1
|
Hepel JT, Leonard KL, Yashar CM, Einck JP, Sha SJ, DiPetrillo TA, Wiggins DL, Graves TA, Edmonson DA, Gass JS, Rivard MJ, Wazer DE. Phase II Trial of Five-Fraction Accelerated Partial Breast Irradiation Using Noninvasive Image-Guided Breast Brachytherapy. Int J Radiat Oncol Biol Phys 2024; 119:878-883. [PMID: 38151190 DOI: 10.1016/j.ijrobp.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE/OBJECTIVE(S) NIBB has potential advantages over other APBI techniques by delivering highly conformal radiation with minimal collateral dose to the heart and lung compared with external beam techniques, but unlike other brachytherapy techniques NIBB is non-invasive. Previous data has shown encouraging outcomes using a 10-fraction regimen. To improve efficiency, convenience, and cost, reduction in the fraction number is desirable. Final results of a prospective phase II trial are reported. MATERIALS/METHODS NIBB APBI was delivered using 28.5Gy in 5 fractions daily over 1 week. Patient eligibility criteria required: invasive carcinoma ≤2.0 cm or DCIS ≤3.0 cm, ER positive (if invasive), lymph node negative, LVI absent, and lumpectomy with margins negative by 2mm. The primary endpoint was grade ≥ 2 subcutaneous fibrosis/induration <30%. Secondary endpoints included any late toxicity, cosmetic outcome, and local control. RESULTS 40 patients were treated with a median follow-up of 59.7 months. The mean age was 67 years (50-89 years) and tumor size was 1.0cm (0.3-2.0cm). 80% had invasive carcinoma. The mean breast separation with compression was 6.7cm (3.5-8.9cm). The 5-year actuarial local control was 96.6% and overall survival was 96.9%. Grade 2 and 3 late toxicities were 15% and 0%, respectively. The rate of grade 2 subcutaneous fibrosis/induration was 2.5% (+/-2.5%) meeting the study's primary endpoint. The most common late toxicity of any grade was skin telangiectasia; 22.5% grade 1 and 15% grade 2. Only breast separation was associated with telangiectasia risk, p=0.002. Overall cosmetic outcome was excellent, good, and fair/poor in 75%, 25%, and 0%, respectively. CONCLUSIONS NIBB APBI delivered in 5 fractions results in a low rate of late toxicity and a high rate of good/excellent cosmetic outcomes. Telangiectasia risk can be minimized by keeping breast separation ≤7.0cm. The local failure rate was appropriately low. Further investigation of this technique is warranted.
Collapse
Affiliation(s)
- Jaroslaw T Hepel
- Department of Radiation Oncology, Rhode Island Hospital, Providence, Rhode Island; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts; Brown University, Providence, Rhode Island.
| | - Kara L Leonard
- Department of Radiation Oncology, Rhode Island Hospital, Providence, Rhode Island; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts; Brown University, Providence, Rhode Island
| | - Catheryn M Yashar
- Department of Radiation Oncology, University of California, San Diego, La Jolla, California
| | - John P Einck
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sandra J Sha
- Department of Radiation Oncology, Watson Clinic, Lakeland, Florida
| | - Thomas A DiPetrillo
- Department of Radiation Oncology, Rhode Island Hospital, Providence, Rhode Island; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts; Brown University, Providence, Rhode Island
| | - Doreen L Wiggins
- Brown University, Providence, Rhode Island; Department of Surgery, Rhode Island Hospital, Providence, Rhode Island
| | - Theresa A Graves
- Brown University, Providence, Rhode Island; Department of Surgery, Rhode Island Hospital, Providence, Rhode Island
| | - David A Edmonson
- Brown University, Providence, Rhode Island; Department of Surgery, Women and Infants Hospital, Providence, Rhode Island
| | - Jennifer S Gass
- Brown University, Providence, Rhode Island; Department of Surgery, Women and Infants Hospital, Providence, Rhode Island
| | - Mark J Rivard
- Department of Radiation Oncology, Rhode Island Hospital, Providence, Rhode Island; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts; Brown University, Providence, Rhode Island
| | - David E Wazer
- Department of Radiation Oncology, Rhode Island Hospital, Providence, Rhode Island; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts; Brown University, Providence, Rhode Island
