1
|
Li J, Cui X, Liu L, Li B, Fei Z, Han W. Proton dose deposition in heterogeneous media: A TOPAS Monte Carlo simulation study. Appl Radiat Isot 2025; 217:111665. [PMID: 39798271 DOI: 10.1016/j.apradiso.2025.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/01/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
This study investigated the influence of tissue electron density on proton beam dose distribution using TOPAS Monte Carlo simulation. Heterogeneous tissue models composed of 14 materials were constructed to simulate the dose deposition process of a 169.23 MeV proton beam. The study analyzed the relationships between electron density and key parameters such as maximum dose, total dose, and dose distribution. Results showed that increasing electron density led to higher local maximum dose, lower total dose, and decreased Bragg peak depth, range, penumbra width, and full width at half maximum (FWHM). High-density tissues caused a sharp, concentrated Bragg peak at shallower depths, while low-density tissues caused a backward shift and widening of the Bragg peak. Differences in proton energy deposition in various tissues were the fundamental reasons for dose distribution variations. This study quantified the relationship between electron density and proton beam dose distribution, providing a reference for accurate dose calculation and optimization in proton therapy.
Collapse
Affiliation(s)
- Jie Li
- University of Science and Technology of China, Hefei, Anhui, 230026, China; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Radiotherapy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xiangli Cui
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Radiotherapy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Lingling Liu
- University of Science and Technology of China, Hefei, Anhui, 230026, China; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Radiotherapy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Bingbing Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Radiotherapy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Zhenle Fei
- Department of Oncology, The 901th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army, Hefei, Anhui, 230031, China
| | - Wei Han
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
2
|
Chow JCL. Quantum Computing in Medicine. Med Sci (Basel) 2024; 12:67. [PMID: 39584917 PMCID: PMC11586987 DOI: 10.3390/medsci12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Quantum computing (QC) represents a paradigm shift in computational power, offering unique capabilities for addressing complex problems that are infeasible for classical computers. This review paper provides a detailed account of the current state of QC, with a particular focus on its applications within medicine. It explores fundamental concepts such as qubits, superposition, and entanglement, as well as the evolution of QC from theoretical foundations to practical advancements. The paper covers significant milestones where QC has intersected with medical research, including breakthroughs in drug discovery, molecular modeling, genomics, and medical diagnostics. Additionally, key quantum techniques such as quantum algorithms, quantum machine learning (QML), and quantum-enhanced imaging are explained, highlighting their relevance in healthcare. The paper also addresses challenges in the field, including hardware limitations, scalability, and integration within clinical environments. Looking forward, the paper discusses the potential for quantum-classical hybrid systems and emerging innovations in quantum hardware, suggesting how these advancements may accelerate the adoption of QC in medical research and clinical practice. By synthesizing reliable knowledge and presenting it through a comprehensive lens, this paper serves as a valuable reference for researchers interested in the transformative potential of QC in medicine.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada; ; Tel.: +1-416-946-4501
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
3
|
Geurts MW, Jacqmin DJ, Jones LE, Kry SF, Mihailidis DN, Ohrt JD, Ritter T, Smilowitz JB, Wingreen NE. AAPM MEDICAL PHYSICS PRACTICE GUIDELINE 5.b: Commissioning and QA of treatment planning dose calculations-Megavoltage photon and electron beams. J Appl Clin Med Phys 2022; 23:e13641. [PMID: 35950259 PMCID: PMC9512346 DOI: 10.1002/acm2.13641] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines:
Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. While must is the term to be used in the guidelines, if an entity that adopts the guideline has shall as the preferred term, the AAPM considers that must and shall have the same meaning. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
Collapse
|
4
|
Erickson BG, Ackerson BG, Kelsey CR, Yin FF, Adamson J, Cui Y. The effect of various dose normalization strategies when implementing linear Boltzmann transport equation dose calculation for lung SBRT planning. Pract Radiat Oncol 2022; 12:446-456. [DOI: 10.1016/j.prro.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
|
5
|
Tugrul T. Comparison of Monaco treatment planning system algorithms and Monte Carlo simulation for small fields in anthropomorphic RANDO phantom: The esophagus case. J Cancer Res Ther 2021; 17:1370-1375. [PMID: 34916367 DOI: 10.4103/jcrt.jcrt_1143_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background In this study, the dose distributions obtained by the algorithms used in Monaco treatment planning system (TPS) and Monte Carlo (MC) simulation were compared for small fields in the anthropomorphic RANDO phantom, and then, the results were analyzed using the gamma analysis method. Materials and Methods In the study, dose distributions obtained from the collapse cone algorithm, MC algorithm, and MC simulation were examined. The EGSnrc was utilized for MC simulation. Results In radiation fields smaller than 3 cm × 3 cm, the doses calculated by the CC algorithm are particularly high in the region of lung/soft-tissue interfaces. In the region of soft-tissue/vertebral interfaces, the doses calculated by the CC algorithm and the MC algorithm are compatible with the MC simulation. For each algorithm, the main reason for the non-overlapping dose curves in small fields compared to MC simulation is that the lateral electronic equilibrium loss is not taken into account by the algorithms. Conclusion The doses calculated by the algorithms used in TPS may differ, especially in environments where density changes are sharp. Even if the radiation dose from different angles is calculated similarly in the target area by the algorithms, the calculated doses in the tissues in each radiation field path may be different. Therefore, to increase the quality of radiotherapy and to protect critical organs more accurately, the accuracy of the algorithms in TPS should be checked before treatment, especially in multi-field treatments such as stereotactic body radiation therapy and intensity-modulated radiotherapy for tumors in the abdominal region.
