Baltz GC, Kirsner SM. Characterization of a novel pulse normalization technology for beam scanning of small fields without a reference chamber.
J Appl Clin Med Phys 2024;
25:e14379. [PMID:
38700940 PMCID:
PMC11163498 DOI:
10.1002/acm2.14379]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
PURPOSE
A novel pulse normalization technology enabling the acquisition of low noise beam data without the use of a physical reference chamber has recently been commercially released. The purpose of this study was to characterize the use of this technology for beam scanning of small fields required in the commissioning of a stereotactic radiotherapy program.
METHODS
Three detectors (Edge diode, microDiamond, PinPoint) were used to acquire beam data under three conditions: with a reference chamber, with pulse normalization and no reference chamber (PN), and without pulse normalization and no reference chamber (nPN). Percent depth dose (PDD) scans were acquired for 0.5, 1.0, 2.0, and 3.0 cm2 field sizes and profiles were acquired at 1.4, 10, and 30 cm depths using continuous scanning. The coefficient of variation (CoV) was calculated for all beam data to compare signal-to-noise and gamma comparisons (1%, 1 mm) were calculated of the PN and nPN scans compared to the reference data.
RESULTS
Average 95th percentile CoV values were similar for all detectors across conditions, with PN data being comparable to reference data and minor increases observed for nPN data. Mean gamma pass rates for PN PDD scans exceeded 98% for all detectors. Profile gamma pass rates were 100% for all detectors at 1.4 and 10 cm depth. At 30 cm depth, profiles acquired with the PinPoint and microDiamond detectors had lower mean gamma pass rates than the Edge, at 95% and 95.7%, respectively.
CONCLUSIONS
A novel pulse normalization technology was demonstrated to be effective for acquiring beam profiles and PDDs for small fields without the use of a physical reference chamber. Limitations in how the method is implemented led to some errors in data acquired using lower sensitivity detectors. When used with a diode, pulse normalization produced equivalent scans to those acquired with a reference chamber.
Collapse