| |
Collapse
|
2
|
Multi-institutional registry study evaluating the feasibility and toxicity of accelerated partial breast irradiation using noninvasive image-guided breast brachytherapy. Brachytherapy 2021; 20:631-637. [PMID: 33642174 DOI: 10.1016/j.brachy.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE The noninvasive image-guided breast brachytherapy (NIBB) technique is a novel noninvasive yet targeted method for accelerated partial breast irradiation. We established a multi-institutional registry to evaluate the toxicity and efficacy of this technique across various practice settings. METHODS AND MATERIALS Institutions using the NIBB technique were invited to participate. Data for acute/late toxicity, cosmetic outcome, and tumor recurrence were collected. Toxicity and cosmetic outcome were graded based on the Common Terminology Criteria for Adverse Events version 3.0 and NRG/Radiation Therapy Oncology Group scale, respectively. Treatment variables were analyzed for association with outcomes. RESULTS A total of 252 patients from eight institutions were analyzed. The median age was 69 years. The mean tumor size was 1.1 cm (0.1-4.0 cm). Treatment was delivered 10 fractions (34-36 Gy) in 75% and five fractions (28.5 Gy) in 22%. B.i.d. fractionation was used in 9%. Acute radiation dermatitis was Grade 0-1, 2, and 3 in 77%, 19%, and 4%, respectively. One hundred ninety-one patients with a median followup of 18 months (4-72 months) were evaluable for late outcomes. Late toxicity Grades 2 and 3 were observed in 8.8% and 1%, respectively. Cosmetic outcome was excellent, good, and fair/poor in 62%, 36%, and 2%, respectively. B.i.d. fractionation was associated with higher acute and late toxicity. Second-generation applicators were associated with lower late toxicity and better cosmetic outcome. Actuarial freedom from ipsilateral breast tumor recurrence and true recurrence were 98.3% and 98.3% at 2 years and 90.9% and 95.4% at 5 years, respectively. CONCLUSIONS Accelerated partial breast irradiation using NIBB was well tolerated with a low rate of acute and late toxicity across various practice settings. Ipsilateral breast tumor recurrence and cosmetic outcomes were favorable. b.i.d. fractionation was associated with higher toxicity. Longer followup is needed to confirm late endpoints.
Collapse
|
3
|
Niroomand‐Rad A, Chiu‐Tsao S, Grams MP, Lewis DF, Soares CG, Van Battum LJ, Das IJ, Trichter S, Kissick MW, Massillon‐JL G, Alvarez PE, Chan MF. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG‐55. Med Phys 2020; 47:5986-6025. [DOI: 10.1002/mp.14497] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Indra J. Das
- Radiation Oncology Northwestern University Memorial Hospital Chicago IL USA
| | - Samuel Trichter
- New York‐Presbyterian HospitalWeill Cornell Medical Center New York NY USA
| | | | - Guerda Massillon‐JL
- Instituto de Fisica Universidad Nacional Autonoma de Mexico Mexico City Mexico
| | - Paola E. Alvarez
- Imaging and Radiation Oncology Core MD Anderson Cancer Center Houston TX USA
| | - Maria F. Chan
- Memorial Sloan Kettering Cancer Center Basking Ridge NJ USA
| |
Collapse
|
4
|
Hepel JT, Leonard KL, Sha S, Graves TA, Wiggins DL, Mastras D, Pittier A, Wazer DE. Phase 2 Trial of Accelerated Partial Breast Irradiation (APBI) Using Noninvasive Image Guided Breast Brachytherapy (NIBB). Int J Radiat Oncol Biol Phys 2020; 108:1143-1149. [PMID: 32721422 DOI: 10.1016/j.ijrobp.2020.07.2312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Noninvasive image guided breast brachytherapy (NIBB) is a novel approach to delivery of accelerated partial breast irradiation (APBI) that may hold advantages over established techniques. NIBB is not invasive but maintains a high level of precision by using breast immobilization via breast compression and image guidance; it therefore does not require large planning tumor volume margins. We present the primary outcomes of this prospective phase 2 study (BrUOG Br-251). METHODS AND MATERIALS Eligible patients with early-stage breast cancer underwent NIBB APBI using a dose 34 Gy in 10 fractions delivered daily or twice a day. Treatment was delivered using an Ir-192 high-dose-rate source