1
|
Juma VO, Sainz-DeMena D, Sánchez MT, García-Aznar JM. Effects of tumour heterogeneous properties on modelling the transport of radiative particles. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3760. [PMID: 37496300 DOI: 10.1002/cnm.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Dose calculation plays a critical role in radiotherapy (RT) treatment planning, and there is a growing need to develop accurate dose deposition models that incorporate heterogeneous tumour properties. Deterministic models have demonstrated their capability in this regard, making them the focus of recent treatment planning studies as they serve as a basis for simplified models in RT treatment planning. In this study, we present a simplified deterministic model for photon transport based on the Boltzmann transport equation (BTE) as a proof-of-concept to illustrate the impact of heterogeneous tumour properties on RT treatment planning. We employ the finite element method (FEM) to simulate the photon flux and dose deposition in real cases of diffuse intrinsic pontine glioma (DIPG) and neuroblastoma (NB) tumours. Importantly, in light of the availability of pipelines capable of extracting tumour properties from magnetic resonance imaging (MRI) data, we highlight the significance of such data. Specifically, we utilise cellularity data extracted from DIPG and NB MRI images to demonstrate the importance of heterogeneity in dose calculation. Our model simplifies the process of simulating a RT treatment system and can serve as a useful starting point for further research. To simulate a full RT treatment system, one would need a comprehensive model that couples the transport of electrons and photons.
Collapse
Affiliation(s)
- Victor Ogesa Juma
- Mechanical Engineering Department, Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Diego Sainz-DeMena
- Mechanical Engineering Department, Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - María Teresa Sánchez
- Centro Universitario de la Defensa de Zaragoza, Zaragoza, Spain
- Instituto Universitario de Investigación en Matemáticas y Aplicaciones (IUMA), Universidad de Zaragoza, Zaragoza, Spain
| | - José Manuel García-Aznar
- Mechanical Engineering Department, Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
2
|
Stevens S, Moloney S, Blackmore A, Hart C, Rixham P, Bangiri A, Pooler A, Doolan P. IPEM topical report: guidance for the clinical implementation of online treatment monitoring solutions for IMRT/VMAT. Phys Med Biol 2023; 68:18TR02. [PMID: 37531959 DOI: 10.1088/1361-6560/acecd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
This report provides guidance for the implementation of online treatment monitoring (OTM) solutions in radiotherapy (RT), with a focus on modulated treatments. Support is provided covering the implementation process, from identification of an OTM solution to local implementation strategy. Guidance has been developed by a RT special interest group (RTSIG) working party (WP) on behalf of the Institute of Physics and Engineering in Medicine (IPEM). Recommendations within the report are derived from the experience of the WP members (in consultation with manufacturers, vendors and user groups), existing guidance or legislation and a UK survey conducted in 2020 (Stevenset al2021). OTM is an inclusive term representing any system capable of providing a direct or inferred measurement of the delivered dose to a RT patient. Information on each type of OTM is provided but, commensurate with UK demand, guidance is largely influenced byin vivodosimetry methods utilising the electronic portal imager device (EPID). Sections are included on the choice of OTM solutions, acceptance and commissioning methods with recommendations on routine quality control, analytical methods and tolerance setting, clinical introduction and staffing/resource requirements. The guidance aims to give a practical solution to sensitivity and specificity testing. Functionality is provided for the user to introduce known errors into treatment plans for local testing. Receiver operating characteristic analysis is discussed as a tool to performance assess OTM systems. OTM solutions can help verify the correct delivery of radiotherapy treatment. Furthermore, modern systems are increasingly capable of providing clinical decision-making information which can impact the course of a patient's treatment. However, technical limitations persist. It is not within the scope of this guidance to critique each available solution, but the user is encouraged to carefully consider workflow and engage with manufacturers in resolving compatibility issues.
Collapse
Affiliation(s)
| | - Stephen Moloney
- University Hospitals Dorset NHS Foundation Trust, Poole, United Kingdom
| | | | - Clare Hart
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Philip Rixham
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Anna Bangiri
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alistair Pooler
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | |
Collapse
|
3
|
Dosimetric evaluation of a treatment planning system using the AAPM Medical Physics Practice Guideline 5.a (MPPG 5.a) validation tests. Phys Eng Sci Med 2022; 45:1341-1353. [PMID: 36352316 DOI: 10.1007/s13246-022-01194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Verifying the accuracy of the dose calculation algorithm is considered one of the most critical steps in radiotherapy treatment for delivering an accurate dose to the patient. This work aimed to evaluate the dosimetric performance of the treatment planning system (TPS) algorithms; the AAA (v. 15.6), AXB (v. 15.6) and eMC (v. 15.6) following the AAPM medical physics practice guideline 5.a (MPPG 5.a) validation tests package in a Varian iX Linear Accelerator (Linac). A series of tests were developed based on the MPPG 5.a. on a Varian's Eclipse TPS (v. 15.6) (Varian Medical Systems). First, the basic photon and electron tests were validated by comparing the TPS calculated dose with the measurements. Next, for heterogeneity tests, we verified the Computed Tomography number to electron density (CT-to-ED) curve by comparing it with the baseline values, and TPS calculated point doses beyond heterogeneous media were compared to the measurements. Finally, for IMRT/VMAT dose validation tests, clinical reference plans were re-calculated on ArcCheck's virtual phantom (Sun Nuclear Corporation, Melbourne, FL, USA) and exported to the Linac for delivery using the ArcCheck dosimetry system. All validation tests were evaluated following the MPPG 5.a recommended tolerances. In basic dose validation tests, the TPS calculated depth dose profiles agreed well with the measurements, with a minimum gamma passing rate of 95% at 2%/2 mm criteria. However, disagreements are seen in the build-up and penumbra region. Results for most point doses in homogeneous water phantoms were within the MPPG 5.a tolerance. For the heterogeneity tests, the CT-to-ED curve was established, and calculated point doses were all within 3% of the measurements for heterogeneous media for both photon algorithms at three energies. These results are within the MPPG5.a the recommended tolerance of 3%. Moreover, for electron beams, the differences between the calculated and measured point doses averaged 5% and 7%, but were just within the MPPG 5.a tolerance of 7%. For IMRT and VMAT validation tests using a gamma criteria of a 2%/2 mm, IMRT plans showed maximum and minimum passing rates of 98.2% and 97.4%, respectively. Whereas VMAT plans showed maximum and minimum passing rates of 100% and 94.3%, respectively. We conclude that the dosimetric accuracy of the Eclipse TPS (v15.6) algorithm is adequate for clinical use. The MPPG 5.a tests are valuable for evaluating dose calculation accuracy and are very useful for TPS upgrade checks, commissioning tests, and routine TPS QA.