Collapse
Affiliation(s)
- Taylan Tugrul
- Department of Radiation Oncology, Medicine Faculty of Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
6
|
Tuğrul T. The Effect of Algorithms on Dose Distribution in Inhomogeneous Phantom: Monaco Treatment Planning System versus Monte Carlo Simulation. J Med Phys 2021; 46:111-115. [PMID: 34566291 PMCID: PMC8415246 DOI: 10.4103/jmp.jmp_21_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022] Open
Abstract
Background: The aim of this study is to evaluate the dose calculation algorithms commonly used in TPS by using MC simulation in the highly different inhomogeneous region and in the small fields and to provide the following uniquely new information in the study of correction algorithm. Materials and Methods: We compared the dose distribution obtained by Monaco TPS for small fields. Results: When we examine lung medium, for four different fields, we can see that the algorithms begin to differ. In both the lung and bone environment, the percentage differences decrease as the field size increases. In areas less than or equal to 3x3 cm2, there are serious differences between the algorithms. The CC algorithm calculates a low dose value as the photon passes from the lung environment to water environment. We can also see that this algorithm measures a low dose value in voxel as the photon passes from the water medium to the bone medium. In the transition from the water environment to the bone environment or from the bone environment to the water environment, the results of the CC algorithm are not close to MC simulation. Conclusion: The effect of the algorithms used in TPS on dose distribution is very strong, especially in environment with high electron density variation and in applications such as Stereotactic Body Radiotherapy and Intensity Modulated Radiotherapy where small fields are used.
Collapse
Affiliation(s)
- Taylan Tuğrul
- Department of Radiation Oncology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
7
|
Pimenta EB, Nogueira LB, de Campos TPR. Dose measurements in a thorax phantom at 3DCRT breast radiation therapy. ACTA ACUST UNITED AC 2021; 26:242-250. [PMID: 34211775 DOI: 10.5603/rpor.a2021.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
Background The anthropomorphic and anthropometric phantom developed by the research group NRI (Núcleo de Radiações Ionizantes) can reproduce the effects of the interactions of radiation occurring in the human body. The whole internal radiation transport phenomena can be depicted by film dosimeters in breast RT. Our goal was to provide a dosimetric comparison of a radiation therapy (RT) plan in a 4MV 3D-conformal RT (4MV-3DCR T) and experimental data measured in a breast phantom. Materials and methods The RT modality was two parallel opposing fields for the left breast with a prescribed dose of 2.0 Gy in 25 fractions. The therapy planning system (TPS) was performed on CA T3D software. The dose readings at points of interest (POI) pre-established in TPS were recorded. An anthropometric thorax-phantom with removal breast was used. EBT2 radiochromic films were inserted into the ipisilateral breast, contralateral breast, lungs, heart and skin. The irradiation was carried out on 4/80 Varian linear accelerator at 4MV. Results The mean dose at the OAR's presented statistically significant differences (p < 0.001) of 34.24%, 37.96% and 63.47% for ipsilateral lung, contralateral lung, and heart, respectively. The films placed at the skin-surface interface in the ipsilateral breast also showed statistically significant differences (p < 0.001) of 16.43%, -10.16%, -14.79% and 15.67% in the four quadrants, respectively. In contrast, the PTV dosimeters, representative of the left breast volume, encompassed by the electronic equilibrium, presented a non-significant difference with TPS, p = 0.20 and p = 0.90. Conclusion There was a non-significant difference of doses in PTV with electronic equilibrium; although no match is achieved outside electronic equilibrium.
Collapse
Affiliation(s)
- Elsa Bifano Pimenta
- Department of Nuclear Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
8
|
Charles PH, Crowe S, Kairn T. Recommendations for simulating and measuring with biofabricated lung equivalent materials based on atomic composition analysis. Phys Eng Sci Med 2021; 44:331-335. [PMID: 33591538 DOI: 10.1007/s13246-021-00979-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 11/25/2022]
Abstract
Monte Carlo simulations of lung equivalent materials often involve the density being artificially lowered rather than a true lung tissue (or equivalent plastic) and air composition being simulated. This study used atomic composition analysis to test the suitability of this method. Atomic composition analysis was also used to test the suitability of 3D printing PLA or ABS with air to simulate lung tissue. It was found that there was minimal atomic composition difference when using an artificially lowered density, with a 0.8 % difference in Nitrogen the largest observed. Therefore, excluding infill pattern effects, lowering the density of the lung tissue (or plastic) in simulations should be sufficiently accurate to simulate an inhaled lung, without the need to explicitly include the air component. The average electron density of 3D printed PLA and air, and ABS and air were just 0.3 % and 1.3 % different to inhaled lung, confirming their adequacy for MV photon dosimetry. However large average atomic number differences (5.6 % and 20.4 % respectively) mean that they are unlikely to be suitable for kV photon dosimetry.
Collapse
Affiliation(s)
- Paul H Charles
- Herston Biofabrication Institute, Brisbane, QLD, Australia. .,School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia. .,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Scott Crowe
- Herston Biofabrication Institute, Brisbane, QLD, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Tanya Kairn
- Herston Biofabrication Institute, Brisbane, QLD, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Najafzadeh M, Nickfarjam A, Jabbari K, Markel D, Chow JCL, Takabi FS. Dosimetric verification of lung phantom calculated by collapsed cone convolution: A Monte Carlo and experimental evaluation. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:161-175. [PMID: 30614811 DOI: 10.3233/xst-180425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To evaluate the dose calculation accuracy in the Prowess Panther treatment planning system (TPS) using the collapsed cone convolution (CCC) algorithm. METHODS The BEAMnrc Monte Carlo (MC) package was used to predict the dose distribution of photon beams produced by the Oncor® linear accelerator (linac). The MC model of an 18 MV photon beam was verified by measurement using a p-type diode dosimeter. Percent depth dose (PDD) and dose profiles were used for comparison based on three field sizes: 5×5, 10×10, and 20×20cm2. The accuracy of the CCC dosimetry was also evaluated using a plan composed of a simple parallel-opposed field (11×16cm2) in a lung phantom comprised of four tissue simulating media namely, lung, soft tissue, bone and spinal cord. The CCC dose calculation accuracy was evaluated by MC simulation and measurements according to the dose difference and 3D gamma analysis. Gamma analysis was carried out through comparison of the Monte Carlo simulation and the TPS calculated dose. RESULTS Compared to the dosimetric results measured by the Farmer chamber, the CCC algorithm underestimated dose in the planning target volume (PTV), right lung and lung-tissue interface regions by about -0.11%, -1.6 %, and -2.9%, respectively. Moreover, the CCC algorithm underestimated the dose at the PTV, right lung and lung-tissue interface regions in the order of -0.34%, -0.4% and -3.5%, respectively, when compared to the MC simulation. Gamma analysis results showed that the passing rates within the PTV and heterogeneous region were above 59% and 76%. For the right lung and spinal cord, the passing rates were above 80% for all gamma criteria. CONCLUSIONS This study demonstrates that the CCC algorithm has potential to calculate dose with sufficient accuracy for 3D conformal radiotherapy within the thorax where a significant amount of tissue heterogeneity exists.
