1
|
Chowdhury AA, Bolton S, Lowe G, Vasquez Osorio E, Hamblyn W, Hoskin PJ. The clinical application of in vivo dosimetry for gynaecological brachytherapy: A scoping review. Tech Innov Patient Support Radiat Oncol 2025; 33:100290. [PMID: 39802319 PMCID: PMC11718348 DOI: 10.1016/j.tipsro.2024.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
Brachytherapy is a key treatment for gynaecological malignancies, delivering high doses to the tumour volume whilst sparing nearby normal tissues due to its steep dose gradient. Accuracy is imperative as small shifts can lead to clinically significant under- or over-dosing of the target volume or organs at risk (OARs), respectively. Independent verification of dose delivered during brachytherapy is not routinely performed but it is important to identify gross errors and define action thresholds to guide inter-fraction treatment decisions. In vivo dosimetry (IVD) is one strategy for improving accuracy and identifying potential errors. Despite promising phantom work, clinical application of IVD is lacking. A literature search was performed using Medline and EMBASE without date limits and based on the PICO framework to evaluate the clinical application of IVD in gynaecological brachytherapy. After screening of titles and abstracts, full text papers were reviewed and 28 studies were identified. Several dosimeters were utilised and measurements were typically taken from the rectum, bladder, vagina and within interstitial catheters. Significant differences between calculated and measured dose were attributed to geometric shifts. The studies reviewed demonstrated the feasibility of IVD in brachytherapy for dose verification but further work is required before IVD can be used to optimise treatment. The purpose of this scoping review is to investigate the clinical application of IVD in gynaecological brachytherapy, understand its challenges and identify the steps required to facilitate integration into everyday clinical practice.
Collapse
Affiliation(s)
- Amani A. Chowdhury
- Mount Vernon Cancer Centre, Northwood, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Steve Bolton
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Gerry Lowe
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | | | | | - Peter J Hoskin
- Mount Vernon Cancer Centre, Northwood, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Tho D, Bélanger C, Jørgensen EB, Tanguay J, Rosales HML, Beddar S, Johansen JG, Kertzscher G, Lavallée MC, Beaulieu L. Establishing a fingerprinting method for fast catheter identification in HDR brachytherapy in vivo dosimetry. Brachytherapy 2024; 23:165-172. [PMID: 38281894 DOI: 10.1016/j.brachy.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2023] [Accepted: 10/06/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE To use quantities measurable during in vivo dosimetry to build unique channel identifiers, that enable detection of brachytherapy errors. MATERIALS AND METHODS Treatment plan of 360 patients with prostate cancer who underwent high-dose-rate brachytherapy (range, 16-25 catheters; mean, 17) were used. A single point virtual dosimeter was placed at multiple positions within the treatment geometry, and the source-dosimeter distance and dwell time were determined for each dwell position in each catheter. These values were compared across all catheters, dwell position by dwell position, simulating a treatment delivery. A catheter was considered uniquely identified if, for a given dwell position, no other catheters had the same measured values. The minimum number of dwell positions needed to identify a specific catheter and the optimal dosimeter location uniquely were determined. The radial (r) and vertical (z) dimensions of the source-dosimeter distance were also examined for their utility in discriminating catheters. RESULTS Using a virtual dosimeter with no uncertainties, all catheters were identified in 359 of the 360 cases with 9 dwell position measurements. When only the dwell time were measured, all catheters were uniquely identified after 1 dwell position. With a 2-mm spatial accuracy (r,z), all catheters were identified in 94% of the plans. Simultaneous measurement of source-dosimeter distance and dwell time ensured full catheter identification in all plans ranging from 2 to 6 dwell positions. The number of dwell positions needed to uniquely identify all catheters was lower when the distance from the implant center was higher. CONCLUSIONS The most efficient fingerprinting approach involved combining source-dosimeter distance (i.e., source tracking) and dwell time. The further the dosimeter is placed from the center of the implant the better it can uniquely identify catheters.
Collapse
Affiliation(s)
- Daline Tho
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada.
| | - Cédric Bélanger
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| | - Erik B Jørgensen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jérémie Tanguay
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| | - Haydee M L Rosales
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| | - Sam Beddar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marie-Claude Lavallée
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| | - Luc Beaulieu
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| |
Collapse
|
3
|
Sung S, Lee M, Choi HJ, Park H, Cheon BW, Min CH, Yeom YS, Kim H, You SH, Choi HJ. Feasibility of internal-source tracking with C-arm CT/SPECT imaging with limited-angle projection data for online in vivo dose verification in brachytherapy: A Monte Carlo simulation study. Brachytherapy 2023; 22:673-685. [PMID: 37301703 DOI: 10.1016/j.brachy.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/13/2023] [Accepted: 05/07/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE The current protocol for use of the image-guided adaptive brachytherapy (IGABT) procedure entails transport of a patient between the treatment room and the 3-D tomographic imaging room after implantation of the applicators in the body, which movement can cause position displacement of the applicator. Moreover, it is not possible to track 3-D radioactive source movement inside the body, even though there can be significant inter- and intra-fractional patient-setup changes. In this paper, therefore, we propose an online single-photon emission computed tomography (SPECT) imaging technique with a combined C-arm fluoroscopy X-ray system and attachable parallel-hole collimator for internal radioactive source tracking of every source position in the applicator. METHODS AND MATERIALS In the present study, using Geant4 Monte Carlo (MC) simulation, the feasibility of high-energy gamma detection with a flat-panel detector for X-ray imaging was assessed. Further, a parallel-hole collimator geometry was designed based on an evaluation of projection image quality for a 192Ir point source, and 3-D limited-angle SPECT-image-based source-tracking performances were evaluated for various source intensities and positions. RESULTS The detector module attached to the collimator could discriminate the 192Ir point source with about 3.4% detection efficiency when including the total counts in the entire deposited energy region. As the result of collimator optimization, hole size, thickness, and length were determined to be 0.5, 0.2, and 45 mm, respectively. Accordingly, the source intensities and positions also were successfully tracked with the 3-D SPECT imaging system when the C-arm was rotated within 110° in 2 seconds. CONCLUSIONS We expect that this system can be effectively implemented for online IGABT and in vivo patient dose verification.