Collapse
|
4
|
Geurts MW, Jacqmin DJ, Jones LE, Kry SF, Mihailidis DN, Ohrt JD, Ritter T, Smilowitz JB, Wingreen NE. AAPM MEDICAL PHYSICS PRACTICE GUIDELINE 5.b: Commissioning and QA of treatment planning dose calculations-Megavoltage photon and electron beams. J Appl Clin Med Phys 2022; 23:e13641. [PMID: 35950259 PMCID: PMC9512346 DOI: 10.1002/acm2.13641] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines:
Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. While must is the term to be used in the guidelines, if an entity that adopts the guideline has shall as the preferred term, the AAPM considers that must and shall have the same meaning. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
Collapse
|
5
|
Implementation of the Sievert integral for the calculation of dose distribution around the BEBIG Co-60 high dose rate brachytherapy source. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2022. [DOI: 10.2478/pjmpe-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: In radiotherapy, a computerized treatment planning system (TPS) is used for performing treatment planning to estimate the dose distribution within a patient. To simplify the dose calculation, mathematical algorithms are employed. TG43 formalism is widely used for brachytherapy. Before the implementation of a particular dose calculation algorithm in clinical practice, it is imperative to acknowledge the limitations and uncertainties associated with the algorithm. Regarding this, outputs of the algorithm are compared to measurements or dose calculation approaches using simple source placement geometries. The manual dose calculation method has to be robust, straightforward, and devoid of complexities to reduce the likelihood of committing errors in the dose calculation process. A lot of manual dose calculation approaches have been proposed for Brachytherapy sources, but one needs to ascertain their reliability.
Material and methods: Considering this, the output of an HDRplus treatment planning system dedicated to brachytherapy treatment planning and using the TG43 formalism to calculate the dose distribution around a BEBIG Co-60 source was validated with Sievert integral dose calculation approach. Simple source placement geometries were created with the TPS using the universal applicator, LLA1200-20, selected from the applicator library, and doses at various equidistant points from the applicator calculated with the TPS and the Sievert integral. Various steps to enhance the efficacy of the Sievert integral approach have been outlined.
Results: The doses compared favourably well with deviations ranging from 0.03 – 10.51% (mean of 3.13%), and 0.03 – 5.63% (mean of 2.55%) for angles along the perpendicular bisector of the source, ranging from 0° < θ < 70° and 0° < θ < 48°, respectively.
Conclusions: The Sievert integral breaks down at angles: θ ≥ 60°, and therefore, neglecting large angles, the Sievert integral would be an efficient, effective, and valid tool for quality control of the HDRplus TPS for the Co-60 source.