Collapse
Affiliation(s)
- Milad Najafzadeh
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandare-Abbas, Iran
| | - Abolfzal Nickfarjam
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Radiotherapy Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Keyvan Jabbari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daniel Markel
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Fatemeh Shirani Takabi
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
10
|
Slimani FAA, Hamdi M, Bentourkia M. G4DARI: Geant4/GATE based Monte Carlo simulation interface for dosimetry calculation in radiotherapy. Comput Med Imaging Graph 2018; 67:30-39. [PMID: 29738914 DOI: 10.1016/j.compmedimag.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/15/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022]
Abstract
Monte Carlo (MC) simulation is widely recognized as an important technique to study the physics of particle interactions in nuclear medicine and radiation therapy. There are different codes dedicated to dosimetry applications and widely used today in research or in clinical application, such as MCNP, EGSnrc and Geant4. However, such codes made the physics easier but the programming remains a tedious task even for physicists familiar with computer programming. In this paper we report the development of a new interface GEANT4 Dose And Radiation Interactions (G4DARI) based on GEANT4 for absorbed dose calculation and for particle tracking in humans, small animals and complex phantoms. The calculation of the absorbed dose is performed based on 3D CT human or animal images in DICOM format, from images of phantoms or from solid volumes which can be made from any pure or composite material to be specified by its molecular formula. G4DARI offers menus to the user and tabs to be filled with values or chemical formulas. The interface is described and as application, we show results obtained in a lung tumor in a digital mouse irradiated with seven energy beams, and in a patient with glioblastoma irradiated with five photon beams. In conclusion, G4DARI can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely available as an application package.
Collapse
Affiliation(s)
- Faiçal A A Slimani
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Mahdjoub Hamdi
- Département de Génie Électrique, Université de Mostaganem, Algeria
| | - M'hamed Bentourkia
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada.
| |
Collapse
|
11
|
Nakaguchi Y, Oono T, Maruyama M, Shimohigashi Y, Kai Y, Nakamura Y. Commissioning and validation of fluence-based 3D VMAT dose reconstruction system using new transmission detector. Radiol Phys Technol 2018. [PMID: 29532322 DOI: 10.1007/s12194-018-0451-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we evaluated the basic performance of the three-dimensional dose verification system COMPASS (IBA Dosimetry). This system is capable of reconstructing 3D dose distributions on the patient anatomy based on the fluence measured using a new transmission detector (Dolphin, IBA Dosimetry) during treatment. The stability of the absolute dose and geometric calibrations of the COMPASS system with the Dolphin detector were investigated for fundamental validation. Furthermore, multileaf collimator (MLC) test patterns and a complicated volumetric modulated arc therapy (VMAT) plan were used to evaluate the accuracy of the reconstructed dose distributions determined by the COMPASS. The results from the COMPASS were compared with those of a Monte Carlo simulation (MC), EDR2 film measurement, and a treatment planning system (TPS). The maximum errors for the absolute dose and geometrical position were - 0.28% and 1.0 mm for 3 months, respectively. The Dolphin detector, which consists of ionization chamber detectors, was firmly mounted on the linear accelerator and was very stable. For the MLC test patterns, the TPS showed a > 5% difference at small fields, while the COMPASS showed good agreement with the MC simulation at small fields. However, the COMPASS produced a large error for complex small fields. For a clinical VMAT plan, COMPASS was more accurate than TPS. COMPASS showed real delivered-dose distributions because it uses the measured fluence, a high-resolution detector, and accurate beam modeling. We confirm here that the accuracy and detectability of the delivered dose of the COMPASS system are sufficient for clinical practice.
Collapse
Affiliation(s)
- Yuji Nakaguchi
- Department of Radiological Technology, Kumamoto University Hospital, 1-1-1 Honjyo, Kumamoto, Japan.
| | - Takeshi Oono
- Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto, Japan
| | - Masato Maruyama
- Department of Radiological Technology, Kumamoto University Hospital, 1-1-1 Honjyo, Kumamoto, Japan
| | - Yoshinobu Shimohigashi
- Department of Radiological Technology, Kumamoto University Hospital, 1-1-1 Honjyo, Kumamoto, Japan
| | - Yudai Kai
- Department of Radiological Technology, Kumamoto University Hospital, 1-1-1 Honjyo, Kumamoto, Japan
| | - Yuya Nakamura
- Department of Radiological Technology, Kumamoto University Hospital, 1-1-1 Honjyo, Kumamoto, Japan
| |
Collapse
|
12
|
Fogliata A, Cozzi L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: The lung SBRT case. Phys Med 2017; 44:157-162. [DOI: 10.1016/j.ejmp.2016.11.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022] Open
|
13
|
Tsuruta Y, Nakamura M, Miyabe Y, Nakata M, Ishihara Y, Mukumoto N, Akimoto M, Ono T, Yano S, Higashimura K, Matsuo Y, Mizowaki T, Hiraoka M. Use of a second-dose calculation algorithm to check dosimetric parameters for the dose distribution of a first-dose calculation algorithm for lung SBRT plans. Phys Med 2017; 44:86-95. [PMID: 28760507 DOI: 10.1016/j.ejmp.2017.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/06/2017] [Accepted: 07/22/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To verify lung stereotactic body radiotherapy (SBRT) plans using a secondary treatment planning system (TPS) as an independent method of verification and to define tolerance levels (TLs) in lung SBRT between the primary and secondary TPSs. METHODS A total of 147 lung SBRT plans calculated using X-ray voxel Monte Carlo (XVMC) were exported from iPlan to Eclipse in DICOM format. Dose distributions were recalculated using the Acuros XB (AXB) and the anisotropic analytical algorithm (AAA), while maintaining monitor units (MUs) and the beam arrangement. Dose to isocenter and dose-volumetric parameters, such as D2, D50, D95 and D98, were evaluated for each patient. The TLs of all parameters between XVMC and AXB (TLAXB) and between XVMC and AAA (TLAAA) were calculated as the mean±1.96 standard deviations. RESULTS AXB values agreed with XVMC values within 3.5% for all dosimetric parameters in all patients. By contrast, AAA sometimes calculated a 10% higher dose in PTV D95 and D98 than XVMC. The TLAXB and TLAAA of the dose to isocenter were -0.3±1.4% and 0.6±2.9%, respectively. Those of D95 were 1.3±1.8% and 1.7±3.6%, respectively. CONCLUSIONS This study quantitatively demonstrated that the dosimetric performance of AXB is almost equal to that of XVMC, compared with that of AAA. Therefore, AXB is a more appropriate algorithm for an independent verification method for XVMC.