via specialized applicators. Two orthogonal treatment axes were used for each fraction. The primary endpoints were late toxicity and cosmesis assessed at 2 and 5 years. Toxicity was assessed using the National Cancer Institute Common Terminology Criteria for Adverse Events v3.0. Cosmesis was assessed using the NRG/Radiation Therapy Oncology Group scale. Ipsilateral breast tumor recurrence was defined as any recurrence or new primary in the treated breast. RESULTS Forty patients underwent protocol treatment. Median patient age was 68 years (50-92 years). Mean tumor size was 1.1 cm (0.3-3.0 cm). Among the cohort, 62.5% had invasive carcinoma and 37.5% had ductal carcinoma in situ. Thirty-nine percent elected to receive hormone therapy. No grade ≥3 late toxicities were observed at any time point. Grade 2 toxicity was 5% and 10% at 2 and 5 years, respectively. Telangiectasia grade 1 and 2 occurred in 27.5% and 5%, respectively. Breast separation of >7 cm was associated with telangiectasia (P < .01). The rate of good to excellent cosmetic outcome was 95% at 2 years and 100% at 5 years. With a median follow-up of 68 months, the actuarial 5-year freedom from ipsilateral breast tumor recurrence was 93.3% (±4.8%), and overall survival was 93.7% (±4.4%). CONCLUSIONS NIBB to deliver APBI is well tolerated with a low incidence of significant late toxicity and has favorable cosmetic outcomes. Continued evaluation of the NIBB APBI technique in a larger cohort is warranted.
Collapse
Affiliation(s)
- Jaroslaw T Hepel
- Department of Radiation Oncology, Rhode Island Hospital, Brown University, Providence, Rhode Island; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts.
| | - Kara L Leonard
- Department of Radiation Oncology, Rhode Island Hospital, Brown University, Providence, Rhode Island; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts
| | - Sandra Sha
- Department of Radiation Oncology, Watson Clinic, Lakeland, Florida
| | - Theresa A Graves
- Department of Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Doreen L Wiggins
- Department of Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Dean Mastras
- Department of Radiation Oncology, Tacoma Valley Radiation, Tacoma, Washington
| | - Ann Pittier
- Department of Radiation Oncology, Tacoma Valley Radiation, Tacoma, Washington
| | -
- Brown University, Providence, Rhode Island
| | - David E Wazer
- Department of Radiation Oncology, Rhode Island Hospital, Brown University, Providence, Rhode Island; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts
| |
Collapse
|
5
|
Novel and programmatic improvements to the workflow associated with the AccuBoost breast brachytherapy procedure. Brachytherapy 2020; 19:372-379. [DOI: 10.1016/j.brachy.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022]
|
6
|
Callaghan CM, Adams Q, Flynn RT, Wu X, Xu W, Kim Y. Systematic Review of Intensity-Modulated Brachytherapy (IMBT): Static and Dynamic Techniques. Int J Radiat Oncol Biol Phys 2019; 105:206-221. [DOI: 10.1016/j.ijrobp.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
|
7
|
Mohammadyari P, Faghihi R, Mosleh-Shirazi MA, Lotfi M, Hematiyan MR, Koontz C, Meigooni AS. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters. Phys Med Biol 2015; 60:9185-202. [PMID: 26572554 DOI: 10.1088/0031-9155/60/23/9185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Iftimia I, Talmadge M, Ladd R, Halvorsen P. Commissioning and quality assurance for the treatment delivery components of the AccuBoost system. J Appl Clin Med Phys 2015; 16:5156. [PMID: 26103184 PMCID: PMC5690079 DOI: 10.1120/jacmp.v16i2.5156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/10/2014] [Accepted: 12/08/2014] [Indexed: 11/23/2022] Open
Abstract