Collapse
|
6
|
Olaciregui-Ruiz I, Osinga-Blaettermann JM, Ortega-Marin K, Mijnheer B, Mans A. Extending in aqua portal dosimetry with dose inhomogeneity conversion maps for accurate patient dose reconstruction in external beam radiotherapy. Phys Imaging Radiat Oncol 2022; 22:20-27. [PMID: 35493851 PMCID: PMC9038561 DOI: 10.1016/j.phro.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
|
7
|
Bhushan M, Tripathi D, Yadav G, Kumar L, Chowdhary R, Pahuja A, Suhail M, Mitra S, Gairola M. Dosimetric analysis of intensity-modulated radiation therapy and volumetric-modulated arc therapy in comparison with conventional box technique in the treatment of carcinoma cervix: An impact of prosthetic implant. J Cancer Res Ther 2022; 18:1504-1512. [DOI: 10.4103/jcrt.jcrt_835_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Jurado-Bruggeman D, Muñoz-Montplet C, Hernandez V, Saez J, Fuentes-Raspall R. Impact of the dose quantity used in MV photon optimization on dose distribution, robustness, and complexity. Med Phys 2021; 49:648-665. [PMID: 34855988 DOI: 10.1002/mp.15389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/09/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Convolution/superposition algorithms used in megavoltage (MV) photon radiotherapy model radiation transport in water, yielding dose to water-in-water (Dw,w ). Advanced algorithms constitute a step forward, but their dose distributions in terms of dose to medium-in-medium (Dm,m ) or dose to water-in-medium (Dw,m ) can be problematic when used in plan optimization due to their different dose responses to some atomic composition heterogeneities. Failure to take this into account can lead to undesired overcorrections and thus to unnoticed suboptimal and unrobust plans. Dose to reference-like medium (Dref,m* ) was recently introduced to overcome these limitations while ensuring accurate transport. This work evaluates and compares the performance of these four dose quantities in planning target volume (PTV)-based optimization. METHODS We considered three cases with heterogeneities inside the PTV: virtual phantom with water surrounded by bone; head and neck; and lung. These cases were planned with volumetric modulated arc therapy (VMAT) technique, optimizing with the same setup and objectives for each dose quantity. We used different algorithms of the Varian Eclipse treatment planning system (TPS): Acuros XB (AXB) for Dm,m and Dw,m , and Analytical Anisotropic Algorithm (AAA) for Dw,w . Dref,m* was obtained from Dm,m distributions using an in-house software considering water as the reference medium (Dw,m* ). The optimization process consisted of: (1) common first optimization, (2) dose distribution computed for each quantity, (3) re-optimization, and (4) final calculation for each dose quantity. The dose distribution, robustness to patient setup errors, and complexity of the plans were analyzed and compared. RESULTS The quantities showed similar dose distributions after the optimization but differed in terms of plan robustness. The cases with soft tissue and high-density heterogeneities followed the same pattern. For AXB Dm,m , cold regions appeared in the heterogeneities after the first optimization. They were compensated in the second optimization through local fluence increases, but any positional mismatch impacted robustness, with clinical target volume (CTV) variations from the nominal scenario around +3% for bone and up to +7% for metal. For AXB Dw,m the pattern was inverse (hot regions compensated by fluence decreases) and more pronounced, with CTV dose variations around -7% for bone and up to -17% for metal. Neither AXB Dw,m* nor AAA Dw,w presented these dose inhomogeneities, which resulted in more robust plans. However, Dw,w differed markedly from the other quantities in the lung case because of its lower radiation transport accuracy. AXB Dm,m was the most complex of the four dose quantities and AXB Dw,m* the least complex, though we observed no major differences in this regard. CONCLUSIONS The dose quantity used in MV photon optimization can affect plan robustness. Dw,w distributions from convolution/superposition algorithms are robust but may not provide sufficient radiation transport accuracy in some cases. Dm,m and Dw,m from advanced algorithms can compromise robustness because their different responses to some composition heterogeneities introduce additional fluence compensations. Dref,m* offers advantages in plan optimization and evaluation, producing accurate and robust plans without increasing complexity. Dref,m* can be easily implemented as a built-in feature of the TPS and can facilitate and simplify the treatment planning process when using advanced algorithms. Final reporting can be kept in Dm,m or Dw,m for clinical correlations.
Collapse
Affiliation(s)
- Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain
| | - Carles Muñoz-Montplet
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain.,Department of Medical Sciences, University of Girona, Girona, Spain
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain.,Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Fuentes-Raspall
- Department of Medical Sciences, University of Girona, Girona, Spain.,Radiation Oncology Department, Institut Català d'Oncologia, Girona, Spain
| |
Collapse
|
9
|
Srivastava SP, Jani SS, Pinnaduwage DS, Yan X, Rogers L, Barranco FD, Barani IJ, Sorensen S. Treatment planning system and beam data validation for the ZAP-X: A novel self-shielded stereotactic radiosurgery system. Med Phys 2021; 48:2494-2510. [PMID: 33506520 DOI: 10.1002/mp.14740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To evaluate the treatment planning system (TPS) performance of the ZAP-X stereotactic radiosurgery (SRS) system through nondosimetric, dosimetric, and end-to-end (E2E) tests. METHODS A comprehensive set of TPS commissioning and validation tests was developed using published guidelines. Nondosimetric validation tests included information transfer, computed tomography-magnetic resonance (CT-MR) image registration, structure/contouring, geometry, dose tools, and CT density. Dosimetric validation included comparisons between TPS and water tank/Solid Water measurements for various geometries and beam arrangements and end-to-end (E2E) tests. Patient-specific quality assurance was performed with an ion chamber in the Lucy phantom and with Gafchromic EBT3 film in the CyberKnife head phantom. RadCalc was used for independent verification of monitor units. Additional E2E tests were performed using the RPC Gamma Knife thermoluminescent dosimeter (TLD) phantom, MD Anderson SRS head phantom, and PseudoPatient gel phantom for independent absolute dose verification. RESULTS CT-MR image registrations with known translational and rotational offsets were within tolerance (<0.5 × maximum voxel dimension). Slice thickness and distance accuracy were within 0.1 mm, and volume accuracy was within 0 to 0.11 cm3 . Treatment planning system volume measurement uncertainty was within 0.1 to 0.4 cm3 . Ion chamber point-dose measurements for a single beam in a water phantom agreed to TPS-calculated values within ±4% for collimator diameters 10 to 25 mm, and ±6% for 7.5 mm, for all measured depths (7, 50, 100, 150, and 200 mm). In homogeneous Solid Water, point-dose measurements agreed to within ±4% for cones sizes 7.5 to 25 mm. With 1-cm high/low density inserts, measurements were within ±4.2% for cone sizes 10 to 25 mm. Film-based E2E using 4/5-mm cones resulted in a gamma passing rate (%GP) of 99.8% (2%/1.5 mm). Point-dose measurements in a Lucy phantom with an ion chamber using 36 beams distributed along three noncoplanar arcs agreed to within ±4% for cone sizes 10 to 25 mm. The RPC Gamma Knife TLD phantom yielded passing results with a measured-to-expected TLD dose ratio of 1.02. The MD Anderson SRS head phantom yielded passing results, with 4% TLD agreement and %GP of 95%/93% (5%/3 mm) for coronal/sagittal film planes. The RTsafe gel phantom gave %GP of >95% (5%/2 mm) for all four targets. For our first 58 patients, film-based patient-specific quality assurance has resulted in an average %GP of 98.7% (range, 94-100%) at 2%/2 mm. CONCLUSIONS Core ZAP-X features were found to be functional. On the basis of our results, point-dose and planar measurements were in agreement with TPS calculations using multiple phantoms and setup geometries, validating the ZAP-X TPS beam model for clinical use.
