1
|
Tipirneni-Sajja A, Brasher S, Shrestha U, Johnson H, Morin C, Satapathy SK. Quantitative MRI of diffuse liver diseases: techniques and tissue-mimicking phantoms. MAGMA (NEW YORK, N.Y.) 2023; 36:529-551. [PMID: 36515810 DOI: 10.1007/s10334-022-01053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Quantitative magnetic resonance imaging (MRI) techniques are emerging as non-invasive alternatives to biopsy for assessment of diffuse liver diseases of iron overload, steatosis and fibrosis. For testing and validating the accuracy of these techniques, phantoms are often used as stand-ins to human tissue to mimic diffuse liver pathologies. However, currently, there is no standardization in the preparation of MRI-based liver phantoms for mimicking iron overload, steatosis, fibrosis or a combination of these pathologies as various sizes and types of materials are used to mimic the same liver disease. Liver phantoms that mimic specific MR features of diffuse liver diseases observed in vivo are important for testing and calibrating new MRI techniques and for evaluating signal models to accurately quantify these features. In this study, we review the liver morphology associated with these diffuse diseases, discuss the quantitative MR techniques for assessing these liver pathologies, and comprehensively examine published liver phantom studies and discuss their benefits and limitations.
Collapse
Affiliation(s)
- Aaryani Tipirneni-Sajja
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA.
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Sarah Brasher
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Utsav Shrestha
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Hayden Johnson
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Cara Morin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sanjaya K Satapathy
- Northwell Health Center for Liver Diseases and Transplantation, Northshore University Hospital/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
2
|
Fahrenholtz SJ, Guo C, MacLellan CJ, Yung JP, Hwang KP, Layman RR, Stafford RJ, Cressman E. Temperature mapping of exothermic in situ chemistry: imaging of thermoembolization via MR. Int J Hyperthermia 2020; 36:730-738. [PMID: 31362538 DOI: 10.1080/02656736.2019.1635274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: MR temperature imaging (MRTI) was employed for visualizing the spatiotemporal evolution of the exotherm of thermoembolization, an investigative transarterial treatment for solid tumors. Materials and methods: Five explanted kidneys were injected with thermoembolic solutions, and monitored by MRTI. In three nonselective experiments, 5 ml of 4 mol/l dichloroacetyl chloride (DCA-Cl) solution in a hydrocarbon vehicle was injected via the main renal artery. For two of these three, MRTI temperature data were compared to fiber optic thermal probes. Another two kidneys received selective injections, treating only portions of the kidneys with 1 ml of 2 mol/l DCA-Cl. MRTI data were acquired and compared to changes in pre- and post-injection CT. Specimens were bisected and photographed for gross pathology 24 h post-procedure. Results: MRTI temperature estimates were within ±1 °C of the probes. In experiments without probes, MRTI measured increases of 30 °C. Some regions had not reached peak temperature by the end of the >18 min acquisition. MRTI indicated the initial heating occurred in the renal cortex, gradually spreading more proximally toward the main renal artery. Gross pathology showed the nonselective injection denatured the entire kidney whereas in the selective injections, only the treated territory was coagulated. Conclusion: The spatiotemporal evolution of thermoembolization was visualized for the first time using noninvasive MRTI, providing unique insight into the thermodynamics of thermoembolization. Précis Thermoembolization is being investigated as a novel transarterial treatment. In order to begin to characterize delivery of this novel treatment modality and aid translation from the laboratory to patients, we employ MR temperature imaging to visualize the spatiotemporal distribution of temperature from thermoembolization in ex vivo tissue.