The objective for this work was to develop a commissioning methodology for the treatment delivery components of the AccuBoost system, as well as to establish a routine quality assurance program and appropriate guidance for clinical use based on the commissioning results. Various tests were developed: 1) assessment of the accuracy of the displayed separation value; 2) validation of the dwell positions within each applicator; 3) assessment of the accuracy and precision of the applicator localization system; 4) assessment of the combined dose profile of two opposed applicators to confirm that they are coaxial; 5) measurement of the absolute dose delivered with each applicator to confirm acceptable agreement with dose based on Monte Carlo modeling; 6) measurements of the skin-to-center dose ratio using optically stimulated luminescence dosimeters; and 7) assessment of the mammopad cushion's effect on the center dose. We found that the difference between the measured and the actual paddle separation is < 0.1 cm for the separation range of 3 cm to 7.5 cm. Radiochromic film measurements demonstrated that the number of dwell positions inside the applicators agree with the values from the vendor, for each applicator type and size. The shift needed for a good applicator-grid alignment was within 0.2 cm. The dry-run test using film demonstrated that the shift of the dosimetric center is within 0.15 cm. Dose measurements in water converted to polystyrene agreed within 5.0% with the Monte Carlo data in polystyrene for the same applicator type, size, and depth. A solid water-to-water (phantom) factor was obtained for each applicator, and all future annual quality assurance tests will be performed in solid water using an average value of 1.07 for the solid water-to-water factor. The skin-to-center dose ratio measurements support the Monte Carlo-based values within 5.0% agreement. For the treatment separation range of 4 cm to 8cm, the change in center dose would be < 1.0% for all applicators when using a compressed pad of 0.2 cm to 0.3 cm. The tests performed ensured that all treatment components of the AccuBoost system are functional and that a treatment plan can be delivered with acceptable accuracy. Based on the commissioning results, a quality assurance manual and guidance documents for clinical use were developed.
Collapse
|
9
|
Multi-axis dose accumulation of noninvasive image-guided breast brachytherapy through biomechanical modeling of tissue deformation using the finite element method. J Contemp Brachytherapy 2015; 7:55-71. [PMID: 25829938 PMCID: PMC4371066 DOI: 10.5114/jcb.2015.49355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Noninvasive image-guided breast brachytherapy delivers conformal HDR (192)Ir brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. MATERIAL AND METHODS The model assumed the breast was under planar stress with values of 30 kPa for Young's modulus and 0.3 for Poisson's ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. RESULTS Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target-applicator combinations. CONCLUSIONS The model exhibited skin dose trends that matched MC-generated benchmarking results within 2% and clinical observations over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables over a range of clinical circumstances. These findings highlight the need for careful target localization and accurate identification of compression thickness and target offset.
Collapse
|
10
|
Adamson J, Yang Y, Juang T, Chisholm K, Rankine L, Adamovics J, Yin FF, Oldham M. On the feasibility of polyurethane based 3D dosimeters with optical CT for dosimetric verification of low energy photon brachytherapy seeds. Med Phys 2014; 41:071705. [PMID: 24989374 DOI: 10.1118/1.4883779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the feasibility of and challenges yet to be addressed to measure dose from low energy (effective energy <50 keV) brachytherapy sources (Pd-103, Cs-131, and I-125) using polyurethane based 3D dosimeters with optical CT. METHODS The authors' evaluation used the following sources: models 200 (Pd-103), CS-1 Rev2 (Cs-131), and 6711 (I-125). The authors used the Monte Carlo radiation transport code MCNP5, simulations with the ScanSim optical tomography simulation software, and experimental measurements with PRESAGE(®) dosimeters/optical CT to investigate the following: (1) the water equivalency of conventional (density = 1.065 g/cm(3)) and deformable (density = 1.02 g/cm(3)) formulations of polyurethane dosimeters, (2) the scatter conditions necessary to achieve accurate dosimetry for low energy photon seeds, (3) the change in photon energy spectrum within the dosimeter as a function of distance from the source in order to determine potential