Collapse
Affiliation(s)
- Yusuke Tsuruta
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Manabu Nakata
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Yoshitomo Ishihara
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mami Akimoto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shinsuke Yano
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Kyoji Higashimura
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
14
|
Variation of the prescription dose using the analytical anisotropic algorithm in lung stereotactic body radiation therapy. Phys Med 2017; 38:98-104. [PMID: 28610704 DOI: 10.1016/j.ejmp.2017.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The aim of the present investigation was to evaluate the dosimetric variation regarding the analytical anisotropic algorithm (AAA) relative to other algorithms in lung stereotactic body radiation therapy (SBRT). We conducted a multi-institutional study involving six institutions using a secondary check program and compared the AAA to the Acuros XB (AXB) in two institutions. METHODS All lung SBRT plans (128 patients) were generated using the AAA, pencil beam convolution with the Batho (PBC-B) and adaptive convolve (AC). All institutions used the same secondary check program (simple MU analysis [SMU]) implemented by a Clarkson-based dose calculation algorithm. Measurement was performed in a heterogeneous phantom to compare doses using the three different algorithms and the SMU for the measurements. A retrospective analysis was performed to compute the confidence limit (CL; mean±2SD) for the dose deviation between the AAA, PBC, AC and SMU. The variations between the AAA and AXB were evaluated in two institutions, then the CL was acquired. RESULTS In comparing the measurements, the AAA showed the largest systematic dose error (3%). In calculation comparisons, the CLs of the dose deviation were 8.7±9.9% (AAA), 4.2±3.9% (PBC-B) and 5.7±4.9% (AC). The CLs of the dose deviation between the AXB and the AAA were 1.8±1.5% and -0.1±4.4%, respectively, in the two institutions. CONCLUSIONS The CL of the AAA showed much larger variation than the other algorithms. Relative to the AXB, larger systematic and random deviations still appeared. Thus, care should be taken in the use of AAA for lung SBRT.
Collapse
|
15
|
Kron T, Lehmann J, Greer PB. Dosimetry of ionising radiation in modern radiation oncology. Phys Med Biol 2016; 61:R167-205. [DOI: 10.1088/0031-9155/61/14/r167] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Luo W, Meacham A, Xie X, Li J, Aryal P, McGarry R, Molloy J. Monte Carlo dose verification for lung SBRT with CMS/XiO superposition algorithm. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/1/015020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Smilowitz JB, Das IJ, Feygelman V, Fraass BA, Kry SF, Marshall IR, Mihailidis DN, Ouhib Z, Ritter T, Snyder MG, Fairobent L. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations - Megavoltage Photon and Electron Beams. J Appl Clin Med Phys 2015; 16:14–34. [PMID: 26699330 PMCID: PMC5690154 DOI: 10.1120/jacmp.v16i5.5768] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 12/02/2022] Open
Abstract
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines:• Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.• Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
Collapse
|
18
|
Nakaguchi Y, Ono T, Maruyama M, Nagasue N, Shimohigashi Y, Kai Y. Validation of fluence-based 3D IMRT dose reconstruction on a heterogeneous anthropomorphic phantom using Monte Carlo simulation. J Appl Clin Med Phys 2015; 16:5199. [PMID: 25679177 PMCID: PMC5689999 DOI: 10.1120/jacmp.v16i1.5199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 08/29/2014] [Indexed: 11/23/2022] Open
Abstract
In this study, we evaluated the performance of a three‐dimensional (3D) dose verification system, COMPASS version 3, which has a dedicated beam models and dose calculation engine. It was possible to reconstruct the 3D dose distributions in patient anatomy based on the measured fluence using the MatriXX 2D array. The COMPASS system was compared with Monte Carlo simulation (MC), glass rod dosimeter (GRD), and 3DVH, using an anthropomorphic phantom for intensity‐modulated radiation therapy (IMRT) dose verification in clinical neck cases. The GRD measurements agreed with the MC within 5% at most measurement points. In addition, most points for COMPASS and 3DVH also agreed with the MC within 5%. The COMPASS system showed better results than 3DVH for dose profiles due to individual adjustments, such as beam modeling for each linac. Regarding the dose‐volume histograms, there were no large differences between MC, analytical anisotropic algorithm (AAA) in Eclipse treatment planning system (TPS), 3DVH, and the COMPASS system. However, AAA underestimated the dose to the clinical target volume and Rt‐Parotid slightly. This is because AAA has some problems with dose calculation accuracy. Our results indicated that the COMPASS system offers highly accurate 3D dose calculation for clinical IMRT quality assurance. Also, the COMPASS system will be useful as a commissioning tool in routine clinical practice for TPS. PACS number: 87.55.Qr, 87.56.Fc, 87.61.Bj
Collapse
|
19
|
Caccia B, Andenna C, Iaccarino G, Landoni V, Soriani A, Occhigrossi A, Esposito A, Petetti E, Valentini S, Strigari L. Monte Carlo as a tool to evaluate the effect of different lung densities on radiotherapy dose distribution. RADIATION PROTECTION DOSIMETRY 2014; 162:115-119. [PMID: 25452329 DOI: 10.1093/rpd/ncu241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study aims at evaluating the effects of different lung densities on dose distribution after irradiation at different field sizes, by comparing experimental measurements, GEANT4 Monte Carlo (MC) simulations and two TPS calculation algorithms on ad hoc phantoms. Irradiations were performed with a Varian Clinac 2100 C/D with a nominal energy of 6 MV. Dosimetric experimental measurements were obtained with radiochromic films. A model based on GEANT4 MC code was developed to simulate both the accelerator and the phantoms. Results of dose distribution show an acceptable agreement between MC simulations and experimental measurements, both in the tumour-equivalent region and in the normal tissue-equivalent ones. On the opposite, results vary among the TPS algorithms, especially in regions of lung-equivalent material at low density, but also at the interface between lung- and tumour-equivalent materials.