Collapse
Affiliation(s)
- Shiv P Srivastava
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Shyam S Jani
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Dilini S Pinnaduwage
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Xiangsheng Yan
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Leland Rogers
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - F David Barranco
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Igor J Barani
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Stephen Sorensen
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
10
|
Jurado-Bruggeman D, Muñoz-Montplet C, Vilanova JC. A new dose quantity for evaluation and optimisation of MV photon dose distributions when using advanced algorithms: proof of concept and potential applications. Phys Med Biol 2020; 65:235020. [PMID: 32906107 DOI: 10.1088/1361-6560/abb6bc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Advanced algorithms used in MV photon radiotherapy model radiation transport in any media. They represent a step forward but introduce new uncertainties and questions, including whether to report the doses to water (Dw,m) or medium (Dm,m) voxels, and the impact of fluence changes introduced by surrounding media. These aspects can compromise consistency between both reporting modes and with previous algorithms in which clinical experience is based. This study introduces a new dose quantity, the dose-to-reference-like medium, to overcome the aforementioned shortcomings. It is linked to a reference medium, water in this study (Dw,m*), and defined as the absorbed dose in a voxel of this reference medium surrounded by a reference-like medium with the same radiation transport characteristics as the original one. We propose to derive Dw,m* distributions by post-processing Dw,m or Dm,m applying a correction factor (CF) to each voxel which depends on its composition. We present and justify a simple and straightforward method to obtain CFs that only involves two phantoms with the same density: one with the considered composition and the other with that of the reference medium. A proof of concept was performed in a clinical environment for Acuros XB (AXB) advanced algorithm and 6 MV photon beams. The CFs were derived for the tissues characterised in Acuros. Dw,m* was compared to Dw,m, Dm,m, and Dw,w from AAA analytical algorithm for some virtual and clinical cases. All the previous quantities presented limitations that can be solved by Dw,m*. This new quantity allows the applicability of evaluation parameters, traceability to clinical experience, and isolation of heterogeneity effects to identify optimum plans, offering useful characteristics for plan evaluation and optimisation in clinical practice. Additionally, it also has potential applications in automated treatment planning and multi-centre activities such as clinical trials, audits, benchmarking, and shared models for automation.
Collapse
Affiliation(s)
- Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain
| | | | | |
Collapse
|
11
|
Sarin B, Bindhu B, Saju B, Nair RK. Validation of PRIMO Monte Carlo Model of Clinac ®iX 6MV Photon Beam. J Med Phys 2020; 45:24-35. [PMID: 32355432 PMCID: PMC7185709 DOI: 10.4103/jmp.jmp_75_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/04/2022] Open
Abstract
Purpose This study aims to model 6MV photon of Clinac®iX linear accelerator using PRIMO Monte Carlo (MC) code and to assess PRIMO as an independent MC-based dose verification and quality assurance tool. Materials and Methods The modeling of Clinac®iX linear accelerator has been carried out by using PRIMO simulation software (Version 0.3.1.1681). The simulated beam parameters were compared against the measured beam data of the Clinac®iX machine. The PRIMO simulation model of Clinac®iX was also validated against Eclipse® Acuros XB dose calculations in the case of both homogenous and inhomogeneous mediums. The gamma analysis method with the acceptance criteria of 2%, 2 mm was used for the comparison of dose distributions. Results Gamma analysis shows a minimum pass percentage of 99% for depth dose curves and 95.4% for beam profiles. The beam quality index and output factors and absolute point dose show good agreement with measurements. The validation of PRIMO dose calculations, in both homogeneous and inhomogeneous medium, against Acuros® XB shows a minimum gamma analysis pass rate of 99%. Conclusions This study shows that the research software PRIMO can be used as a treatment planning system-independent quality assurance and dose verification tool in daily clinical practice. Further validation will be performed with different energies, complex multileaf collimators fields, and with dynamic treatment fields.
Collapse
Affiliation(s)
- B Sarin
- Department of Physics, Noorul Islam Centre For Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India.,Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - B Bindhu
- Department of Physics, Noorul Islam Centre For Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - B Saju
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Raguram K Nair
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
12
|
Alexandrian AN, Mavroidis P, Narayanasamy G, McConnell KA, Kabat CN, George RB, Defoor DL, Kirby N, Papanikolaou N, Stathakis S. Incorporating biological modeling into patient‐specific plan verification. J Appl Clin Med Phys 2020; 21:94-107. [PMID: 32101368 PMCID: PMC7075379 DOI: 10.1002/acm2.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose Dose–volume histogram (DVH) measurements have been integrated into commercially available quality assurance systems to provide a metric for evaluating accuracy of delivery in addition to gamma analysis. We hypothesize that tumor control probability and normal tissue complication probability calculations can provide additional insight beyond conventional dose delivery verification methods. Methods A commercial quality assurance system was used to generate DVHs of treatment plan using the planning CT images and patient‐specific QA measurements on a phantom. Biological modeling was performed on the DVHs produced by both the treatment planning system and the quality assurance system. Results The complication‐free tumor control probability, P+, has been calculated for previously treated intensity modulated radiotherapy (IMRT) patients with diseases in the following sites: brain (−3.9% ± 5.8%), head‐neck (+4.8% ± 8.5%), lung (+7.8% ± 1.3%), pelvis (+7.1% ± 12.1%), and prostate (+0.5% ± 3.6%). Conclusion Dose measurements on a phantom can be used for pretreatment estimation of tumor control and normal tissue complication probabilities. Results in this study show how biological modeling can be used to provide additional insight about accuracy of delivery during pretreatment verification.
