B6 Canada
| | - D. W. O. Rogers
- Carleton Laboratory for Radiotherapy Physics (CLRP) Department of Physics Carleton University Ottawa ON K1S 5B6 Canada
| | - Rowan M. Thomson
- Carleton Laboratory for Radiotherapy Physics (CLRP) Department of Physics Carleton University Ottawa ON K1S 5B6 Canada
| |
Collapse
|
2
|
Aima M, DeWerd LA, Mitch MG, Hammer CG, Culberson WS. Dosimetric characterization of a new directional low-dose rate brachytherapy source. Med Phys 2018; 45:10.1002/mp.12994. [PMID: 29797517 PMCID: PMC6548702 DOI: 10.1002/mp.12994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022] Open
Abstract
PURPOSE CivaTech Oncology Inc. (Durham, NC) has developed a novel low-dose rate (LDR) brachytherapy source called the CivaSheet.TM The source is a planar array of discrete elements ("CivaDots") which are directional in nature. The CivaDot geometry and design are considerably different than conventional LDR cylindrically symmetric sources. Thus, a thorough investigation is required to ascertain the dosimetric characteristics of the source. This work investigates the repeatability and reproducibility of a primary source strength standard for the CivaDot and characterizes the CivaDot dose distribution by performing in-phantom measurements and Monte Carlo (MC) simulations. Existing dosimetric formalisms were adapted to accommodate a directional source, and other distinguishing characteristics including the presence of gold shield x-ray fluorescence were addressed in this investigation. METHODS Primary air-kerma strength (SK ) measurements of the CivaDots were performed using two free-air chambers namely, the Variable-Aperture Free-Air Chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center (UWMRRC) and the National Institute of Standards and Technology (NIST) Wide-Angle Free-Air Chamber (WAFAC). An intercomparison of the two free-air chamber measurements was performed along with a comparison of the different assumed CivaDot energy spectra and associated correction factors. Dose distribution measurements of the source were performed in a custom polymethylmethacrylate (PMMA) phantom using GafchromicTM EBT3 film and thermoluminescent dosimeter (TLD) microcubes. Monte Carlo simulations of the source and the measurement setup were performed using MCNP6 radiation transport code. RESULTS The CivaDot SK was determined using the two free-air chambers for eight sources with an agreement of better than 1.1% for all sources. The NIST measured CivaDot energy spectrum intensity peaks were within 1.8% of the MC-predicted spectrum intensity peaks. The difference in the net source-specific correction factor determined for the CivaDot free-air chamber measurements for the NIST WAFAC and UW VAFAC was 0.7%. The dose-rate constant analog was determined to be 0.555 cGy h-1 U-1 . The average difference observed in the estimated CivaDot dose-rate constant analog using measurements and MCNP6-predicted value (0.558 cGy h-1 U-1 ) was 0.6% ± 2.3% for eight CivaDot sources using EBT3 film, and -2.6% ± 1.7% using TLD microcube measurements. The CivaDot two-dimensional dose-to-water distribution measured in phantom was compared to the corresponding MC predictions at six depths. The observed difference using a pixel-by-pixel subtraction map of the measured and the predicted dose-to-water distribution was generally within 2-3%, with maximum differences up to 5% of the dose prescribed at the depth of 1 cm. CONCLUSION Primary SK measurements of the CivaDot demonstrated good repeatability and reproducibility of the free-air chamber measurements. Measurements of the CivaDot dose distribution using the EBT3 film stack phantom and its subsequent comparison to Monte Carlo-predicted dose distributions were encouraging, given the overall uncertainties. This work will aid in the eventual realization of a clinically viable dosimetric framework for the CivaSheet based on the CivaDot dose distribution.
Collapse
Affiliation(s)
- Manik Aima
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Larry A. DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Michael G. Mitch
- National Institute of Standards and Technology, Gaithersburg, MD, 20899
| | - Clifford G. Hammer
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Wesley S. Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
3
|
Nath R, Rivard MJ, DeWerd LA, Dezarn WA, Thompson Heaton H, Ibbott GS, Meigooni AS, Ouhib Z, Rusch TW, Siebert FA, Venselaar JLM. Guidelines by the AAPM and GEC-ESTRO on the use of innovative brachytherapy devices and applications: Report of Task Group 167. Med Phys 2017; 43:3178-3205. [PMID: 27277063 DOI: 10.1118/1.4951734] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used in the evaluation of innovative devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining the equivalence of the innovative treatment modality to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of innovative radiotherapy devices or applications is a critical part in which physicists should be actively involved. The physicist's role, along with physician colleagues, in this process is highlighted for innovative brachytherapy devices and applications and includes evaluation of (1) dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, (2) risks and benefits from a regulatory and safety perspective, and (3) resource assessment and preparedness. Further, it is suggested that any developed calibration methods be traceable to a primary standards dosimetry laboratory (PSDL) such as the National Institute of Standards and Technology in the U.S. or to other PSDLs located elsewhere such as in Europe. Clinical users should follow standards as approved by their country's regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the Accredited Dosimetry Calibration Laboratories in the U.S. is encouraged before a source is introduced into widespread routine clinical use. The American Association of Physicists in Medicine and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) have developed guidelines for the safe and consistent application of brachytherapy using innovative devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. Nuclear Regulatory Commission, U.S. Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, U.S. Food and Drug Administration, European Commission for CE Marking (Conformité Européenne), and institutional review boards and radiation safety committees.