Collapse
Affiliation(s)
- Saerom Sung
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Minjae Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyung-Joo Choi
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyojun Park
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Bo-Wi Cheon
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Chul Hee Min
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Yeon Soo Yeom
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyemi Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea
| | - Sei Hwan You
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyun Joon Choi
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
4
|
Beaulieu L, Rivard MJ. Brachytherapy evolution as seen today. Med Phys 2023. [PMID: 36773303 DOI: 10.1002/mp.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
While brachytherapy is the oldest form of radiation therapy, it is also a very exciting field from both physics and clinical perspectives. From the physics standpoint, brachytherapy dosimetry is largely being governed by the inverse-square law, leading to an unparalleled dose deposition kernel (dose emitted by a seed or single dwell position), even compared to proton or heavy-ion beamlets. There is slightly more dose beyond the central deposition point, but comparatively very little prior to it, that is, little or no entrance dose! It is easy to sum multiple dwell positions that cover a tumor, and the intensity can be modulated quite effectively using dwell times. From a clinical perspective, what sets brachytherapy apart from other intraoperative modalities (e.g., laser, radiofrequency, cryogenic) is our ability to precisely calculate the energy deposited across the relevant patient geometry, anticipate the effect from known dose-outcome relationships, and deliver that energy with exquisite control and selectively to the target volume while sparing organs at risks. This targeting ability has improved substantially over the last two decades. It is built upon key foundational elements, many of which stem from the research and development within our medical physics community. This article provides an overview of these elements that combine to make brachytherapy a successful and developing radiotherapy modality.
Collapse
Affiliation(s)
- Luc Beaulieu
- Centre Intrégé de Cancérologie et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, Québec, Canada.,Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
| | - Mark J Rivard
- Department of Radiation Oncology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Kaveckyte V, Jørgensen EB, Kertzscher G, Johansen JG, Tedgren ÅC. Monte Carlo characterization of high atomic number inorganic scintillators for in vivo dosimetry in 192 Ir brachytherapy. Med Phys 2022; 49:4715-4730. [PMID: 35443079 DOI: 10.1002/mp.15674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND There is increased interest in vivo dosimetry for 192 Ir brachytherapy (BT) treatments using high atomic number (Z) inorganic scintillators. Their high light output enables construction of small detectors with negligible stem effect and simple readout electronics. Experimental determination of absorbed-dose energy dependence of detectors relative to water is prevalent, but it can be prone to high detector positioning uncertainties and does not allow for decoupling of absorbed-dose energy dependence from other factors affecting detector response. PURPOSE To investigate which measurement conditions and detector properties could affect their absorbed-dose energy dependence in BT in vivo dosimetry. METHODS We used a general-purpose MC code penelope for the characterization of high-Z inorganic scintillators with the focus on ZnSe (Z¯=32). Two other promising media CsI (Z¯=54) and Al2 O3 (Z¯=11) were included for comparison in selected scenarios. We determined absorbed-dose energy dependence of crystals relative to water under different scatter conditions (calibration phantom 12 × 12 × 30 cm3 , characterization phantoms 20 × 20 × 20 cm3 , 30 × 30 × 30 cm3 , 40 × 40 × 40 cm3 , and patient-like elliptic phantom 40 × 30 × 25 cm3 ). To mimic irradiation conditions during prostate treatments, we evaluated whether the presence of pelvic bones and calcifications affect ZnSe response. ZnSe detector design influence was also investigated. RESULTS In contrast to low-Z organic and medium-Z inorganic scintillators, ZnSe and CsI media have substantially greater absorbed-dose energy dependence relative to water. The response was phantom-size dependent and changed by 11 % between limited- and full-scatter conditions for ZnSe, but not for Al2 O3 . For a given phantom size, a part of the absorbed-dose energy dependence of ZnSe is caused not due to in-phantom scatter but due to source anisotropy. Thus, the absorbed-dose energy dependence of high-Z scintillators is a function of not only the radial distance but also the polar angle. Pelvic bones did not affect ZnSe response, whereas large and intermediate size calcifications reduced it by 9 % and 5 %, respectively, when placed midway between the source and the detector. CONCLUSIONS Unlike currently prevalent low- and medium-Z scintillators, high-Z crystals are sensitive to characterization and in vivo measurement conditions. However, good agreement between MC data for ZnSe in the present study and experimental data for ZnSe:O by Jørgensen et al (2021) suggest that detector signal is proportional to the average absorbed dose to the detector cavity. This enables an easy correction for non-TG43-like scenarios (e.g., patient sizes and calcifications) through MC simulations. Information that should be provided to the clinic by the detector vendors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vaiva Kaveckyte
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SE-581 85, Sweden
| | - Erik B Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, DK-8000, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, DK-8000, Denmark
| | - Gustavo Kertzscher