Collapse
Affiliation(s)
- Ara N. Alexandrian
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Panayiotis Mavroidis
- Department of Radiation Oncology University of North Carolina Chapel Hill NC USA
| | - Ganesh Narayanasamy
- Department of Radiation Oncology University of Arkansas for Medical Sciences Little Rock AR USA
| | - Kristen A. McConnell
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Christopher N. Kabat
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Renil B. George
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Dewayne L. Defoor
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Neil Kirby
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Nikos Papanikolaou
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Sotirios Stathakis
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| |
Collapse
|
13
|
Sillanpaa J, Lovelock M, Mueller B. The effects of the orthopedic metal artifact reduction (O-MAR) algorithm on contouring and dosimetry of head and neck radiotherapy patients. Med Dosim 2019; 45:92-96. [PMID: 31375297 DOI: 10.1016/j.meddos.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
Metallic objects, such as dental fillings, cause artifacts in computed tomography (CT) scans. We quantify the contouring and dosimetric effects of Orthopedic Metal Artifact Reduction (O-MAR), in head and neck radiotherapy. The ease of organ contouring was assessed by having a radiation oncologist identify the CT data set with or without O-MAR for each of 28 patients that was easier to contour. The effect on contouring was quantified further by having the physician recontour parotid glands, previously drawn by him on the O-MAR scans, on uncorrected scans, and calculating the Dice coefficent (a measure of overlap) for the contours. Radiotherapy plans originally generated on scans reconstructed with O-MAR were recalculated on scans without metal artifact correction. The study was done using the Analytical Anisotropic Algorithm (AAA) dose calculation algorithm. The 15 patients with a planning target volume (PTV) extending to the same slice as the artifacts were used for this part of the study. The normal tissue doses were not significantly affected. The PTV mean dose and V95 were not affected, but the cold spots became less severe in the O-MAR corrected plans, with the minimum point dose on average being 4.1% higher. In 79% of the cases, the radiation oncologist identified the O-MAR scan as easier to contour; in 11% he chose the uncorrected scan and in 11% the scans were judged to have equal quality. A total of nine parotid glands (on both scans-18 contours in total) in 5 patients were recontoured. The average Dice coefficient for parotids drawn with and without O-MAR was found to be 0.775 +/- 0.045. The O-MAR algorithm does not produce a significant dosimetric effect in head and neck plans when using the AAA dose calculation algorithm. It can therefore be used for improved contouring accuracy without updating the critical structure tolerance doses and target coverage expectations.
Collapse
Affiliation(s)
- Jussi Sillanpaa
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NJ 07748, USA.
| | - Michael Lovelock
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NJ 07748, USA
| | - Boris Mueller
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NJ 07748, USA
| |
Collapse
|
14
|
A comparison of Monte Carlo, anisotropic analytical algorithm (AAA) and Acuros XB algorithms in assessing dosimetric perturbations during enhanced dynamic wedged radiotherapy deliveries in heterogeneous media. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396918000262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractBackgroundA comparison of anisotropic analytical algorithm (AAA) and Acuros XB (AXB) dose calculation algorithms with Electron Gamma Shower (EGSnrc) Monte Carlo (MC) for modelling lung and bone heterogeneities encountered during enhanced dynamic wedged (EDWs) radiotherapy dose deliveries was carried out.Materials and methodsIn three heterogenous slab phantoms: water–bone, lung–bone and bone–lung, wedged percentage depth doses with EGSnrc, AAA and AXB algorithms for 6 MV photons for various field sizes (5×5, 10×10 and 20×20 cm2) and EDW angles (15°, 30°, 45° and 60°) have been scored.ResultsFor all the scenarios, AAA and AXB results were within ±1% of the MC in the pre-inhomogeneity region. For water–bone AAA and AXB deviated by 6 and 1%, respectively. For lung–bone an underestimation in lung (AAA: 5%, AXB: 2%) and overestimation in bone was observed (AAA: 13%, AXB: 4%). For bone–lung phantom overestimation in bone (AAA: 7%, AXB: 1%), a lung underdosage (AAA: 8%, AXB: 5%) was found. Post bone up to 12% difference in the AAA and MC results was observed as opposed to 6% in case of AXB.ConclusionThis study demonstrated the limitation of the AAA (in certain scenarios) and accuracy of AXB for dose estimation inside and around lung and bone inhomogeneities. The dose perturbation effects were found to be slightly dependent on the field size with no obvious EDW dependence.