Collapse
Affiliation(s)
- B Caccia
- Technology and Health Department, Istituto Superiore di Sanità (Italian National Institute of Health), Viale Regina Elena, 299-00161, Rome, Italy INFN, Joint group of Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | - A Occhigrossi
- Technology and Health Department, Istituto Superiore di Sanità (Italian National Institute of Health), Viale Regina Elena, 299-00161, Rome, Italy
| | - A Esposito
- Technology and Health Department, Istituto Superiore di Sanità (Italian National Institute of Health), Viale Regina Elena, 299-00161, Rome, Italy INFN, Joint group of Istituto Superiore di Sanità, Rome, Italy
| | - E Petetti
- Technology and Health Department, Istituto Superiore di Sanità (Italian National Institute of Health), Viale Regina Elena, 299-00161, Rome, Italy INFN, Joint group of Istituto Superiore di Sanità, Rome, Italy
| | - S Valentini
- Technology and Health Department, Istituto Superiore di Sanità (Italian National Institute of Health), Viale Regina Elena, 299-00161, Rome, Italy INFN, Joint group of Istituto Superiore di Sanità, Rome, Italy
| | - L Strigari
- INFN, Joint group of Istituto Superiore di Sanità, Rome, Italy Istituto Regina Elena, Rome, Italy
| |
Collapse
|
20
|
Yamazaki R, Onimaru R, Katoh N, Inoue T, Nishioka T, Shirato H, Date H. Influence of respiration on dose calculation in stereotactic body radiotherapy of the lung. Radiol Phys Technol 2014; 7:284-9. [DOI: 10.1007/s12194-014-0263-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
|
21
|
Disher B, Hajdok G, Gaede S, Mulligan M, Battista JJ. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer. Phys Med Biol 2013; 58:6641-62. [PMID: 24018569 DOI: 10.1088/0031-9155/58/19/6641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm(2)) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ∼1 cm). For the phantom, square fields of 1 × 1 cm(2), 3 × 3 cm(2), or 5 × 5 cm(2) were applied. However, in the patient, 3 × 1 cm(2), 3 × 2 cm(2), 3 × 2.5 cm(2), or 3 × 3 cm(2) field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was generated by considering the extent of tumour motion over the patient's breathing cycle and set-up uncertainties. All patient dose results were normalized such that at least 95% of the PTV received at least 54 Gy (i.e. D95 = 54 Gy). Further, we introduce 'LED maps' as a novel clinical tool to compare the magnitude of LED resulting from the various SBRT arc plans. Results from the phantom simulation suggest that the best lung sparing occurred for RT parameters that cause severe LED. For equal tumour dose coverage, normal lung dose (2 cm outside the target region) was reduced from 92% to 23%, comparing results between the 18 MV (5 × 5 cm(2)) and 18 MV (1 × 1 cm(2)) arc simulations. In addition to reduced lung dose for the 18 MV (1 × 1 cm(2)) arc, maximal tumour dose increased beyond 125%. Thus, LED can create steep dose gradients to spare normal lung, while increasing tumour dose levels (if desired). In the patient simulation, a LED-optimized arc plan was designed using either 18 MV (3 × 1 cm(2)) or 6 MV (3 × 3cm(2)) beams. Both plans met the D95 dose coverage requirement for the target. However, the LED-optimized plan increased the maximum, mean, and minimum dose within the PTV by as much as 80 Gy, 11 Gy, and 3 Gy, respectively. Despite increased tumour dose levels, the 18 MV (3 × 1 cm(2)) arc plan improved or maintained the V20, V5, and mean lung dose metrics compared to the 6 MV (3 × 3 cm(2)) simulation. We conclude that LED-SBRT has the potential to increase dose gradients, and dose levels within a small lung tumour. The magnitude of tumour dose increase or lung sparing can be optimized through manipulation of RT parameters (e.g. beam energy and field size).
Collapse
Affiliation(s)
- Brandon Disher
- Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario, N6A 4L6, Canada. Department of Medical Biophysics, Western University, Schulich School of Medicine and Dentistry, London, Ontario, N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
22
|
Disher B, Hajdok G, Wang A, Craig J, Gaede S, Battista JJ. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung. Phys Med Biol 2013; 58:4157-74. [DOI: 10.1088/0031-9155/58/12/4157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Kim J, Chung J, Park Y, Song J, Kim SK, Ahn SH, Choi CH, Choi WH, Cho B, Ju SG, Kim SJ, Ye S. A multi-institutional study for tolerance and action levels of IMRT dose quality assurance measurements in Korea. J Appl Clin Med Phys 2013; 14:3964. [PMID: 23470928 PMCID: PMC5714373 DOI: 10.1120/jacmp.v14i2.3964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/26/2012] [Accepted: 11/13/2012] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to suggest tolerance levels for IMRT DQA measurements using confidence limits determined by a multi-institutional study in Korea. Ten institutions were grouped into LINAC (seven linear accelerators) and TOMO (three tomotherapy machines). The DQA processes consisted of point (high- and low-dose regions) and planar (per-field and composite-field) dose measurements using an ion chamber and films (or 2D detector array) inserted into a custom-made acryl phantom (LINAC) or a cheese phantom (TOMO). The five mock structures developed by AAPM TG-119 were employed, but the prostate as well as the H&N structures were modified according to Korean patients' anatomy. The point measurements were evaluated in a ratio of measured and planned doses, while the planar dose distributions were assessed using two gamma criteria of 2 mm/2% and 3 mm/3%. The confidence limit (|mean + 1.96 σ|) for point measurements was determined to be 3.0% in high-dose regions and 5.0% in low-dose regions. The average percentage of points passing the gamma criteria of 2 mm/2% and 3mm/3% for per-field measurements was 92.7 ± 6.5% and 98.2 ± 2.8%, respectively. Thus, the corresponding confidence limit was 79.1% and 92.7%, respectively. The gamma passing rate averaged over all mock tests and institutions for composite-field measurements was 86.1 ± 6.5% at 2 mm/2% and 95.3 ± 3.8% at 3 mm/3%, leading to the confidence limit of 73.3% and 87.9%, respectively. There was no significant difference in the tolerance levels of point dose measurements between LINAC and TOMO groups. In spite of the differences in mock structures and dosimetry tools, our tolerance levels were comparable to those of AAPM and ESTRO guidelines.