- Department of Oncology, Aarhus University Hospital, Aarhus, DK-8000, Denmark
| | - Jacob G Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, DK-8000, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, DK-8000, Denmark
| | - Åsa Carlsson Tedgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SE-581 85, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, SE-171 76, Sweden.,Department of Oncology-Pathology, Karolinska Institute, Stockholm, SE-171 76, Sweden
| |
Collapse
|
6
|
Jørgensen EB, Buus S, Bentzen L, Hokland SB, Rylander S, Kertzscher G, Beddar S, Tanderup K, Johansen JG. 3D dose reconstruction based on in vivo dosimetry for determining the dosimetric impact of geometric variations in high-dose-rate prostate brachytherapy. Radiother Oncol 2022; 171:62-68. [PMID: 35033604 DOI: 10.1016/j.radonc.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION In vivo dosimetry (IVD) can be used for source tracking (ST), i.e., estimating source positions, during brachytherapy. The aim of this study was to exploit IVD-based ST to perform 3D dose reconstruction for high-dose-rate prostate brachytherapy and to evaluate the robustness of the treatments against observed geometric variations. MATERIALS AND METHODS Twenty-three fractions of high-dose-rate prostate brachytherapy were analysed. The treatment planning was based on MRI. Time-resolved IVD was performed using a fibre-coupled scintillator. ST was retrospectively performed using the IVD measurements. The ST identified 2D positional shifts of each treatment catheter and thereby inferred updated source positions. For each fraction, the dose was recalculated based on the source-tracked catheter positions and compared with the original plan dose using differences in dose volume histogram indices. RESULTS Of 352 treatment catheters, 344 had shifts of less than 5 mm. Shifts between 5 and 10 mm were observed for 3 catheters, and shifts greater than 10 mm for 2 catheters. The ST failed for 3 catheters. The maximum relative difference in clinical target volume (prostate + 3 mm isotropic margin) D90% was 5%. In one fraction, the bladder D2cm3 dose increased by 18% (1.4Gy) due to a single source position being inside the bladder rather than nearby as planned. The max increase in urethra dose was 1.5Gy (15%). CONCLUSION IVD-based 3D dose reconstruction for high-dose-rate prostate brachytherapy is feasible. The dosimetric impact of the observed catheter shifts was limited. Dose reconstruction can therefore aid in determining the dosimetric impact of geometric variations and errors in brachytherapy.
Collapse
Affiliation(s)
- Erik B Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Simon Buus
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Bentzen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Susanne Rylander
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob G Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Linares Rosales HM, Couture G, Archambault L, Beddar S, Després P, Beaulieu L. On the use of machine learning methods for mPSD calibration in HDR brachytherapy. Phys Med 2021; 91:73-79. [PMID: 34717139 DOI: 10.1016/j.ejmp.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/15/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022] Open
Abstract
We sought to evaluate the feasibility of using machine learning (ML) algorithms for multipoint plastic scintillator detector (mPSD) calibration in high-dose-rate (HDR) brachytherapy. Dose measurements were conducted under HDR brachytherapy conditions. The dosimetry system consisted of an optimized 1-mm-core mPSD and a compact assembly of photomultiplier tubes coupled with dichroic mirrors and filters. An 192Ir source was remotely controlled and sent to various positions in a homemade PMMA holder, ensuring 0.1-mm positional accuracy. Dose measurements covering a range of 0.5 to 12 cm of source displacement were carried out according to TG-43 U1 recommendations. Individual scintillator doses were decoupled using a linear regression model, a random forest estimator, and artificial neural network algorithms. The dose predicted by the TG-43U1 formalism was used as the reference for system calibration and ML algorithm training. The performance of the different algorithms was evaluated using different sample sizes and distances to the source for the mPSD system calibration. We found that the calibration conditions influenced the accuracy in predicting the measured dose. The decoupling methods' deviations from the expected TG-43 U1 dose generally remained below 20%. However, the dose prediction with the three algorithms was accurate to within 7% relative to the dose predicted by the TG-43 U1 formalism when measurements were performed in the same range of distances used for calibration. In such cases, the predictions with random forest exhibited minimal deviations (<2%). However, the performance random forest was compromised when the predictions were done beyond the range of distances used for calibration. Because the linear regression algorithm can extrapolate the data, the dose prediction by the linear regression was less influenced by the calibration conditions than random forest. The linear regression algorithm's behavior along the distances to the source was smoother than those for the random forest and neural network algorithms, but the observed deviations were more significant than those for the neural network and random forest algorithms. The number of available measurements for training purposes influenced the random forest and neural network models the most. Their accuracy tended to converge toward deviation values close to 1% from a number of dwell positions greater than 100. In performing HDR brachytherapy dose measurements with an optimized mPSD system, ML algorithms are good alternatives for precise dose reporting and treatment assessment during this kind of cancer treatment.
Collapse
Affiliation(s)
- Haydee M Linares Rosales
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec, Canada; Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, QC, Canada.