energy sensitivity effects, (4) the optimal delivered dose to balance optical transmission (per projection) with signal to noise ratio in the reconstructed dose distribution, and (5) the magnitude and characteristics of artifacts due to the presence of a channel in the dosimeter. Monte Carlo simulations were performed using both conventional and deformable dosimeter formulations. For verification, 2.8 Gy at 1 cm was delivered in 92 h using an I-125 source to a PRESAGE(®) dosimeter with conventional formulation and a central channel with 0.0425 cm radius for source placement. The dose distribution was reconstructed with 0.02 and 0.04 cm(3) voxel size using the Duke midsized optical CT scanner (DMOS). RESULTS While the conventional formulation overattenuates dose from all three sources compared to water, the current deformable formulation has nearly water equivalent attenuation properties for Cs-131 and I-125, while underattenuating for Pd-103. The energy spectrum of each source is relatively stable within the first 5 cm especially for I-125. The inherent assumption of radial symmetry in the TG43 geometry leads to a linear increase in sample points within the 3D dosimeter as a function of distance away from the source, which partially offsets the decreasing signal. Simulations of dose reconstruction using optical CT showed the feasibility of reconstructing dose out to a radius of 10 cm without saturating projection images using an optimal dose and high dynamic range scanning; the simulations also predicted that reconstruction artifacts at the channel surface due to a small discrepancy in refractive index should be negligible. Agreement of the measured with calculated radial dose function for I-125 was within 5% between 0.3 and 2.5 cm from the source, and the median difference of measured from calculated anisotropy function was within 5% between 0.3 and 2.0 cm from the source. CONCLUSIONS 3D dosimetry using polyurethane dosimeters with optical CT looks to be a promising application to verify dosimetric distributions surrounding low energy brachytherapy sources.
Collapse
Affiliation(s)
- Justus Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yun Yang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Titania Juang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Kelsey Chisholm
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Leith Rankine
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - John Adamovics
- Department of Chemistry, Rider University, Lawrenceville, New Jersey 08648
| | - Fang Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
11
|
Candela-Juan C, Granero D, Vijande J, Ballester F, Perez-Calatayud J, Rivard MJ. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2014; 34:297-311. [PMID: 24705066 DOI: 10.1088/0952-4746/34/2/297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In surface and interstitial high-dose-rate brachytherapy with either (60)Co, (192)Ir, or (169)Yb sources, some radiosensitive organs near the surface may be exposed to high absorbed doses. This may be reduced by covering the implants with a lead shield on the body surface, which results in dosimetric perturbations. Monte Carlo simulations in Geant4 were performed for the three radionuclides placed at a single dwell position. Four different shield thicknesses (0, 3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were considered, with the lead shield placed at the phantom surface. Backscatter dose enhancement and transmission data were obtained for the lead shields. Results were corrected to account for a realistic clinical case with multiple dwell positions. The range of the high backscatter dose enhancement in water is 3 mm for (60)Co and 1 mm for both (192)Ir and (169)Yb. Transmission data for (60)Co and (192)Ir are smaller than those reported by Papagiannis et al (2008 Med. Phys. 35 4898-4906) for brachytherapy facility shielding; for (169)Yb, the difference is negligible. In conclusion, the backscatter overdose produced by the lead shield can be avoided by just adding a few millimetres of bolus. Transmission data provided in this work as a function of lead thickness can be used to estimate healthy organ equivalent dose saving. Use of a lead shield is justified.