Collapse
Affiliation(s)
- Samuel John Fahrenholtz
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Chunxiao Guo
- b Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Christopher J MacLellan
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Joshua P Yung
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ken-Pin Hwang
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Rick R Layman
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - R Jason Stafford
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Erik Cressman
- b Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
3
|
Tipirneni-Sajja A, Krafft AJ, Loeffler RB, Song R, Bahrami A, Hankins JS, Hillenbrand CM. Autoregressive moving average modeling for hepatic iron quantification in the presence of fat. J Magn Reson Imaging 2019; 50:1620-1632. [PMID: 30761652 DOI: 10.1002/jmri.26682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Measuring hepatic R2* by fitting a monoexponential model to the signal decay of a multigradient-echo (mGRE) sequence noninvasively determines hepatic iron content (HIC). Concurrent hepatic steatosis introduces signal oscillations and confounds R2* quantification with standard monoexponential models. PURPOSE To evaluate an autoregressive moving average (ARMA) model for accurate quantification of HIC in the presence of fat using biopsy as the reference. STUDY TYPE Phantom study and in vivo cohort. POPULATION Twenty iron-fat phantoms covering clinically relevant R2* (30-800 s-1 ) and fat fraction (FF) ranges (0-40%), and 10 patients (four male, six female, mean age 18.8 years). FIELD STRENGTH/SEQUENCE 2D mGRE acquisitions at 1.5 T and 3 T. ASSESSMENT Phantoms were scanned at both field strengths. In vivo data were analyzed using the ARMA model to determine R2* and FF values, and compared with biopsy results. STATISTICAL TESTS Linear regression analysis was used to compare ARMA R2* and FF results with those obtained using a conventional monoexponential model, complex-domain nonlinear least squares (NLSQ) fat-water model, and biopsy. RESULTS In phantoms and in vivo, all models produced R2* and FF values consistent with expected values in low iron and low/high fat conditions. For high iron and no fat phantoms, monoexponential and ARMA models performed excellently (slopes: 0.89-1.07), but NLSQ overestimated R2* (slopes: 1.14-1.36) and produced false FFs (12-17%) at 1.5 T; in high iron and fat phantoms, NLSQ (slopes: 1.02-1.16) outperformed monoexponential and ARMA models (slopes: 1.23-1.88). The results with NLSQ and ARMA improved in phantoms at 3 T (slopes: 0.96-1.04). In patients, mean R2*-HIC estimates for monoexponential and ARMA models were close to biopsy-HIC values (slopes: 0.90-0.95), whereas NLSQ substantially overestimated HIC (slope 1.4) and produced false FF values (4-28%) with very high SDs (15-222%) in patients with high iron overload and no steatosis. DATA CONCLUSION ARMA is superior in quantifying R2* and FF under high iron and no fat conditions, whereas NLSQ is superior for high iron and concurrent fat at 1.5 T. Both models give improved R2* and FF results at 3 T. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:1620-1632.
Collapse
Affiliation(s)
- Aaryani Tipirneni-Sajja
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Axel J Krafft
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralf B Loeffler
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ruitian Song
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jane S Hankins
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Claudia M Hillenbrand
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Zimmermann M, Abbas Z, Dzieciol K, Shah NJ. Accelerated Parameter Mapping of Multiple-Echo Gradient-Echo Data Using Model-Based Iterative Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:626-637. [PMID: 29408790 DOI: 10.1109/tmi.2017.2771504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A new reconstruction method, coined MIRAGE, is presented for accurate, fast, and robust parameter mapping of multiple-echo gradient-echo (MEGE) imaging, the basis sequence of novel quantitative magnetic resonance imaging techniques such as water content and susceptibility mapping. Assuming that the temporal signal can be modeled as a sum of damped complex exponentials, MIRAGE performs model-based reconstruction of undersampled data by minimizing the rank of local Hankel matrices. It further incorporates multi-channel information and spatial prior knowledge. Finally, the parameter maps are estimated using nonlinear regression. Simulations and retrospective undersampling of phantom and in vivo data affirm robustness, e.g., to strong inhomogeneity of the static magnetic field and partial volume effects. MIRAGE is compared with a state-of-the-art compressed sensing method, -ESPIRiT. Parameter maps estimated from reconstructed data using MIRAGE are shown to be accurate, with the mean absolute error reduced by up to 50% for in vivo results. The proposed method has the potential to improve the diagnostic utility of quantitative imaging techniques that rely on MEGE data.