Collapse
Affiliation(s)
- Jung‐in Kim
- Interdisciplinary Program in Radiation Applied Life Science and Institute of Radiation MedicineCollege of Medicine, Seoul National UniversitySeoul
- Department of Radiation OncologyKangBuk Samsung Medical CenterSeoul
| | - Jin‐Beom Chung
- Department of Radiation OncologySeoul National University Bundang HospitalSeongnam
| | - Yang‐Kyun Park
- Department of Radiation OncologySeoul National University HospitalSeoul
| | - Ju‐Young Song
- Department of Radiation OncologyChonnam National University Medical SchoolHwasun
| | - Sung Kyu Kim
- Department of Therapeutic Radiology & OncologyYeungnam UniversitySeoul
| | - Sung Hwan Ahn
- Department of Radiation OncologyDong‐A University Medical CenterBusan
| | - Chang Heon Choi
- Department of Radiation OncologyJeju National University HospitalJeju
| | - Won Hoon Choi
- Department of Radiation OncologyYonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health SystemSeoul
| | - Byungchul Cho
- Department of Radiation OncologyAsan Medical Center, University of Ulsan College of MedicineSeoul
| | - Sang Gyu Ju
- Department of Radiation OncologySeoul Samsung Medical CenterSeoul
| | - Sung Jin Kim
- Department of Radiation OncologyEulji University HospitalDaejon
| | - Sung‐Joon Ye
- Department of Radiation OncologySeoul National University HospitalSeoul
- Department of Transdisciplinary Studies and Advanced Institutes of Convergence TechnologySeoul National UniversitySuwonKorea
| |
Collapse
|
24
|
Chow JCL, Jiang R, Owrangi AM. Dosimetry of small bone joint calculated by the analytical anisotropic algorithm: a Monte Carlo evaluation using the EGSnrc. J Appl Clin Med Phys 2013; 15:4588. [PMID: 24423828 PMCID: PMC5711239 DOI: 10.1120/jacmp.v15i1.4588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/18/2013] [Accepted: 08/16/2013] [Indexed: 11/23/2022] Open
Abstract
This study compared a small bone joint dosimetry calculated by the anisotropic analytical algorithm (AAA) and Monte Carlo simulation using megavoltage (MV) photon beams. The performance of the AAA in the joint dose calculation was evaluated using Monte Carlo simulation, and dependences of joint dose on its width and beam angle were investigated. Small bone joint phantoms containing a vertical water layer (0.5‐2 mm) sandwiched by two bones (2×2×2cm3) were irradiated by the 6 and 15 MV photon beams with field size equal to 4×4 cm2. Depth doses along the central beam axis in a joint (cartilage) were calculated with and without a bolus (thickness=1.5cm) added on top of the phantoms. Different beam angles (0°‐15°) were used with the isocenter set to the center of the bone joint for dose calculations using the AAA (Eclipse treatment planning system) and Monte Carlo simulation (the EGSnrc code). For dosimetry comparison and normalization, dose calculations were repeated in homogeneous water phantoms with the bone substituted by water. Comparing the calculated dosimetry between the AAA and Monte Carlo simulation, the AAA underestimated joint doses varying with its widths by about 6%‐12% for 6 MV and 12%‐23% for 15 MV without bolus, and by 7% for 6 MV and 13%‐17% for 15 MV with bolus. Moreover, joint doses calculated by the AAA did not vary with the joint width and beam angle. From Monte Carlo results, there was a decrease in the calculated joint dose as the joint width increased, and a slight decrease as the beam angle increased. When bolus was added to the phantom, it was found that variations of joint dose with its width and beam angle became less significant for the 6 MV photon beams. In conclusion, dosimetry deviation in small bone joint calculated by the AAA and Monte Carlo simulation was studied using the 6 and 15 MV photon beam. The AAA could not predict variations of joint dose with its width and beam angle, which were predicted by the Monte Carlo simulations. PACS numbers: 87.55.K‐; 87.53.Bn; 87.53.‐j
Collapse
|
25
|
Disher B, Hajdok G, Gaede S, Battista JJ. An in-depth Monte Carlo study of lateral electron disequilibrium for small fields in ultra-low density lung: implications for modern radiation therapy. Phys Med Biol 2012; 57:1543-59. [DOI: 10.1088/0031-9155/57/6/1543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Nakaguchi Y, Araki F, Kouno T, Maruyama M. [Quality assurance of respiratory-gated stereotactic body radiation therapy in lung using real-time position management system]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2012; 68:1519-1524. [PMID: 23171774 DOI: 10.6009/jjrt.2012_jsrt_68.11.1519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we investigated comprehensive quality assurance (QA) for respiratory-gated stereotactic body radiation therapy (SBRT) in the lungs using a real-time position management system (RPM). By using the phantom study, we evaluated dose liberality and reproducibility, and dose distributions for low monitor unite (MU), and also checked the absorbed dose at isocenter and dose profiles for the respiratory-gated exposure using RPM. Furthermore, we evaluated isocenter dose and dose distributions for respiratory-gated SBRT plans in the lungs using RPM. The maximum errors for the dose liberality were 4% for 2 MU, 1% for 4-10 MU, and 0.5% for 15 MU and 20 MU. The dose reproducibility was 2% for 1 MU and within 0.1% for 5 MU or greater. The accuracy for dose distributions was within 2% for 2 MU or greater. The dose error along a central axis for respiratory cycles of 2, 4, and 6 sec was within 1%. As for geometric accuracy, 90% and 50% isodose areas for the respiratory-gated exposure became almost 1 mm and 2 mm larger than without gating, respectively. For clinical lung-SBRT plans, the point dose at isocenter agreed within 2.1% with treatment planning system (TPS). And the pass rates of all plans for TPS were more than 96% in the gamma analysis (3 mm/3%). The geometrical accuracy and the dose accuracy of TPS calculation algorithm are more important for the dose evaluation at penumbra region for respiratory-gated SBRT in lung using RPM.