Collapse
Affiliation(s)
- Cristian Candela-Juan
- Radioprotection Department, La Fe University and Polytechnic Hospital, Valencia E-46026, Spain. Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot E-46100, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Deneve JL, Hoefer RA, Harris EER, Laronga C. Accelerated Partial Breast Irradiation: A Review and Description of an Early North American Surgical Experience with the Intrabeam Delivery System. Cancer Control 2012; 19:295-308. [DOI: 10.1177/107327481201900406] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jeremiah L. Deneve
- Department of Women's Oncology H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Richard A. Hoefer
- Dorothy G. Hoefer Comprehensive Breast Center, Sentara Cancer Network, Newport News, Virginia
| | - Eleanor E. R. Harris
- Radiation Oncology Program at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Christine Laronga
- Department of Women's Oncology H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
13
|
Tien CJ, Ebeling R, Hiatt JR, Curran B, Sternick E. Optically stimulated luminescent dosimetry for high dose rate brachytherapy. Front Oncol 2012; 2:91. [PMID: 22888476 PMCID: PMC3412277 DOI: 10.3389/fonc.2012.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/20/2012] [Indexed: 11/13/2022] Open
Abstract
Purpose: The objective was to determine whether optically stimulated luminescent dosimeters (OSLDs) were appropriate for in vivo measurements in high dose rate brachytherapy. In order to make this distinction, three dosimetric characteristics were tested: dose linearity, dose rate dependence, and angular dependence. The Landauer nanoDot™ OSLDs were chosen due to their popularity and their availability commercially. Methods: To test the dose linearity, each OSLD was placed at a constant location and the dwell time was varied. Next, in order to test the dose rate dependence, each OSLD was placed at different OLSD-to-source distances and the dwell time was held constant. A curved geometry was created using a circular Accuboost® applicator in order to test angular dependence. Results: The OSLD response remained linear for high doses and was independent of dose rate. For doses up to 600 cGy, the linear coefficient of determination was 0.9988 with a response of 725 counts per cGy. The angular dependence was significant only in “edge-on” scenarios. Conclusion: OSLDs are conveniently read out using commercially available readers. OSLDs can be re-read and serve as a permanent record for clinical records or be annealed using conventional fluorescent light. Lastly, OSLDs are produced commercially for $5 each. Due to these convenient features, in conjunction with the dosimetric performance, OSLDs should be considered a clinically feasible and attractive tool for in vivo HDR brachytherapy measurements.
Collapse
|
14
|
Uncertainty analysis in MCNP5 calculations for brachytherapy treatment. Appl Radiat Isot 2011; 69:1108-11. [DOI: 10.1016/j.apradiso.2011.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 01/11/2011] [Accepted: 02/01/2011] [Indexed: 11/24/2022]
|
15
|
Sioshansi S, Rivard MJ, Hiatt JR, Hurley AA, Lee Y, Wazer DE. Dose Modeling of Noninvasive Image-Guided Breast Brachytherapy in Comparison to Electron Beam Boost and Three-Dimensional Conformal Accelerated Partial Breast Irradiation. Int J Radiat Oncol Biol Phys 2011; 80:410-6. [DOI: 10.1016/j.ijrobp.2010.01.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/25/2010] [Accepted: 01/26/2010] [Indexed: 11/30/2022]
|
16
|
A dosimetry method in the transverse plane of HDR Ir-192 brachytherapy source using gafchromic EBT2 film. Phys Med 2011; 28:129-33. [PMID: 21507693 DOI: 10.1016/j.ejmp.2011.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022] Open
Abstract
Radiochromic film dosimetry is increasingly used in brachytherapy applications for its higher resolution ability as compared to other experimental methods. The present study was aimed to assess the accuracy and suitability of use of the improved radiochromic film model, Gafchromic EBT2, to evaluate the dose distribution in the transverse plane of microselectron HDR (192)Ir source. A specially designed and locally fabricated Polymethyl methacrylate (PMMA) phantom was used in this work for the experimental measurement of dose distribution around the source in its transverse plane. The AAPM TG-43U1 recommended radial dose function, g (r), and dose rate constant, Λ, for the source were measured using Gafchromic EBT2 film and thermoluminescent dosimeters (TLD). The EBT2 film measured dosimetric quantities were validated against their values obtained from the TLD measurements and previously published values for the same source available in literature. The dose rate constant and radial dose function for microselectron HDR (192)Ir source obtained from Gafchromic EBT2 film measurements are in agreement with their TLD measured results within 3.9% and 2.8% respectively. They also agree within the accepted range of uncertainty with their experimental and Monte Carlo calculated results reported in literature. This work demonstrates the suitability of using Gafchromic EBT2 film dosimetry in characterization of dose distribution in the transverse plane of HDR Ir-192 source. This is a more efficient method than TLD dosimetry at discrete and distant positions. Relative to TLD dosimetry, it is found to be better reproducible, easy to use and a less expensive method of dosimetry.