Collapse
|
5
|
Radial Ultrashort TE Imaging Removes the Need for Breath-Holding in Hepatic Iron Overload Quantification by R2* MRI. AJR Am J Roentgenol 2017; 209:187-194. [PMID: 28504544 DOI: 10.2214/ajr.16.17183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objective of this study is to evaluate radial free-breathing (FB) multiecho ultrashort TE (UTE) imaging as an alternative to Cartesian FB multiecho gradient-recalled echo (GRE) imaging for quantitative assessment of hepatic iron content (HIC) in sedated patients and subjects unable to perform breath-hold (BH) maneuvers. MATERIALS AND METHODS FB multiecho GRE imaging and FB multiecho UTE imaging were conducted for 46 test group patients with iron overload who could not complete BH maneuvers (38 patients were sedated, and eight were not sedated) and 16 control patients who could complete BH maneuvers. Control patients also underwent standard BH multiecho GRE imaging. Quantitative R2* maps were calculated, and mean liver R2* values and coefficients of variation (CVs) for different acquisitions and patient groups were compared using statistical analysis. RESULTS FB multiecho GRE images displayed motion artifacts and significantly lower R2* values, compared with standard BH multiecho GRE images and FB multiecho UTE images in the control cohort and FB multiecho UTE images in the test cohort. In contrast, FB multiecho UTE images produced artifact-free R2* maps, and mean R2* values were not significantly different from those measured by BH multiecho GRE imaging. Motion artifacts on FB multiecho GRE images resulted in an R2* CV that was approximately twofold higher than the R2* CV from BH multiecho GRE imaging and FB multiecho UTE imaging. The R2* CV was relatively constant over the range of R2* values for FB multiecho UTE, but it increased with increases in R2* for FB multiecho GRE imaging, reflecting that motion artifacts had a stronger impact on R2* estimation with increasing iron burden. CONCLUSION FB multiecho UTE imaging was less motion sensitive because of radial sampling, produced excellent image quality, and yielded accurate R2* estimates within the same acquisition time used for multiaveraged FB multiecho GRE imaging. Thus, FB multiecho UTE imaging is a viable alternative for accurate HIC assessment in sedated children and patients who cannot complete BH maneuvers.
Collapse
|
6
|
Bredlau AL, McCrackin MA, Motamarry A, Helke K, Chen C, Broome AM, Haemmerich D. Thermal Therapy Approaches for Treatment of Brain Tumors in Animals and Humans. Crit Rev Biomed Eng 2016; 44:443-457. [PMID: 29431091 DOI: 10.1615/critrevbiomedeng.2017021249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Primary brain tumors are often aggressive, with short survival from time of diagnosis even with standard of care therapies such as surgery, chemotherapy, and radiation therapy. Thermal therapies have been extensively investigated as both primary and adjuvant therapy. Although thermal therapies are not yet widely used clinically, there have been several promising approaches demonstrated in both animals and humans. This review presents thermal therapy approaches in animal and human studies, including both hyperthermia (temperatures ~42°C-45°C) and thermal ablation (temperatures > 50°C). Hyperthermia is primarily used as adjuvant to chemotherapy and radiotherapy, and is the most widely studied radiation sensitizer where enhanced efficacy has been shown in human patients with brain cancer. Hyperthermia has additional beneficial effects such as immunogenic effects, and opening of the bloodbrain barrier to potentially enhance drug delivery, for example in combination with nanoparticle drug delivery systems. Thermal ablation uses high temperatures for direct local tumor destruction, and it found its way into clinical use as laser interstitial thermal therapy (LITT). This review presents various hyperthermia and ablation approaches, including a review of different devices and methods that have been used for thermal therapies, such as radiofrequency/microwaves, laser, high-intensity focused ultrasound, and magnetic nanoparticles. Current research efforts include the combination of advanced thermal therapy devices, such as focused ultrasound with radiation, as well as the use of thermal therapies to enhance chemotherapy delivery across the blood-brain barrier.
Collapse
Affiliation(s)
- A L Bredlau
- Departments of Pediatrics and Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - M A McCrackin
- Department of Comparative Medicine, Medical University of South Carolina; Ralph H. Johnson VAMC Research Service, Charleston, South Carolina
| | - Anjan Motamarry
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Kris Helke
- Ralph H. Johnson VAMC Research Service, Charleston, South Carolina
| | - Chao Chen
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Ann-Marie Broome
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
7
|
Lin JS, Hwang KP, Jackson EF, Hazle JD, Stafford RJ, Taylor BA. Multiparametric fat-water separation method for fast chemical-shift imaging guidance of thermal therapies. Med Phys 2013; 40:103302. [PMID: 24089932 DOI: 10.1118/1.4819815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. METHODS Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. RESULTS Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively) and fat (0.763 ± 0.006, 0.980 ± 0.004, and 0.941 ± 0.002 for DSC, sensitivity, and specificity, respectively). Temperature uncertainties, based on PRF uncertainties from a 5 × 5-voxel ROI, were 0.342 and 0.351°C for pure and mixed fat/water regions, respectively. Algorithm speed was tested using 25 × 25-voxel and whole image ROIs containing both fat and water, resulting in average processing times per acquisition of 2.00 ± 0.07 s and 146 ± 1 s, respectively, using uncompiled MATLAB scripts running on a shared CPU server with eight Intel Xeon(TM) E5640 quad-core processors (2.66 GHz, 12 MB cache) and 12 GB RAM. CONCLUSIONS Results from both the mathematical and physical phantom suggest the k-means-based classification algorithm could be useful for rapid, dynamic imaging in an ROI for thermal interventions. Successful separation of fat/water information would aid in reducing errors from the nontemperature sensitive fat PRF, as well as potentially facilitate using fat as an internal reference for PRF shift thermometry when appropriate. Additionally, the T1-W or R2* signals may be used for monitoring temperature in surrounding adipose tissue.