Collapse
Affiliation(s)
- Yuji Nakaguchi
- Department of Radiological Technology, Kumamoto University Hospital, and Graduate School of Health Sciences, Kumamoto University
| | | | | | | |
Collapse
|
27
|
Hwang UJ, Shin DH, Kim TH, Moon SH, Lim YK, Jeong H, Rah JE, Kim SS, Kim JY, Kim DY, Park SY, Cho KH. The Effect of a Contrast Agent on Proton Beam Range in Radiotherapy Planning Using Computed Tomography for Patients With Locoregionally Advanced Lung Cancer. Int J Radiat Oncol Biol Phys 2011; 81:e317-24. [DOI: 10.1016/j.ijrobp.2011.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/06/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
|
28
|
Chow JCL, Owrangi AM. Dependences of mucosal dose on photon beams in head-and-neck intensity-modulated radiation therapy: a Monte Carlo study. Med Dosim 2011; 37:195-200. [PMID: 21993201 DOI: 10.1016/j.meddos.2011.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/11/2011] [Accepted: 07/21/2011] [Indexed: 11/25/2022]
Abstract
Dependences of mucosal dose in the oral or nasal cavity on the beam energy, beam angle, multibeam configuration, and mucosal thickness were studied for small photon fields using Monte Carlo simulations (EGSnrc-based code), which were validated by measurements. Cylindrical mucosa phantoms (mucosal thickness = 1, 2, and 3 mm) with and without the bone and air inhomogeneities were irradiated by the 6- and 18-MV photon beams (field size = 1 × 1 cm(2)) with gantry angles equal to 0°, 90°, and 180°, and multibeam configurations using 2, 4, and 8 photon beams in different orientations around the phantom. Doses along the central beam axis in the mucosal tissue were calculated. The mucosal surface doses were found to decrease slightly (1% for the 6-MV photon beam and 3% for the 18-MV beam) with an increase of mucosal thickness from 1-3 mm, when the beam angle is 0°. The variation of mucosal surface dose with its thickness became insignificant when the beam angle was changed to 180°, but the dose at the bone-mucosa interface was found to increase (28% for the 6-MV photon beam and 20% for the 18-MV beam) with the mucosal thickness. For different multibeam configurations, the dependence of mucosal dose on its thickness became insignificant when the number of photon beams around the mucosal tissue was increased. The mucosal dose with bone was varied with the beam energy, beam angle, multibeam configuration and mucosal thickness for a small segmental photon field. These dosimetric variations are important to consider improving the treatment strategy, so the mucosal complications in head-and-neck intensity-modulated radiation therapy can be minimized.
Collapse
Affiliation(s)
- James C L Chow
- Department of Radiation Physics, Princess Margaret Hospital, Toronto, Ontario, Canada.
| | | |
Collapse
|
29
|
Ardu V, Broggi S, Cattaneo GM, Mangili P, Calandrino R. Dosimetric accuracy of tomotherapy dose calculation in thorax lesions. Radiat Oncol 2011; 6:14. [PMID: 21306629 PMCID: PMC3045960 DOI: 10.1186/1748-717x-6-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To analyse limits and capabilities in dose calculation of collapsed-cone-convolution (CCC) algorithm implemented in helical tomotherapy (HT) treatment planning system for thorax lesions. METHODS The agreement between measured and calculated dose was verified both in homogeneous (Cheese Phantom) and in a custom-made inhomogeneous phantom. The inhomogeneous phantom was employed to mimic a patient's thorax region with lung density encountered in extreme cases and acrylic inserts of various dimensions and positions inside the lung cavity. For both phantoms, different lung treatment plans (single or multiple metastases and targets in the mediastinum) using HT technique were simulated and verified. Point and planar dose measurements, both with radiographic extended-dose-range (EDR2) and radiochromic external-beam-therapy (EBT2) films, were performed. Absolute point dose measurements, dose profile comparisons and quantitative analysis of gamma function distributions were analyzed. RESULTS An excellent agreement between measured and calculated dose distributions was found in homogeneous media, both for point and planar dose measurements. Absolute dose deviations <3% were found for all considered measurement points, both inside the PTV and in critical structures. Very good results were also found for planar dose distribution comparisons, where at least 96% of all points satisfied the gamma acceptance criteria (3%-3 mm), both for EDR2 and for EBT2 films. Acceptable results were also reported for the inhomogeneous phantom. Similar point dose deviations were found with slightly worse agreement for the planar dose distribution comparison: 96% of all points passed the gamma analysis test with acceptable levels of 4%-4 mm and 5%-4 mm, for EDR2 and EBT2 films respectively. Lower accuracy was observed in high dose/low density regions, where CCC seems to overestimate the measured dose around 4-5%. CONCLUSIONS Very acceptable accuracy was found for complex lung treatment plans calculated with CCC algorithm implemented in the tomotherapy TPS even in the heterogeneous phantom with very low lung-density.
Collapse
Affiliation(s)
- Veronica Ardu
- Medical Physics Department, IRCCS San Raffaele, Milano, Italy
| | | | | | | | | |
Collapse
|
30
|
Monte Carlo study on mucosal dose in oral and naval cavity using photon beams with small field. JOURNAL OF RADIOTHERAPY IN PRACTICE 2011. [DOI: 10.1017/s1460396910000427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe study how mucosal dose in the oral or nasal cavity depends on the irradiated small segmental photon fields varying with beam energy, beam angle and mucosa thickness. Dose ratio (mucosal dose with bone underneath to dose at the same point without bone) reflecting the dose enhancement due to the bone backscatter was determined by Monte Carlo simulation (EGSnrc-based code), validated by measurements. Phase space files based on the 6 and 18 MV photon beams with small field size of 1 × 1 cm2, produced by a Varian 21 EX linear accelerator, were generated using the BEAMnrc Monte Carlo code. Mucosa phantoms (mucosa thickness = 1, 2 and 3 mm) with and without a bone under the mucosa were irradiated by photon beams with gantry angles varying from 0 to 30°. Doses along the central beam axis in the mucosa and the dose ratio were calculated with different mucosa thicknesses. For the 6 MV photon beams, the dose at the mucosa-bone interface increased by 44.9–41.7%, when the mucosa thickness increased from 1 to 3 mm for the beam angle ranging from 0 to 30°. These values were lower than those (58.8–53.6%) for the 18 MV photon beams with the same beam angle range. For both the 6 and 18 MV photon beams, depth doses in the mucosa were found to increase with an increase of the beam angle. Moreover, the dose gradient in the mucosa was greater for the 18 MV photon beams compared to the 6 MV. For the dose ratio, it was found that the dose enhancement due to the bone backscatter increased with a decrease of mucosa thickness, and was more significant at both the air-mucosa and mucosa-bone interface. Mucosal dose with bone was investigated by Monte Carlo simulations with different experimental configurations, and was found vary with the beam energy, beam angle and mucosa thickness for a small segmental photon field. The dosimetric information in this study should be considered when searching for an optimized treatment strategy to minimize the mucosal complications in the head-and-neck intensity-modulated radiation therapy.