Collapse
|
15
|
Reis CQM, Nicolucci P, Fortes SS, Silva LP. Effects of heterogeneities in dose distributions under nonreference conditions: Monte Carlo simulation vs dose calculation algorithms. Med Dosim 2018; 44:74-82. [PMID: 29598926 DOI: 10.1016/j.meddos.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 12/09/2022]
Abstract
The purpose of this study is to evaluate the performance of dose calculation algorithms used in radiotherapy treatment planning systems (TPSs) in comparison with Monte Carlo (MC) simulations in nonelectronic equilibrium conditions. MC simulations with PENELOPE package were performed for comparison of doses calculated by pencil beam convolution (PBC), analytical anisotropy algorithm (AAA), and Acuros XB TPS algorithms. Relative depth dose curves were calculated in heterogeneous water phantoms with layers of bone (1.8 g/cm3) and lung (0.3 g/cm3) equivalent materials for radiation fields between 1 × 1 cm2 and 10 × 10 cm2. Analysis of relative depth dose curves at the water-bone interface shows that PBC and AAA algorithms present the largest differences to MC calculations (uMC = 0.5%), with maximum differences of up to 4.3% of maximum dose. For the lung-equivalent material and 1 × 1 cm2 field, differences can be up to 24.3% for PBC, 11.5% for AAA, and 7.5% for Acuros. Results show that Acurus presents the best agreement with MC simulation data with equivalent accuracy for modeling radiotherapy dose deposition especially in regions where electronic equilibrium does not hold. For typical (nonsmall) fields used in radiotherapy, AAA and PBC can exhibit reasonable agreement with MC results even in regions of heterogeneities.
Collapse
Affiliation(s)
- Cristiano Queiroz Melo Reis
- Departamento de Física Médica, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Praça da Cruz Vermelha, Rio de Janeiro, RJ 20230-130, Brazil.
| | - Patricia Nicolucci
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040901, Brazil
| | - Saulo S Fortes
- Departamento de Física Médica, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Praça da Cruz Vermelha, Rio de Janeiro, RJ 20230-130, Brazil
| | - Leonardo P Silva
- Departamento de Física Médica, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Praça da Cruz Vermelha, Rio de Janeiro, RJ 20230-130, Brazil
| |
Collapse
|
16
|
Yuan J, Machtay M. A Monte Carlo model and its commissioning for the Leksell Gamma Knife Perfexion radiosurgery system. Med Phys 2017; 44:4910-4918. [PMID: 28599073 DOI: 10.1002/mp.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/25/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop and commission a Monte Carlo (MC) simulation model for the Leksell Gamma Knife (LGK) Perfexion (PFX) radiosurgery system. METHOD We previously established a source model for MC simulations of the LGK PFX for the purpose of the treatment planning system (TPS) dose verification and plan evaluation. To make practical and effective use of the model in clinic, several issues need to be addressed. First, thorough commissioning procedures are needed to ensure the validity of the model parameters, such as the source-to-focus (STF) distance, the source solid angle. Second, an efficient source particle sampling method is required to facilitate dose calculations for multitarget and multishot configurations in patient treatment plans. Third, inseparably, it is interesting to know the dose difference between the two GK TPS algorithms (TMR and convolution) and the MC method in extreme heterogeneous cases resulting from the inhomogeneous effect. We report our recent development in addressing these issues. Phantoms with the frame fiducials were manually created in the format of DICOM CT image to eliminate the uncertainties associated with scanner artifacts and image registration. The created homogeneous phantom was used to calibrate the model parameters to match the output factors with the manufacturer provided data, and the heterogeneous phantom with multilayer materials was used to study the inhomogeneous effect. RESULTS The agreement between the MC calculation and TPS was very good for the homogeneous spherical phantom. The difference of the full width at half maximum (FWHM) of the profiles was less than 1 mm except for the profile for 16 mm collimator along z-axis (less than 2 mm). For the extreme heterogeneous test case, it was shown that the TMR algorithm can overestimate the target dose by up to 22% using the measure of dose volume parameter D95. The agreement between the MC method and the TPS convolution method was better (within 3.6%) for the target near the center of phantom, however, discrepancy (up to 10.7%) existed for the target close to the skull. The difference between the two TPS dose algorithms was about 11%. CONCLUSIONS Considerable dose difference may result from the effect of heterogeneity, such as in the regions of the air cavities and bones. As the MC method has been extensively used in conventional external beams, it is worthwhile for further investigation in applying the MC method to accurate dose planning in the new GK PFX radiosurgery platform.