Collapse
Affiliation(s)
- Ravinder Nath
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, Connecticut 06510
| | - Mark J Rivard
- Department of Radiation Oncology, School of Medicine, Tufts University, Boston, Massachusetts 02111
| | - Larry A DeWerd
- Accredited Dosimetry and Calibration Laboratory, University of Wisconsin, Madison, Wisconsin 53706
| | - William A Dezarn
- Department of Radiation Oncology, School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157
| | | | - Geoffrey S Ibbott
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Ali S Meigooni
- Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada 89169
| | - Zoubir Ouhib
- Radiation Oncology, Lynn Regional Cancer Center, Delray Beach, Florida 33484
| | - Thomas W Rusch
- Xoft, Inc., A Subsidiary of iCAD, Inc., San Jose, California 95134
| | - Frank-André Siebert
- Clinic of Radiotherapy, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Jack L M Venselaar
- Department of Medical Physics and Engineering, Instituut Verbeeten, Tilburg LA 5000, The Netherlands
| |
Collapse
|
4
|
Aima M, Reed JL, DeWerd LA, Culberson WS. Air-kerma strength determination of a new directional (103)Pd source. Med Phys 2016; 42:7144-52. [PMID: 26632069 DOI: 10.1118/1.4935409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A new directional (103)Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing (103)Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active (103)Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S(K)) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S(K) to a well-type ionization chamber. METHODS S(K) measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S(K) from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S(K) with the presence of gold fluorescent energy lines. In addition to S(K) measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S(K) values for a directional source within a cylindrically symmetric measurement volume. RESULTS The UW VAFAC was successfully used to measure the S(K) of four CivaDots with reproducibilities within 0.3%. Monte Carlo methods were used to calculate the UW VAFAC correction factors and the calculated spectrum emitted from a CivaDot was experimentally verified with HPGe detector measurements. The well-type ionization chamber showed minimal variation in response (<1.5%) as a function of source positioning angle, indicating that an American Association of Physicists in Medicine (AAPM) Accredited Dosimetry Calibration Laboratory calibrated well chamber would be a suitable device to transfer an S(K)-based calibration to a clinical user. S(K) per well-chamber ionization current ratios were consistent among the four dots measured. Additionally, the measurements and predictions of anisotropy show uniform emission within the solid angle of the VAFAC, which demonstrates the robustness of the S(K) measurement approach. CONCLUSIONS This characterization of a new (103)Pd directional brachytherapy source helps to establish calibration methods that could ultimately be used in the well-established AAPM Task Group 43 formalism. Monte Carlo methods accurately predict the changes in the energy spectrum caused by the fluorescent x-rays produced in the gold shield.
Collapse
Affiliation(s)
- Manik Aima
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Joshua L Reed
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Larry A DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
5
|
Lee H, Lee WS, Park JI, Son KJ, Park M, Bang YB, Choy YB, Ye SJ. Surface coating for prevention of metallic seed migration in tissues. Med Phys 2016; 42:2805-12. [PMID: 26127032 DOI: 10.1118/1.4919445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. METHODS In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. RESULTS The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. CONCLUSIONS The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.
Collapse
Affiliation(s)
- Hyunseok Lee
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Won Seok Lee
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 151-742, Korea
| | - Jong In Park
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Kwang-Jae Son
- Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon 305-353, Korea
| | - Min Park
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 151-742, Korea
| | - Young-bong Bang
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 110-744, Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-744, Korea; and Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744, Korea
| | - Sung-Joon Ye
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea; and Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744, Korea
| |
Collapse
|
6
|
Reed JL, Rivard MJ, Micka JA, Culberson WS, DeWerd LA. Experimental and Monte Carlo dosimetric characterization of a 1 cm (103)Pd brachytherapy source. Brachytherapy 2014; 13:657-67. [PMID: 24880585 DOI: 10.1016/j.brachy.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/06/2014] [Accepted: 04/08/2014] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of a new elongated (103)Pd brachytherapy source through both experimental measurements and Monte Carlo (MC) simulations. Measured and MC-calculated dose distributions were used to determine the American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters for this source. METHODS AND MATERIALS The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and was simulated with the MCNP5 radiation transport code. Measured and MC results were normalized to their respective mean values and then compared. The source dose distribution was determined from measurements with LiF:Mg,Ti thermoluminescent dosimeter (TLD) microcubes and MC simulations. TG-43 dosimetry parameters for the source, including the dose-rate constant, Λ, two-dimensional anisotropy function, F(r, θ), and line-source radial dose function, gL(r), were determined from the TLD measurements and MC simulations. RESULTS NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy of the source showed that ≥95% of the normalized values for each source were within 1.2% of the mean value. TLD measurements and MC simulations of Λ, F(r, θ), and gL(r) agreed to within the associated uncertainties. CONCLUSIONS This new (103)Pd source exhibits a high level of azimuthal symmetry as indicated by the measured and MC-calculated results for the in-air azimuthal anisotropy. TG-43 dosimetry parameters for the source were determined through TLD measurements and MC simulations.
Collapse
Affiliation(s)
- Joshua L Reed
- Department of Medical Physics, University of Wisconsin-Madison, UW Medical Radiation Research Center, Madison, WI.
| | - Mark J Rivard
- Department of Radiation Oncology, Tufts University School of Medicine, Boston, MA
| | - John A Micka
- Department of Medical Physics, University of Wisconsin-Madison, UW Medical Radiation Research Center, Madison, WI
| | - Wesley S Culberson
- Department of Medical Physics, University of Wisconsin-Madison, UW Medical Radiation Research Center, Madison, WI
| | - Larry A DeWerd
- Department of Medical Physics, University of Wisconsin-Madison, UW Medical Radiation Research Center, Madison, WI
| |
Collapse
|
7
|
Thomadsen BR, Williamson JF, Rivard MJ, Meigooni AS. Anniversary Paper: Past and current issues, and trends in brachytherapy physics. Med Phys 2008; 35:4708-23. [DOI: 10.1118/1.2981826] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|