| | - Gabriel Couture
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec, Canada; Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, QC, Canada
| | - Louis Archambault
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec, Canada; Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, QC, Canada
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Philippe Després
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec, Canada; Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, QC, Canada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec, Canada; Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, QC, Canada
| |
Collapse
|
8
|
Jørgensen EB, Johansen JG, Overgaard J, Piché-Meunier D, Tho D, Rosales HML, Tanderup K, Beaulieu L, Kertzscher G, Beddar S. A high-Z inorganic scintillator-based detector for time-resolved in vivo dosimetry during brachytherapy. Med Phys 2021; 48:7382-7398. [PMID: 34586641 DOI: 10.1002/mp.15257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE High-dose rate (HDR) and pulsed-dose rate (PDR) brachytherapy would benefit from an independent treatment verification system to monitor treatment delivery and to detect errors in real time. This paper characterizes and provides an uncertainty budget for a detector based on a fiber-coupled high-Z inorganic scintillator capable of performing time-resolved in vivo dosimetry during HDR and PDR brachytherapy. METHOD The detector was composed of a detector probe and an optical reader. The detector probe consisted of either a 0.5 × 0.4 × 0.4 mm3 (HDR) or a 1.0 × 0.4 × 0.4 mm3 (PDR) cuboid ZnSe:O crystal glued onto an optical-fiber cable. The outer diameter of the detector probes was 1 mm, and fit inside standard brachytherapy catheters. The signal from the detector probe was read out at 20 Hz by a photodiode and a data acquisition device inside the optical reader. In order to construct an uncertainty budget for the detector, six characteristics were determined: (1) temperature dependence of the detector probe, (2) energy dependence as a function of the probe-to-source position in 2D (determined with 2 mm resolution using a robotic arm), (3) the signal-to-noise ratio (SNR), (4) short-term stability over 8 h, and (5) long-term stability of three optical readers and four probes used for in vivo monitoring in HDR and PDR treatments over 21 months (196 treatments and 189 detector calibrations, and (6) dose-rate dependence. RESULTS The total uncertainty of the detector at a 20 mm probe-to-source distance was < 5.1% and < 5.8% for the HDR and PDR versions, respectively. Regarding the above characteristics, (1) the sensitivity of the detector decreased by an average of 1.4%/°C for detector probe temperatures varying from 22 to 37°C; (2) the energy dependence of the detector was nonlinear and depended on both probe-to-source distance and the angle between the probe and the brachytherapy source; (3) the median SNRs were 187 and 34 at a 20 mm probe-to-source distance for the HDR and PDR versions, respectively (corresponding median source activities of 4.8 and 0.56 Ci, respectively); (4) the detector response varied by 0.6% in 11 identical irradiations over 8 h; (5) the sensitivity of the four detector probes decreased systematically by 0-1.2%/100 Gy of dose delivered to the probes, and random fluctuations of 4.8% in the sensitivity were observed for the three probes used in PDR and 1.9% for the probe used in HDR; and (6) the detector response was linear with dose rate. CONCLUSION ZnSe:O detectors can be used effectively for in vivo dosimetry and with high accuracy for HDR and PDR brachytherapy applications.
Collapse
Affiliation(s)
- Erik B Jørgensen
- Health Graduate School, Aarhus University, Aarhus, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Dominique Piché-Meunier
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Daline Tho
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Haydee M L Rosales
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Luc Beaulieu
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Gustavo Kertzscher
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Quantifying clinical severity of physics errors in high-dose rate prostate brachytherapy using simulations. Brachytherapy 2021; 20:1062-1069. [PMID: 34193362 DOI: 10.1016/j.brachy.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE To quantitatively evaluate through automated simulations the clinical significance of potential high-dose rate (HDR) prostate brachytherapy (HDRPB) physics errors selected from our internal failure-modes and effect analysis (FMEA). METHODS AND MATERIALS A list of failure modes was compiled and scored independently by 8 brachytherapy physicists on a one-to-ten scale for severity (S), occurrence (O), and detectability (D), with risk priority number (RPN) = SxOxD. Variability of RPNs across observers (standard deviation/average) was calculated. Six idealized HDRPB plans were generated, and error simulations were performed: single (N = 1722) and systematic (N = 126) catheter shifts (craniocaudal; -1cm:1 cm); single catheter digitization errors (tip and connector needle-tips displaced independently in random directions; 0.1 cm:0.5 cm; N = 44,318); and swaps (two catheters swapped during digitization or connection; N = 528). The deviations due to each error in prostate D90%, urethra D20%, and rectum D1cm3 were analyzed using two thresholds: 5-20% (possible clinical impact) and >20% (potentially reportable events). RESULTS Twenty-nine relevant failure modes were described. Overall, RPNs ranged from 6 to 108 (average ± 1 standard deviation, 46 ± 23), with responder variability ranging from 19% to 184% (average 75% ± 30%). Potentially reportable events were observed in the simulations for systematic shifts >0.4 cm for prostate and digitization errors >0.3 cm for the urethra and >0.4 cm for rectum. Possible clinical impact was observed for catheter swaps (all organs), systematic shifts >0.2 cm for prostate and >0.4 cm for rectum, and digitization errors >0.2 cm for prostate and >0.1 cm for urethra and rectum. CONCLUSIONS A high variability in RPN scores was observed. Systematic simulations can provide insight in the severity scoring of multiple failure modes, supplementing typical FMEA approaches.
Collapse
|
10
|
Fonseca GP, van Wagenberg T, Voncken R, Podesta M, van Beveren C, van Limbergen E, Lutgens L, Vanneste B, Berbee M, Reniers B, Verhaegen F. Brachytherapy treatment verification using gamma radiation from the internal treatment source combined with an imaging panel-a phantom study. Phys Med Biol 2021; 66. [PMID: 33831856 DOI: 10.1088/1361-6560/abf605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Brachytherapy has an excellent clinical outcome for different treatment sites. However,in vivotreatment verification is not performed in the majority of hospitals due to the lack of proper monitoring systems. This study investigates the use of an imaging panel (IP) and the photons emitted by a high dose rate (HDR)192Ir source to track source motion and obtain some information related to the patient anatomy. The feasibility of this approach was studied by monitoring the treatment delivery to a 3D printed phantom that mimicks a prostate patient. A 3D printed phantom was designed with a template for needle insertion, a cavity ('rectum') to insert an ultrasound probe, and lateral cavities used to place tissue-equivalent materials. CT images were acquired to create HDR192Ir treatment plans with a range of dwell times, interdwell distances and needle arrangements. Treatment delivery was verified with an IP placed at several positions around the phantom using radiopaque markers on the outer surface to register acquired IP images with the planning CT. All dwell positions were identified using acquisition times ≤0.11 s (frame rates ≥ 9 fps). Interdwell distances and dwell positions (in relation to the IP) were verified with accuracy better than 0.1 cm. Radiopaque markers were visible in the acquired images and could be used for registration with CT images. Uncertainties for image registration (IP and planning CT) between 0.1 and 0.4 cm. The IP is sensitive to tissue-mimicking insert composition and showed phantom boundaries that could be used to improve treatment verification. The IP provided sufficient time and spatial resolution for real-time source tracking and allows for the registration of the planning CT and IP images. The results obtained in this study indicate that several treatment errors could be detected including swapped catheters, incorrect dwell times and dwell positions.