Collapse
Affiliation(s)
- Jiankui Yuan
- Cleveland Medical Center, University Hospitals, Cleveland, OH, 44106, USA
| | - Mitchell Machtay
- Cleveland Medical Center, University Hospitals, Cleveland, OH, 44106, USA
| |
Collapse
|
17
|
Knudtsen IS, Svestad JG, Skaug Sande EP, Rekstad BL, Rødal J, van Elmpt W, Öllers M, Hole EO, Malinen E. Validation of dose painting of lung tumours using alanine/EPR dosimetry. Phys Med Biol 2016; 61:2243-54. [DOI: 10.1088/0031-9155/61/6/2243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Tremblay JÉ, Bedwani S, Bouchard H. A theoretical comparison of tissue parameter extraction methods for dual energy computed tomography. Med Phys 2015; 41:081905. [PMID: 25086536 DOI: 10.1118/1.4886055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To evaluate the reliability of common sinogram-based DECT reconstruction methods for radiotherapy tissue characterization and to evaluate the advantage of combining them with a stoichiometric calibration. METHODS The sinogram-based DECT method defined byAlvarez and Macovski ["Energy-selective reconstructions in x-ray computerized tomography," Phys. Med. Biol. 21, 733-744 (1976)] is adapted to the XCOM photon cross sections database and also generalized to a two-material decomposition method. A theoretical framework is developed using a test phantom containing human tissue compositions for comparing the sinogram-based methods and the calibration-based method, being defined as the application of the stoichiometric calibration technique of Bourque et al. ["A stoichiometric calibration method for dual energy computed tomography," Phys. Med. Biol. 59, 2059-2088 (2014)] on monoenergetic images being generated with a sinogram-based method. Applying a bias correction to the sinogram-based method, its performance in extracting human tissue parameters in the presence of noise as well as by altering the photon energy spectrum is compared to the calibration-based method. RESULTS In the absence of noise and without spectrum alteration, the calibration-based method is found to have no benefit on the sinogram-based method. However, the calibration-based method is shown to be potentially more reliable than bias-corrected sinogram-based methods in situations comparable to the clinical environment, where noise is present and the photon energy spectra can differ from what is used during image reconstruction. In determining electron density, the performance of all methods is comparable in the presence of noise only. Moreover, combined with heavy spectrum alteration, the mean errors on electron density are found higher in sinogram-based methods in comparison with the calibration-based method, with 1.2% versus 0.2%. In the presence of significant noise, bias-corrected sinogram-based methods yield mean errors on effective atomic number of about 2.5%, as compared to 0.5% for the calibration-based method. When combined with heavy spectrum alteration, bias-corrected sinogram-based methods can lead to error of up to 4% on the effective atomic number versus 1.8% for the calibration-based method. CONCLUSIONS While sinogram-based methods have the advantage of eliminating beam hardening effects, results of this study suggest improvements in the accuracy and reliability of extracting tissue parameters by applying the DECT stoichiometric calibration of Bourqueet al. to monoenergetic images being generated with such DECT reconstruction methods.
Collapse
Affiliation(s)
- Jean-Étienne Tremblay
- Département de Radio-Oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1560 rue Sherbrooke est, Montréal, Québec H2L 4M1, Canada
| | - Stéphane Bedwani
- Département de Radio-Oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1560 rue Sherbrooke est, Montréal, Québec H2L 4M1, Canada
| | - Hugo Bouchard
- Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| |
Collapse
|
19
|
Smilowitz JB, Das IJ, Feygelman V, Fraass BA, Kry SF, Marshall IR, Mihailidis DN, Ouhib Z, Ritter T, Snyder MG, Fairobent L. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations - Megavoltage Photon and Electron Beams. J Appl Clin Med Phys 2015; 16:14–34. [PMID: 26699330 PMCID: PMC5690154 DOI: 10.1120/jacmp.v16i5.5768] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 12/02/2022] Open
Abstract
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines:• Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.• Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
Collapse
|
20
|
Higgins PD, Ehler ED, Cho LC, Dusenbery KE. Effect of lung and target density on small-field dose coverage and PTV definition. Med Dosim 2015; 40:16-20. [DOI: 10.1016/j.meddos.2014.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/12/2014] [Indexed: 12/01/2022]
|
21
|
Kalantzis G, Tachibana H. Accelerated event-by-event Monte Carlo microdosimetric calculations of electrons and protons tracks on a multi-core CPU and a CUDA-enabled GPU. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2013; 113:116-125. [PMID: 24113420 DOI: 10.1016/j.cmpb.2013.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 06/02/2023]
Abstract
For microdosimetric calculations event-by-event Monte Carlo (MC) methods are considered the most accurate. The main shortcoming of those methods is the extensive requirement for computational time. In this work we present an event-by-event MC code of low projectile energy electron and proton tracks for accelerated microdosimetric MC simulations on a graphic processing unit (GPU). Additionally, a hybrid implementation scheme was realized by employing OpenMP and CUDA in such a way that both GPU and multi-core CPU were utilized simultaneously. The two implementation schemes have been tested and compared with the sequential single threaded MC code on the CPU. Performance comparison was established on the speed-up for a set of benchmarking cases of electron and proton tracks. A maximum speedup of 67.2 was achieved for the GPU-based MC code, while a further improvement of the speedup up to 20% was achieved for the hybrid approach. The results indicate the capability of our CPU-GPU implementation for accelerated MC microdosimetric calculations of both electron and proton tracks without loss of accuracy.
