1
|
Assessment of a method to determine deep brain stimulation targets using deterministic tractography in a navigation system. Neurosurg Rev 2015; 38:739-50; discussion 751. [PMID: 25962557 DOI: 10.1007/s10143-015-0643-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 02/04/2015] [Accepted: 03/14/2015] [Indexed: 01/18/2023]
Abstract
Recent advances in imaging permit radiologic identification of target structures for deep brain stimulation (DBS) for movement disorders. However, these methods cannot detect the internal subdivision and thus cannot determine the appropriate DBS target located within those subdivisions. The aim of this study is to provide a straightforward method to obtain an optimized target (OT) within DBS target nuclei using a widely available navigation system. We used T1- and T2-weighted images, fluid-attenuated inversion recovery (FLAIR) sequence, and diffusion tensor imaging (DTI) of nine patients operated for DBS in our center. Using the StealthViz® software, we segmented the targeted deep structures (subcortical targets) and the anatomically identifiable areas to which these target nuclei were connected (projection areas). We generated fiber tracts from the projection areas. By identifying their intersections with the subcortical targets, we obtained an OT within the DBS target nuclei. We computed the distances from the clinically effective electrode contacts (CEEC) to the OT obtained by our method and the targets provided by the atlas. These distances were compared using a Wilcoxon signed-rank test, with p < 0.05 considered statistically significant. We were able to identify OT coincident with the motor part of the subthalamic nucleus and the ventral intermediate nucleus. We clinically tested the results and found that the CEEC were significantly more closely related to the OT than with the targets obtained by the atlas. Our present results show that this novel method permits optimization of the stimulation site within the internal subdivisions of target nuclei for DBS.
Collapse
|
2
|
Cheng CH, Huang HM, Lin HL, Chiou SM. 1.5T versus 3T MRI for targeting subthalamic nucleus for deep brain stimulation. Br J Neurosurg 2013; 28:467-70. [DOI: 10.3109/02688697.2013.854312] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Mirabella G, Iaconelli S, Modugno N, Giannini G, Lena F, Cantore G. Stimulation of subthalamic nuclei restores a near normal planning strategy in Parkinson's patients. PLoS One 2013; 8:e62793. [PMID: 23658775 PMCID: PMC3643906 DOI: 10.1371/journal.pone.0062793] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
A fundamental function of the motor system is to gather key information from the environment in order to implement behavioral strategies appropriate to the context. Although several lines of evidence indicate that Parkinson's disease affects the ability to modify behavior according to task requirements, it is currently unknown whether deep brain stimulation (DBS) of the subthalamic nucleus (STN) affects context-related planning. To explore this issue, we asked 12 Parkinson's patients with bilateral STN DBS and 13 healthy subjects to execute similar arm reaching movements in two different paradigms: go-only and countermanding tasks. In the former task patients had to perform speeded reaching movements to a peripheral target. In contrast, in the countermanding task participants had to perform the same reaches unless an infrequent and unpredictable stop-signal was shown during the reaction time (RT) indicating that they should withhold the ongoing action. We compared the performance of Parkinson's patients in different DBS conditions. We found that patients with both DBS-ON behaved similarly to healthy subjects, in that RTs of no-stop trial increased while movement times (MTs) decreased with respect to those of go-only-trials. However, when both DBS were off, both RTs and MTs were longer in no-stop trials than in go-only trials. These findings indicate that bilateral DBS of STN can partially restore the appropriate motor strategy according to the given cognitive contexts.
Collapse
Affiliation(s)
- Giovanni Mirabella
- Department of Neuroscience, Istituto Neurologico Mediterraneo Neuromed, Pozzilli, IS, Italy.
| | | | | | | | | | | |
Collapse
|
4
|
Lalys F, Haegelen C, Mehri M, Drapier S, Vérin M, Jannin P. Anatomo-clinical atlases correlate clinical data and electrode contact coordinates: Application to subthalamic deep brain stimulation. J Neurosci Methods 2013; 212:297-307. [DOI: 10.1016/j.jneumeth.2012.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
|
5
|
Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R. Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 2012; 60:83-94. [PMID: 22173294 PMCID: PMC3315017 DOI: 10.1016/j.neuroimage.2011.11.082] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/28/2011] [Accepted: 11/24/2011] [Indexed: 01/17/2023] Open
Abstract
The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.
Collapse
Affiliation(s)
- Christian Lambert
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Zoltan Nagy
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Antoine Lutti
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Bogdan Draganski
- LREN, Department des neurosciences cliniques - CHUV, UNIL; Lausanne, Switzerland
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Richard Frackowiak
- LREN, Department des neurosciences cliniques - CHUV, UNIL; Lausanne, Switzerland
| |
Collapse
|
6
|
Mirabella G, Iaconelli S, Romanelli P, Modugno N, Lena F, Manfredi M, Cantore G. Deep brain stimulation of subthalamic nuclei affects arm response inhibition in Parkinson's patients. Cereb Cortex 2011; 22:1124-32. [PMID: 21810782 DOI: 10.1093/cercor/bhr187] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The precise localizations of the neural substrates of voluntary inhibition are still debated. It has been hypothesized that, in humans, this executive function relies upon a right-lateralized pathway comprising the inferior frontal gyrus and the presupplementary motor area, which would control the neural processes for movement inhibition acting through the right subthalamic nucleus (STN). We assessed the role of the right STN, via a countermanding reaching task, in 10 Parkinson's patients receiving high-frequency electrical stimulation of the STN of both hemispheres (deep brain stimulation, DBS) and in 13 healthy subjects. We compared the performance of Parkinson's patients in 4 experimental conditions: DBS-ON, DBS-OFF, DBS-OFF right, and DBS-OFF left. We found that 1) inhibitory control is improved only when both DBS are active, that is, the reaction time to the stop signal is significantly shorter in the DBS-ON condition than in all the others, 2) bilateral stimulation of STN restores the inhibitory control to a near-normal level, and 3) DBS does not cause a general improvement in task-related motor function as it does not affect the length of the reaction times of arm movements, that is, in our experimental context, STN seems to play a selective role in response inhibition.