Collapse
Affiliation(s)
- G P Fonseca
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - T van Wagenberg
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - R Voncken
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - M Podesta
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - C van Beveren
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - E van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - L Lutgens
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - B Vanneste
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - M Berbee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - B Reniers
- Research group NuTeC, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - F Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| |
Collapse
|
11
|
Linares Rosales HM, Johansen JG, Kertzscher G, Tanderup K, Beaulieu L, Beddar S. 3D source tracking and error detection in HDR using two independent scintillator dosimetry systems. Med Phys 2021; 48:2095-2107. [PMID: 33222208 DOI: 10.1002/mp.14607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/22/2020] [Accepted: 11/01/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The aim of this study is to perform three-dimensional (3D) source position reconstruction by combining in vivo dosimetry measurements from two independent detector systems. METHODS Time-resolved dosimetry was performed in a water phantom during HDR brachytherapy irradiation with 192 Ir source using two detector systems. The first was based on three plastic scintillator detectors and the second on a single inorganic crystal (CsI:Tl). Brachytherapy treatments were simulated in water under TG-43U1 conditions, including a HDR prostate plan. Treatment needles were placed in distances covering a range of source movement of 120 mm around the detectors. The distance from each dwell position to each scintillator was determined based on the measured dose rates. The three distances given by the mPSD were recalculated to a position along the catheter (z) and a distance radially away from the mPSD (xy) for each dwell position (a circumference around the mPSD). The source x, y, and z coordinates were derived from the intersection of the mPSD's circumference with the sphere around the ISD based on the distance to this detector. We evaluated the accuracy of the source position reconstruction as a function of the distance to the source, the most likely location for detector positioning within a prostate volume, as well as the capacity to detect positioning errors. RESULTS Approximately 4000 source dwell positions were tracked for eight different HDR plans. An intersection of the mPSD torus and the ISD sphere was observed in 77.2% of the dwell positions, assuming no uncertainty in the dose rate determined distance. This increased to 100% if 1σ search regions were added. However, only 73(96)% of the expected dwell positions were found within the intersection band for 1(2) σ uncertainties. The agreement between the source's reconstructed and expected positions was within 3 mm for a range of distances to the source up to 50 mm. The experiments on a HDR prostate plan, showed that by having at least one of the detectors located in the middle of the prostate volume, reduces the measurement deviations considerably compared to scenarios where the detectors were located outside of the prostate volume. The analysis showed a detection probability that, in most cases, is far from the random detection threshold. Errors of 1(2) mm can be detected in ranges of 5-25 (25-50) mm from the source, with a true detection probability rate higher than 80%, while the false probability rate is kept below 20%. CONCLUSIONS By combining two detector responses, we enabled the determination of the absolute source coordinates. The combination of the mPSD and the ISD in vivo dosimetry constitutes a promising alternative for real-time 3D source tracking in HDR brachytherapy.
Collapse
Affiliation(s)
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | | | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | - Luc Beaulieu
- CHU de Quebec-Université Laval, Quebec, Canada.,Université Laval, Quebec, Canada
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Jørgensen EB, Kertzscher G, Buus S, Bentzen L, Hokland SB, Rylander S, Tanderup K, Johansen JG. Accuracy of an in vivo dosimetry-based source tracking method for afterloading brachytherapy - A phantom study. Med Phys 2021; 48:2614-2623. [PMID: 33655555 DOI: 10.1002/mp.14812] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To report on the accuracy of an in vivo dosimetry (IVD)-based source tracking (ST) method for high dose rate (HDR) prostate brachytherapy (BT). METHODS The ST was performed on a needle-by-needle basis. A least square fit of the expected to the measured dose rate was performed using the active dwell positions in the given needle. Two fitting parameters were used to determine the position of each needle relative to the IVD detector: radial (away or toward the detector) and longitudinal (along the axis of the treatment needle). The accuracy of the ST was assessed in a phantom where the geometries of five HDR prostate BT treatments previously treated at our clinic were reproduced. For each of the five treatment geometries, one irradiation was performed with the detector placed in the middle of the implant. Furthermore, four additional irradiations were performed for one of the geometries where the detector was retracted caudally in four steps of 10-15 mm and up to 12 mm inferior of the most inferior active dwell position, which represented the prostate apex. The time resolved dose measurements were retrieved at a rate of 20 Hz using a detector based on an Al2 O3 :C radioluminescence crystal, which was placed inside a standard BT needle. Individual calibrations of the detector were performed prior to each of the nine irradiations. RESULTS Source tracking could be applied in all needles across all nine irradiations. For irradiations with the detector located in the middle region of the implant (a total of 89 needles), the mean ± standard deviation (SD, k = 1) accuracy was -0.01 mm ± 0.38 mm and 0.30 mm ± 0.38 mm in the radial and longitudinal directions, respectively. Caudal retraction of the detector did not lead to reduced accuracy as long as the detector was located superior to the most inferior active dwell positions in all needles. However, reduced accuracy was observed for detector positions inferior to the most inferior active dwell positions which corresponded to detector positions in and inferior to the prostate apex region. Detector positions in the prostate apex and 12 mm inferior to the prostate resulted in mean ± SD (k = 1) ST accuracy of 0.7 mm ± 1 mm and 2.8 mm ± 1.6 mm, respectively, in radial direction, and -1.7 mm ± 1 mm and -2.1 mm ± 1.1 mm, respectively, in longitudinal direction. The largest deviations for the configurations with those detector positions were 2.6 and 5.4 mm, respectively, in the radial direction and -3.5 and -3.8 mm, respectively, in the longitudinal direction. CONCLUSION This phantom study demonstrates that ST based on IVD during prostate BT is adequately accurate for clinical use. The ST yields submillimeter accuracy on needle positions as long as the IVD detector is positioned superior to at least one active dwell position in all needles. Locations of the detector inferior to the prostate apex result in decreased ST accuracy while detector locations in the apex region and above are advantageous for clinical applications.