Collapse
Affiliation(s)
- Jonathan S Lin
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005 and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
8
|
Taylor BA, Loeffler RB, Song R, McCarville ME, Hankins JS, Hillenbrand CM. Automated T(2) * measurements using supplementary field mapping to assess cardiac iron content. J Magn Reson Imaging 2013; 38:441-7. [PMID: 23292658 DOI: 10.1002/jmri.23990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/14/2012] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To develop and evaluate an algorithm that automatically identifies high-susceptibility areas and excludes them from T(2) * measurements in the left ventricle (LV) for myocardial iron measurements. MATERIALS AND METHODS An autoregressive moving average (ARMA) model was implemented on multigradient echo scans of 24 patients (age range 3-45 years, 10 male/14 female). Voxels with relatively high susceptibility (>3 Hz/mm) were flagged and deselected from the T(2) * calculations for iron quantification. The mean, standard deviation, and coefficient of variation (CoV) of the ARMA-defined region were compared to the CoV of four distinct regions of the LV and the entire LV using a Student's t-test (α = 0.05). RESULTS The CoV of T(2) * values obtained by the ARMA method are comparable with that in the interventricular septum (IS), where susceptibility was the lowest (CoV = 0.31). The ARMA method provides a greater area (51.9 ± 13.7% of the LV) to measure T(2) * than that using the IS alone (21.1 ± 3.4%, P < 0.0001). Areas where low susceptibility are measured corroborate with areas reported in previous studies that investigated T(2) * variations throughout the LV. CONCLUSION An automated method to measure T(2) * relaxation in the LV with minimal effects from susceptibility has been developed. Variability is reduced while covering more regions for cardiac T2 * calculation.
Collapse
Affiliation(s)
- Brian A Taylor
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
9
|
Taylor BA, Loeffler RB, Song R, McCarville MB, Hankins JS, Hillenbrand CM. Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging 2011; 35:1125-32. [PMID: 22180325 DOI: 10.1002/jmri.23545] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/29/2011] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate the use of a complex multigradient echo (mGRE) acquisition and an autoregressive moving average (ARMA) model for simultaneous susceptibility and R 2 measurements for the assessment of liver iron content (LIC) in patients with iron overload. MATERIALS AND METHODS Fifty magnetic resonance imaging (MRI) exams with magnitude and phase mGRE images were processed using the ARMA model, which provides fat-separated field maps, R 2 maps, and T(1) -W imaging. The LIC was calculated by measuring the susceptibility between the liver and the right transverse abdominal muscle from the field maps. The relationship between LIC derived from susceptibility measurements and LIC from R 2 measurements was determined using linear least-squares regression analysis. RESULTS LIC measured from R 2 is highly correlated to the LIC with the susceptibility method (mg/g dry = 8.99 ± 0.15 × [mg Fe/mL of wet liver] -2.38 ± 0.29, R(2) = 0.94). The field inhomogeneity in the liver is correlated with R 2 (R(2) = 0.85). CONCLUSION By using the ARMA model on complex mGRE images, both susceptibility and R 2-based LIC measurements can be made simultaneously. The susceptibility measurement can be used to help verify R 2 measurements in the assessment of iron overload.