Collapse
Affiliation(s)
- G Mirabella
- Istituto di ricovero e cura a carattere scientifico Neuromed, 86077 Pozzilli (IS), Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
Barbarisi M, Pantelis E, Antypas C, Romanelli P. Radiosurgery for movement disorders. COMPUTER AIDED SURGERY : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR COMPUTER AIDED SURGERY 2011; 16:101-111. [PMID: 21476787 DOI: 10.3109/10929088.2011.569127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Stereotactic radiosurgery (SRS) has been proposed as an alternative treatment modality to pharmaceutical administration and deep brain stimulation (DBS) for patients suffering from movement disorders. Advanced neuroimaging is required for the identification of the functional structures and the accurate placement of the SRS lesion within the brain. Atlas-based techniques have also been used to aid delineation of the target during treatment planning. Maximum doses greater than 120 Gy have been suggested for controlling movement disorders. These high delivered doses and the irreversible character of SRS require accurate placement of the created lesions. In this article, achievements in the field of stereotactic radiosurgery, neuroimaging, and radiosurgical dose planning are reviewed, and an overview is provided of the clinical experience obtained to date in the radiosurgical treatment of movement disorders.
Collapse
Affiliation(s)
- Manlio Barbarisi
- Functional Neurosurgery Department, IRCCS Neuromed, Pozzilli, Italy
| | | | | | | |
Collapse
|
8
|
Dormont D, Seidenwurm D, Galanaud D, Cornu P, Yelnik J, Bardinet E. Neuroimaging and deep brain stimulation. AJNR Am J Neuroradiol 2009; 31:15-23. [PMID: 19749225 DOI: 10.3174/ajnr.a1644] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Deep brain stimulation (DBS) is a new neurosurgical method principally used for the treatment of Parkinson disease (PD). Many new applications of DBS are under development, including the treatment of intractable psychiatric diseases. Brain imaging is used for the selection of patients for DBS, to localize the target nucleus, to detect complications, and to evaluate the final electrode contact position. In patients with implanted DBS systems, there is a risk of electrode heating when MR imaging is performed. This contraindicates MR imaging unless specific precautions are taken. Involvement of neuroradiologists in DBS procedures is essential to optimize presurgical evaluation, targeting, and postoperative anatomic results. The precision of the neuroradiologic correlation with anatomic data and clinical outcomes in DBS promises to yield significant basic science and clinical advances in the future.
Collapse
Affiliation(s)
- D Dormont
- Cogimage, Université Pierre et Marie Curie Paris VI, CRICM, CNRS, UMR 7225, Groupe Hospitalier Pitié-Salpêtrière AP-HP, Paris, France.
| | | | | | | | | | | |
Collapse
|
9
|
Lalys F, Haegelen C, Ferre JC, El-Ganaoui O, Jannin P. Construction and assessment of a 3-T MRI brain template. Neuroimage 2009; 49:345-54. [PMID: 19682582 DOI: 10.1016/j.neuroimage.2009.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/15/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022] Open
Abstract
New MR imaging protocols enable visualization of brain structures. However, for dedicated clinical applications such as targeting deep brain stimulation (DBS), a more accurate localization requires the use of atlases. We developed a three-dimensional digitized mono-subject anatomical template of the human brain based on 3-T magnetic resonance images (MRI). By averaging 15 registered T1 image acquisitions, we have shown that the final image corresponds to an optimal image, limited by the performance of the 3-T MR machine. We compared different preprocessing workflows for template construction. With the optimal strategy, along with validated existing processing methods, one T1 template and one T1-T2 mixing template were created in order to improve visualization of spatially complex deep structures. Reduction of voxel size to 0.25 mm(3) was also advantageous to observe fine structures and white matter/gray matter intensity crossings. Results demonstrated that such a template also improved inter-patient registration for population comparison in DBS. These MR templates are made freely available to our community (http://www.vmip.org/mritemplate) to serve as a reference for neuroimage processing methods.
Collapse
Affiliation(s)
- Florent Lalys
- INSERM U746, Faculté de Médecine CS 34317, Rennes Cedex, France
| | | | | | | | | |
Collapse
|
10
|
Stancanello J, Romanelli P, Pantelis E, Sebastiano F, Modugno N. Atlas-based functional radiosurgery: Early results. Med Phys 2009; 36:457-63. [DOI: 10.1118/1.3056460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|