Collapse
Affiliation(s)
- Erik B Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Simon Buus
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Bentzen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Susanne Rylander
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob G Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Debnath SBC, Ferre M, Tonneau D, Fauquet C, Tallet A, Goncalves A, Darreon J. High resolution small-scale inorganic scintillator detector: HDR brachytherapy application. Med Phys 2021; 48:1485-1496. [PMID: 33476399 DOI: 10.1002/mp.14727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Brachytherapy (BT) deals with high gradient internal dose irradiation made up of a complex system where the source is placed nearby the tumor to destroy cancerous cells. A primary concern of clinical safety in BT is quality assurance to ensure the best matches between the delivered and prescribed doses targeting small volume tumors and sparing surrounding healthy tissues. Hence, the purpose of this study is to evaluate the performance of a point size inorganic scintillator detector (ISD) in terms of high dose rate brachytherapy (HDR-BT) treatment. METHODS A prototype of the dose verification system has been developed based on scintillating dosimetry to measure a high dose rate while using an 192 Ir BT source. The associated dose rate is measured in photons/s employing a highly sensitive photon counter (design data: 20 photons/s). Dose measurement was performed as a function of source-to-detector distance according to TG43U1 recommendations. Overall measurements were carried out inside water phantoms keeping the ISD along the BT needle; a minimum of 0.1 cm distance was maintained between each measurement point. The planned dwell times were measured accurately from the difference of two adjacent times of transit. The ISD system performances were also evaluated in terms of dose linearity, energy dependency, scintillation stability, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR). Finally, a comparison was presented between the ISD measurements and results obtained from TG43 reference dataset. RESULTS The detection efficiency of the ISD was verified by measuring the planned dwell times at different dwell positions. Measurements demonstrated that the ISD has a perfectly linear behavior with dose rate (R2 = 1) and shows high SNR (>35) and SBR (>36) values even at the lowest dose rate investigated at around 10 cm from the source. Standard deviation (1σ) remains within 0.03% of signal magnitude, and less than 0.01% STEM signal was monitored at 0.1 cm source-to-detector distance. Stability of 0.54% is achieved, and afterglow stays less than 1% of the total signal in all the irradiations. Excellent symmetrical behavior of the dose rate regarding source position was observed at different radiation planes. Finally, a comparison with TG-43 reference dataset shows that corrected measurements agreed with simulation data within 1.2% and 1.3%, and valid for the source-to-detector distance greater than 0.25 cm. CONCLUSION The proposed ISD in this study anticipated that the system could be promoted to validate with further clinical investigations. It allows an appropriate dose verification with dwell time estimation during source tracking and suitable dose measurement with a high spatial resolution both nearby (high dose gradient) and far (low dose gradient) from the source position.
Collapse
Affiliation(s)
| | | | - Didier Tonneau
- Aix Marseille Université, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Carole Fauquet
- Aix Marseille Université, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Agnes Tallet
- Institut Paoli-Calmettes, Marseille, 13009, France
| | - Anthony Goncalves
- Institut Paoli-Calmettes, Marseille, 13009, France.,Aix Marseille Université, CNRS UMR 7258, INSERM UMR 1068, CRCM, Marseille, 13009, France
| | | |
Collapse
|
14
|
Jia M, Kim TJ, Yang Y, Xing L, Jean PD, Grafil E, Jenkins CH, Fahimian BP. Automated multi-parameter high-dose-rate brachytherapy quality assurance via radioluminescence imaging. Phys Med Biol 2020; 65:225005. [PMID: 33200751 PMCID: PMC7755302 DOI: 10.1088/1361-6560/abb570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study is to leverage radioluminescence imaging for the development of an automated high-dose-rate (HDR) brachytherapy quality assurance (QA) system that enables simultaneous measurements of dwell position, dwell time, wire velocity, and relative source strength in a single test. The system consists of a radioluminescence phosphor sheet (a mixture of Gd2O2S:Tb and PDMS) positioned atop a HDR needle applicator, a complementary metal-oxide-semiconductor digital camera used to capture the emitted radioluminescence signals from the scintillator sheet, and an in-house graphical user interface for signal processing. The signal processing was used to extract source intensity, location, and elapsed time, yielding the final measurements on dwell position, dwell time, and wire velocity. The source strength relative to the well chamber calibration (in unit of Air-Kerma strength, Sk ) is measured by establishing a calibration curve that correlates Sk with the detector response. Validation experiments are performed using three customized treatment plans. With these plans, the dwell position and dwell time are verified for a range of 110.0 cm-117.5 cm and 2 s-16 s, respectively, and the linear correlation with Sk is demonstrated for the source strength varying between 28 348 U (cGy cm2 h-1) and 41 906 U. The wire velocity, i.e. the speed of the radioactive source averaged over the distance in between dwell positions, is calculated for various distances ranging from 5 mm to 50 mm. Results show that the mean deviations of the measured dwell position and dwell time are 0.1 mm (range from 0 to 0.2 mm) and 32.5 ms (range from 0 to 60.0 ms) with respect to the planned values, respectively, and the system response is highly linear with Sk ( R2 = 0.998). Moreover, the measured wire velocities are comparable to previously reported values. Benefitting from the compact hardware design and image processing algorithms, the system provides a practical, reliable, and comprehensive solution for HDR QA.