Collapse
Affiliation(s)
- Georgios Kalantzis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | | |
Collapse
|
22
|
Calvo OI, Gutiérrez AN, Stathakis S, Esquivel C, Papanikolaou N. On the quantification of the dosimetric accuracy of collapsed cone convolution superposition (CCCS) algorithm for small lung volumes using IMRT. J Appl Clin Med Phys 2012; 13:3751. [PMID: 22584174 PMCID: PMC5716560 DOI: 10.1120/jacmp.v13i3.3751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/03/2012] [Indexed: 11/23/2022] Open
Abstract
Specialized techniques that make use of small field dosimetry are common practice in today's clinics. These new techniques represent a big challenge to the treatment planning systems due to the lack of lateral electronic equilibrium. Because of this, the necessity of planning systems to overcome such difficulties and provide an accurate representation of the true value is of significant importance. Pinnacle3 is one such planning system. During the IMRT optimization process, Pinnacle3 treatment planning system allows the user to specify a minimum segment size which results in multiple beams composed of several subsets of different widths. In this study, the accuracy of the engine dose calculation, collapsed cone convolution superposition algorithm (CCCS) used by Pinnacle3, was quantified by Monte Carlo simulations, ionization chamber, and Kodak extended dose range film (EDR2) measurements for 11 SBRT lung patients. Lesions were < 3.0 cm in maximal diameter and <27.0cm3 in volume. The Monte Carlo EGSnrc\BEAMnrc and EGS4\MCSIM were used in the comparison. The minimum segment size allowable during optimization had a direct impact on the number of monitor units calculated for each beam. Plans with the smallest minimum segment size (0.1 cm2 to 2.0 cm2) had the largest number of MUs. Although PTV coverage remained unaffected, the segment size did have an effect on the dose to the organs at risk. Pinnacle3-calculated PTV mean doses were in agreement with Monte Carlo-calculated mean doses to within 5.6% for all plans. On average, the mean dose difference between Monte Carlo and Pinnacle3 for all 88 plans was 1.38%. The largest discrepancy in maximum dose was 5.8%, and was noted for one of the plans using a minimum segment size of 1.0 cm2. For minimum dose to the PTV, a maximum discrepancy between Monte Carlo and Pinnacle3 was noted of 12.5% for a plan using a 6.0 cm2 minimum segment size. Agreement between point dose measurements and Pinnacle3-calculated doses were on average within 0.7% in both phantoms. The profiles show a good agreement between Pinnacle3, Monte Carlo, and EDR2 film. The gamma index and the isodose lines support the result.
Collapse
Affiliation(s)
- Oscar I Calvo
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center, The University of Texas Health Science Center San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
23
|
Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys 2011; 38:2208-21. [PMID: 21626955 DOI: 10.1118/1.3567146] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The dosimetric accuracy of the recently released Acuros XB advanced dose calculation algorithm (Varian Medical Systems, Palo Alto, CA) is investigated for single radiation fields incident on homogeneous and heterogeneous geometries, and a comparison is made to the analytical anisotropic algorithm (AAA). METHODS Ion chamber measurements for the 6 and 18 MV beams within a range of field sizes (from 4.0 x 4.0 to 30.0 x 30.0 cm2) are used to validate Acuros XB dose calculations within a unit density phantom. The dosimetric accuracy of Acuros XB in the presence of lung, low-density lung, air, and bone is determined using BEAMnrc/DOSXYZnrc calculations as a benchmark. Calculations using the AAA are included for reference to a current superposition/convolution standard. RESULTS Basic open field tests in a homogeneous phantom reveal an Acuros XB agreement with measurement to within +/- 1.9% in the inner field region for all field sizes and energies. Calculations on a heterogeneous interface phantom were found to agree with Monte Carlo calculations to within +/- 2.0% (sigmaMC = 0.8%) in lung (p = 0.24 g cm(-3)) and within +/- 2.9% (sigmaMC = 0.8%) in low-density lung (p = 0.1 g cm(-3)). In comparison, differences of up to 10.2% and 17.5% in lung and low-density lung were observed in the equivalent AAA calculations. Acuros XB dose calculations performed on a phantom containing an air cavity (p = 0.001 g cm(-3)) were found to be within the range of +/- 1.5% to +/- 4.5% of the BEAMnrc/DOSXYZnrc calculated benchmark (sigmaMC = 0.8%) in the tissue above and below the air cavity. A comparison of Acuros XB dose calculations performed on a lung CT dataset with a BEAMnrc/DOSXYZnrc benchmark shows agreement within +/- 2%/2mm and indicates that the remaining differences are primarily a result of differences in physical material assignments within a CT dataset. CONCLUSIONS By considering the fundamental particle interactions in matter based on theoretical interaction cross sections, the Acuros XB algorithm is capable of modeling radiotherapy dose deposition with accuracy only previously achievable with Monte Carlo techniques.
Collapse
Affiliation(s)
- K Bush
- Department of Medical Physics, British Columbia Cancer Agency-Vancouver Island Center, Victoria, British Columbia V8R 6V5, Canada.
| | | | | | | | | |
Collapse
|
24
|
Chen Q, Chen M, Lu W. Ultrafast convolution/superposition using tabulated and exponential kernels on GPU. Med Phys 2011; 38:1150-61. [PMID: 21520827 DOI: 10.1118/1.3551996] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Collapsed-cone convolution/superposition (CCCS) dose calculation is the workhorse for IMRT dose calculation. The authors present a novel algorithm for computing CCCS dose on the modern graphic processing unit (GPU). METHODS The GPU algorithm includes a novel TERMA calculation that has no write-conflicts and has linear computation complexity. The CCCS algorithm uses either tabulated or exponential cumulative-cumulative kernels (CCKs) as reported in literature. The authors have demonstrated that the use of exponential kernels can reduce the computation complexity by order of a dimension and achieve excellent accuracy. Special attentions are paid to the unique architecture of GPU, especially the memory accessing pattern, which increases performance by more than tenfold. RESULTS As a result, the tabulated kernel implementation in GPU is two to three times faster than other GPU implementations reported in literature. The implementation of CCCS showed significant speedup on GPU over single core CPU. On tabulated CCK, speedups as high as 70 are observed; on exponential CCK, speedups as high as 90 are observed. CONCLUSIONS Overall, the GPU algorithm using exponential CCK is 1000-3000 times faster over a highly optimized single-threaded CPU implementation using tabulated CCK, while the dose differences are within 0.5% and 0.5 mm. This ultrafast CCCS algorithm will allow many time-sensitive applications to use accurate dose calculation.
Collapse
Affiliation(s)
- Quan Chen
- TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717, USA
| | | | | |
Collapse
|
25
|
|