Collapse
Affiliation(s)
- Brian A Taylor
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
10
|
Taylor BA, Elliott AM, Hwang KP, Hazle JD, Stafford RJ. Correlation between the temperature dependence of intrinsic MR parameters and thermal dose measured by a rapid chemical shift imaging technique. NMR IN BIOMEDICINE 2011; 24:1414-1421. [PMID: 21721063 PMCID: PMC3190595 DOI: 10.1002/nbm.1707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/23/2010] [Accepted: 02/15/2011] [Indexed: 05/31/2023]
Abstract
In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R(2)* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue. Using a multigradient echo acquisition and the Stieglitz-McBride algorithm, the temperature sensitivity coefficients of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6 x 1.6 x 4 mm 3,≤ 5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature sensitivity of R(2)* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R(2)* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω = 1.01 ± 0.03), thereby showing that the changes in R(2)* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R(2)* mapping and T1-W imaging, it is shown that changes in the sensitivity of R(2)* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions.
Collapse
Affiliation(s)
- Brian A. Taylor
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Andrew M. Elliott
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin
| | - John D. Hazle
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - R. Jason Stafford
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
11
|
Taylor BA, Elliott AM, Hwang KP, Shetty A, Hazle JD, Stafford RJ. Measurement of temperature dependent changes in bone marrow using a rapid chemical shift imaging technique. J Magn Reson Imaging 2011; 33:1128-35. [PMID: 21509871 DOI: 10.1002/jmri.22537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To provide quantitative temperature monitoring for thermal therapies in bone marrow by measuring temperature-dependent signal changes in the bone marrow of ex vivo canine femurs heated with a 980-nm laser at 1.5T and 3.0T. MATERIALS AND METHODS Using a multi-gradient echo (≤ 16) acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficients (TSC, ppm/°C) of water and multiple lipid components' proton resonance frequency (PRF) values are measured at high spatiotemporal resolutions (1.6 × 1.6 × 4 mm(3) , ≤ 5 seconds). Responses in R(2) * and amplitudes of each peak were also measured as a function of temperature simultaneously. RESULTS Calibrations demonstrate that lipid signal may be used to compensate for B(0) errors to provide accurate temperature readings (<1.0°C). Over a temperature range of 17.2-57.2°C, the TSCs after correction to a bulk methylene reference are -0.87 × 10(-2) ± 4.7 × 10(-4) ppm/°C and -0.87 × 10(-2) ± 4.0 × 10(-4) ppm/°C for 1.5T and 3.0T, respectively. CONCLUSION Overall, we demonstrate that accurate and precise temperature measurements can be made in bone marrow. In addition, the relationship of R(2) * and signal amplitudes with respect to temperature are shown to differ significantly where conformal changes are predicted by Arrhenius rate model analysis.
Collapse
Affiliation(s)
- Brian A Taylor
- Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
12
|
Theranostics with multifunctional magnetic gold nanoshells: photothermal therapy and t2* magnetic resonance imaging. Invest Radiol 2011; 46:132-40. [PMID: 21150791 DOI: 10.1097/rli.0b013e3181f8e7d8] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES to investigate the multifunctional imaging and therapeutic capabilities of core-shell nanoparticles composed of a superparamagnetic iron oxide (SPIO) core and a gold shell (SPIO@AuNS). MATERIALS AND METHODS the magnetic/optical properties of SPIO@AuNS were examined both in an agar gel phantom and in vivo by evaluating contrast-enhanced magnetic resonance imaging (MRI) and by measuring near-infrared (NIR) light-induced temperature changes mediated by SPIO@AuNS. In addition, the biodistribution and pharmacokinetics of In-labeled SPIO@AuNS after intravenous injection in mice bearing A431 tumors were evaluated in the presence and absence of an external magnet. RESULTS : In agar phantoms containing SPIO@AuNS, a significant contrast enhancement in T2-weighted MRI was observed and a linear increase in temperature was observed with increasing concentration and laser output power when irradiated with NIR light centered at an 808 nm. In vivo, T2*-MRI delineated SPIO@AuNS and magnetic resonance temperature imaging of the same tumors revealed significant temperature elevations when intratumorally injected with SPIO@AuNS (1 × 10 particles/mouse) and irradiated with NIR light (65.70°C ± 0.69°C vs. 44.23°C ± 0.24°C for saline + laser). Biodistribution studies in mice intravenously injected with In-labeled-SPIO@AuNS(1 × 10 particles/mouse) had an approximately 2-fold increase in SPIO@AuNS delivered into tumors in the presence of an external magnet compared with tumors without the magnet. CONCLUSIONS owing to its ability to mediate efficient photothermal ablation of cancer cells under MRI guidance, as well as the ability to be directed to solid tumors with an external magnetic field gradient, multifunctional SPIO@AuNS is a promising theranostic nanoplatform.
Collapse
|