Collapse
Affiliation(s)
- Mengyu Jia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
- equal contribution
| | - Tae Jin Kim
- Luca Medical Systems, Palo Alto, CA 94303, United States of America
- equal contribution
| | - Yong Yang
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
| | - Paul De Jean
- Luca Medical Systems, Palo Alto, CA 94303, United States of America
| | - Elliot Grafil
- Luca Medical Systems, Palo Alto, CA 94303, United States of America
| | - Cesare H Jenkins
- Luca Medical Systems, Palo Alto, CA 94303, United States of America
| | - Benjamin P Fahimian
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
15
|
Fonseca GP, Johansen JG, Smith RL, Beaulieu L, Beddar S, Kertzscher G, Verhaegen F, Tanderup K. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 16:1-11. [PMID: 33458336 PMCID: PMC7807583 DOI: 10.1016/j.phro.2020.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time–resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research.
Collapse
Affiliation(s)
- Gabriel P Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Ryan L Smith
- Alfred Health Radiation Oncology, Alfred Health, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Luc Beaulieu
- Department of Physics, Engineering Physics & Optics and Cancer Research Center, Université Laval, Quebec City, QC, Canada.,Department of Radiation Oncology, Research Center of CHU de Québec, Université Laval, Quebec City, QC, Canada
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1420, Houston, TX 77030, United States
| | - Gustavo Kertzscher
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| |
Collapse
|
16
|
Famulari G, Linares Rosales HM, Dupere J, Medich DC, Beaulieu L, Enger SA. Monte Carlo dosimetric characterization of a new high dose rate 169 Yb brachytherapy source and independent verification using a multipoint plastic scintillator detector. Med Phys 2020; 47:4563-4573. [PMID: 32686145 DOI: 10.1002/mp.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A prototype 169 Yb source was developed in combination with a dynamic rotating platinum shield system (AIM-Brachy) to deliver intensity modulated brachytherapy (IMBT). The purpose of this study was to evaluate the dosimetric characteristics of the bare/shielded 169 Yb source using Monte Carlo (MC) simulations and perform an independent dose verification using a dosimetry platform based on a multipoint plastic scintillator detector (mPSD). METHODS The TG-43U1 dosimetric parameters were calculated for the source model using RapidBrachyMCTPS. Real-time dose rate measurements were performed in a water tank for both the bare/shielded source using a custom remote afterloader. For each dwell position, the dose rate was independently measured by the three scintillators (BCF-10, BCF-12, and BCF-60). For the bare source, dose rate was measured at distances up to 3 cm away from the source over a range of 7 cm along the catheter. For the shielded source, measurements were performed with the mPSD placed at 1 cm from the source at four different azimuthal angles ( 0 ∘ , 9 0 ∘ , 18 0 ∘ , and 27 0 ∘ ). RESULTS The dosimetric parameters were tabulated for the source model. For the bare source, differences between measured and calculated along-away dose rates were generally below 5-10%. Along the transverse axis, deviations were, on average (range), 3.3% (0.6-6.2%) for BCF-10, 1.7% (0.9-2.9%) for BCF-12, and 2.2% (0.3-4.4%) for BCF-60. The maximum dose rate reduction due to shielding at a radial distance of 1 cm was 88.8 ± 1.2%, compared to 83.5 ± 0.5% as calculated by MC. CONCLUSIONS The dose distribution for the bare/shielded 169 Yb source was independently verified using mPSD with good agreement in regions close to the source. The 169 Yb source coupled with the partial-shielding system is an effective technique to deliver IMBT.