Collapse
|
31
|
Chow JCL, Jiang R, Leung MKK. Dosimetry of oblique tangential photon beams calculated by superposition/convolution algorithms: a Monte Carlo evaluation. J Appl Clin Med Phys 2010; 12:3424. [PMID: 21330989 PMCID: PMC5718594 DOI: 10.1120/jacmp.v12i1.3424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/14/2010] [Accepted: 09/24/2010] [Indexed: 11/23/2022] Open
Abstract
Although there are many works on evaluating dose calculations of the anisotropic analytical algorithm (AAA) using various homogeneous and heterogeneous phantoms, related work concerning dosimetry due to tangential photon beam is lacking. In this study, dosimetry predicted by the AAA and collapsed cone convolution (CCC) algorithm was evaluated using the tangential photon beam and phantom geometry. The photon beams of 6 and 15 MV with field sizes of 4 × 4 (or 7 × 7), 10 × 10 and 20 × 20 cm², produced by a Varian 21 EX linear accelerator, were used to test performances of the AAA and CCC using Monte Carlo (MC) simulation (EGSnrc-based code) as a benchmark. Horizontal dose profiles at different depths, phantom skin profiles (i.e., vertical dose profiles at a distance of 2 mm from the phantom lateral surface), gamma dose distributions, and dose-volume histograms (DVHs) of skin slab were determined. For dose profiles at different depths, the CCC agreed better with doses in the air-phantom region, while both the AAA and CCC agreed well with doses in the penumbra region, when compared to the MC. Gamma evaluations between the AAA/CCC and MC showed that deviations of 2D dose distribution occurred in both beam edges in the phantom and air-phantom interface. Moreover, the gamma dose deviation is less significant in the air-phantom interface than the penumbra. DVHs of skin slab showed that both the AAA and CCC underestimated the width of the dose drop-off region for both the 6 and 15 MV photon beams. When the gantry angle was 0°, it was found that both the AAA and CCC overestimated doses in the phantom skin profiles compared to the MC, with various photon beam energies and field sizes. The mean dose differences with doses normalized to the prescription point for the AAA and CCC were respectively: 7.6% ± 2.6% and 2.1% ± 1.3% for a 10 × 10 cm2 field, 6 MV; 16.3%± 2.1% and 6.7% ± 2.1% for a 20 × 20 cm2 field, 6 MV; 5.5% ± 1.2% and 1.7% ± 1.4% for a 10 × 10 cm2, 15 MV; 18.0% ± 1.3% and 8.3% ± 1.8% for a 20 × 20 cm², 15 MV. However, underestimations of doses in the phantom skin profile were found with small fields of 4 × 4 and 7 × 7 cm² for the 6 and 15 MV photon beams, respectively, when the gantry was turned 5° anticlockwise. As surface dose with tangential photon beam geometry is important in some radiation treatment sites such as breast, chest wall and sarcoma, it is found that neither of the treatment planning system algorithms can predict the dose well at depths shallower than 2 mm. The dosimetry data and beam and phantom geometry in this study provide a better knowledge of a dose calculation algorithm in tangential-like irradiation.
Collapse
Affiliation(s)
- James C L Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Toronto, ON, Canada.
| | | | | |
Collapse
|
32
|
Schiefer H, Fogliata A, Nicolini G, Cozzi L, Seelentag WW, Born E, Hasenbalg F, Roth J, Schnekenburger B, Münch-Berndl K, Vallet V, Pachoud M, Reiner B, Dipasquale G, Krusche B, Fix MK. The Swiss IMRT dosimetry intercomparison using a thorax phantom. Med Phys 2010; 37:4424-31. [DOI: 10.1118/1.3460795] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
33
|
Nakaguchi Y, Araki F, Maruyama M, Fukuda S. [Comparison of RTPS and Monte Carlo dose distributions in heterogeneous phantoms for photon beams]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2010; 66:322-333. [PMID: 20625219 DOI: 10.6009/jjrt.66.322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The purpose of this study was to compare dose distributions from three different RTPS with those from Monte Carlo (MC) calculations and measurements, in heterogeneous phantoms for photon beams. This study used four algorithms for RTPS: AAA (analytical anisotropic algorithm) implemented in the Eclipse (Varian Medical Systems) treatment planning system, CC (collapsed cone) superposition from the Pinnacle (Philips), and MGS (multigrid superposition) and FFT (fast Fourier transform) convolution from XiO (CMS). The dose distributions from these algorithms were compared with those from MC and measurements in a set of heterogeneous phantoms. Eclipse/AAA underestimated the dose inside the lung region for low energies of 4 and 6 MV. This is because Eclipse/AAA do not adequately account for a scaling of the spread of the pencil (lateral electron transport) based on changes in the electron density at low photon energies. The dose distributions from Pinnacle/CC and XiO/MGS almost agree with those of MC and measurements at low photon energies, but increase errors at high energy of 15 MV, especially for a small field of 3x3 cm(2). The FFT convolution extremely overestimated the dose inside the lung slab compared to MC. The dose distributions from the superposition algorithms almost agree with those from MC as well as measured values at 4 and 6 MV. The dose errors for Eclipse/AAA are lager in lung model phantoms for 4 and 6 MV. It is necessary to use the algorithms comparable to superposition for accuracy of dose calculations in heterogeneous regions.
Collapse
Affiliation(s)
- Yuji Nakaguchi
- Department of Radiological Technology, Kumamoto University Hospital, Japan
| | | | | | | |
Collapse
|