Collapse
|
17
|
Yang Y, Melhus CS, Sioshansi S, Rivard MJ. Treatment planning of a skin-sparing conical breast brachytherapy applicator using conventional brachytherapy software. Med Phys 2011; 38:1519-25. [PMID: 21520863 PMCID: PMC3060933 DOI: 10.1118/1.3552921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/06/2011] [Accepted: 01/15/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE AccuBoost is a noninvasive image-guided technique for the delivery of partial breast irradiation to the tumor bed and currently serves as an alternate to conventional electron beam boost. To irradiate the target volume while providing dose sparing to the skin, the round applicator design was augmented through the addition of an internally truncated conical shield and the reduction of the source to skin distance. METHODS Brachytherapy dose distributions for two types of conical applicators were simulated and estimated using Monte Carlo (MC) methods for radiation transport and a conventional treatment planning system (TPS). MC-derived and TPS-generated dose volume histograms (DVHs) and dose distribution data were compared for both the conical and round applicators for benchmarking purposes. RESULTS Agreement using the gamma-index test was > or = 99.95% for distance to agreement and dose accuracy criteria of 2 mm and 2%, respectively. After observing good agreement, TPS DVHs and dose distributions for the conical and round applicators were obtained and compared. Brachytherapy dose distributions generated using Pinnacle for ten CT data sets showed that the parallel-opposed beams of the conical applicators provided similar PTV coverage to the round applicators and reduced the maximum dose to skin, chest wall, and lung by up to 27%, 42%, and 43%, respectively. CONCLUSIONS Brachytherapy dose distributions for the conical applicators have been generated using MC methods and entered into the Pinnacle TPS via the Tufts technique. Treatment planning metrics for the conical AccuBoost applicators were significantly improved in comparison to those for conventional electron beam breast boost.
Collapse
Affiliation(s)
- Yun Yang
- Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
18
|
Yang Y, Rivard MJ. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing. Med Phys 2010; 37:5665-71. [DOI: 10.1118/1.3495539] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
19
|
Rivard MJ, Beaulieu L, Mourtada F. Enhancements to commissioning techniques and quality assurance of brachytherapy treatment planning systems that use model-based dose calculation algorithmsa). Med Phys 2010; 37:2645-58. [DOI: 10.1118/1.3429131] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
20
|
Rivard MJ, Melhus CS, Wazer DE, Bricault RJ. Dosimetric characterization of round HDR 192Ir accuboost applicators for breast brachytherapy. Med Phys 2010; 36:5027-32. [PMID: 19994513 DOI: 10.1118/1.3232001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The AccuBoost brachytherapy system applies HDR 192Ir beams peripherally to the breast using collimating applicators. The purpose of this study was to benchmark Monte Carlo simulations of the HDR 192Ir source, to dosimetrically characterize the round applicators using established Monte Carlo simulation and radiation measurement techniques and to gather data for clinical use. METHODS Dosimetric measurements were performed in a polystyrene phantom, while simulations estimated dose in air, liquid water, polystyrene and ICRU 44 breast tissue. Dose distribution characterization of the 4-8 cm diameter collimators was performed using radiochromic EBT film and air ionization chambers. RESULTS The central axis dose falloff was steeper for the 4 cm diameter applicator in comparison to the 8 cm diameter applicator, with surface to 3 cm depth-dose ratios of 3.65 and 2.44, respectively. These ratios did not considerably change when varying the phantom composition from breast tissue to polystyrene, phantom thickness from 4 to 8 cm, or phantom radius from 8 to 15 cm. Dose distributions on the central axis were fitted to sixth-order polynomials for clinical use in a hand calculation spreadsheet (i.e., nomogram). Dose uniformity within the useful applicator apertures decreased as depth-dose increased. CONCLUSIONS Monte Carlo benchmarking simulations of the HDR 192Ir source using the MCNP5 radiation transport code indicated agreement within 1% of the published results over the radial/angular region of interest. Changes in phantom size and radius did not cause noteworthy changes in the central axis depth-dose. Polynomial fit depth-dose curves provide a simple and accurate basis for a nomogram.
Collapse
Affiliation(s)
- Mark J Rivard
- Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|
21
|
Rivard MJ, Melhus CS, Granero D, Perez-Calatayud J, Ballester F. An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributionsa). Med Phys 2009; 36:1968-75. [DOI: 10.1118/1.3121510] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|