Collapse
Affiliation(s)
- Gabriel Famulari
- Medical Physics Unit, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Haydee M Linares Rosales
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, QC, G1R 2J6, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, QC, G1R 2J6, Canada
| | - Justine Dupere
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - David C Medich
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, QC, G1R 2J6, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec-Université Laval, QC, G1R 2J6, Canada
| | - Shirin A Enger
- Medical Physics Unit, McGill University, Montreal, QC, H4A 3J1, Canada.,Department of Oncology, McGill University, Montreal, QC, H4A 3J1, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, H3H 2R9, Canada
| |
Collapse
|
17
|
Linares Rosales HM, Archambault L, Beddar S, Beaulieu L. Dosimetric performance of a multipoint plastic scintillator dosimeter as a tool for real‐time source tracking in high dose rate Ir brachytherapy. Med Phys 2020; 47:4477-4490. [DOI: 10.1002/mp.14246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Haydee M. Linares Rosales
- Département de physique de génie physique et d’optique et Centre de recherche sur le cancer Université Laval Québec Canada
- Département de radio‐oncologie et Axe Oncologie du CRCHU de Québec CHU de Québec ‐ Université Laval Québec QC Canada
| | - Louis Archambault
- Département de physique de génie physique et d’optique et Centre de recherche sur le cancer Université Laval Québec Canada
- Département de radio‐oncologie et Axe Oncologie du CRCHU de Québec CHU de Québec ‐ Université Laval Québec QC Canada
| | - Sam Beddar
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston TX USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences Houston TX USA
| | - Luc Beaulieu
- Département de physique de génie physique et d’optique et Centre de recherche sur le cancer Université Laval Québec Canada
- Département de radio‐oncologie et Axe Oncologie du CRCHU de Québec CHU de Québec ‐ Université Laval Québec QC Canada
| |
Collapse
|
18
|
Abstract
Many brachytherapy (BT) errors could be detected with real-time in vivo dosimetry technology. Inorganic scintillation detectors (ISDs) have demonstrated promising capabilities for BT, because some ISD materials can generate scintillation signals large enough that (a) the background signal emitted in the fiber-optic cable (stem signal) is insignificant, and (b) small detector volumes can be used to avoid volume averaging effects in steep dose gradients near BT sources. We investigated the characteristics of five ISD materials to identify one that is appropriate for BT. ISDs consisting of a 0.26 to 1.0 mm3 volume of ruby (Al2O3:Cr), a mixture of Y2O3:Eu and YVO4:Eu, ZnSe:O, or CsI:Tl coupled to a fiber-optic cable were irradiated in a water-equivalent phantom using a high-dose-rate 192Ir BT source. Detectors based on plastic scintillators BCF-12 and BCF-60 (0.8 mm3 volume) were used as a reference. Measurements demonstrated that the ruby, Y2O3:Eu+YVO4:Eu, ZnSe:O, and CsI:Tl ISDs emitted scintillation signals that were up to 19, 19, 250, and 880 times greater, respectively, than that of the BCF-12 detector. While the total signals of the plastic scintillation detectors were dominated by the stem signal for source positions 0.5 cm from the fiber-optic cable and >3.5 cm from the scintillator volume, the stem signal for the ruby and Y2O3:Eu+YVO4:Eu ISDs were <1% of the total signal for source positions <3.4 and <4.4 cm from the scintillator, respectively, and <0.7% and <0.5% for the ZnSe:O and CsI:Tl ISDs, respectively, for positions ⩽8.0 cm. In contrast to the other ISDs, the Y2O3:Eu+YVO4:Eu ISD exhibited unstable scintillation and significant afterglow. All ISDs exhibited significant energy dependence, i.e. their dose response to distance-dependent 192Ir energy spectra differed significantly from the absorbed dose in water. Provided that energy dependence is accounted for, ZnSe:O ISDs are promising for use in error detection and patient safety monitoring during BT.
Collapse
Affiliation(s)
- Gustavo Kertzscher
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | |
Collapse
|
19
|
Tho D, Beaulieu L. Technical Note: Identification of an optimal electromagnetic sensor for
in vivo
electromagnetic‐tracked scintillation dosimeter for HDR brachytherapy. Med Phys 2019; 46:2031-2036. [DOI: 10.1002/mp.13508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/15/2018] [Accepted: 03/04/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Daline Tho
- Département de radio‐oncologie et Centre de recherche du CHU de Québec CHU de Québec Québec Canada
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer Université Laval Québec Canada
| | - Luc Beaulieu
- Département de radio‐oncologie et Centre de recherche du CHU de Québec CHU de Québec Québec Canada
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer Université Laval Québec Canada
| |
Collapse
|
20
|
Linares Rosales HM, Duguay-Drouin P, Archambault L, Beddar S, Beaulieu L. Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy. Med Phys 2019; 46:2412-2421. [PMID: 30891803 DOI: 10.1002/mp.13498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study is devoted to optimizing and characterizing the response of a multipoint plastic scintillator detector (mPSD) for application to in vivo dosimetry in high dose rate (HDR) brachytherapy. METHODS An exhaustive analysis was carried out in order to obtain an optimized mPSD design that maximizes the scintillation light collection produced by the interaction of ionizing photons. More than 20 prototypes of mPSD were built and tested in order to determine the appropriate order of scintillators relative to the photodetector (distal, center, or proximal) as well as their length as a function of the scintillation light emitted. The available detecting elements are the BCF-60, BCF-12, and BCF-10 scintillators (Saint Gobain Crystals, Hiram, OH, USA), separated from each other by segments of Eska GH-4001 clear optical fibers (Mitsubishi Rayon Co., Ltd., Tokyo, Japan). The contribution of each scintillator to the total spectrum was determined by irradiations in the low energy range (<120 keV). For the best mPSD design, a numerical optimization was done in order to select the optical components [dichroic mirrors, filters, and photomultipliers tubes (PMTs)] that best match the light emission profile. Calculations were performed taking into account the measured scintillation spectrum and light yield, the manufacturer-reported transmission and attenuation of the optical components, and the experimentally characterized PMT noise. The optimized dosimetric system was used for HDR brachytherapy measurements. The system was independently controlled from the 192 Ir source via LabVIEW and read simultaneously using an NI-DAQ board. Dose measurements as a function of distance from the source were carried out according to TG-43U1 recommendations. The system performance was quantified in terms of signal to noise ratio (SNR) and signal to background ratio (SBR). RESULTS For best overall light-yield emission, it was determined that BCF-60 should be placed at the distal position, BCF-12 in the center, and BCF-10 at the proximal position with respect to the photodetector. This configuration allowed for optimized light transmission through the collecting fiber and avoided inter-scintillator excitation and self-absorption effects. The optimal scintillator length found was of 3, 6, and 7 mm for BCF-10, BCF- 12, and BCF-60, respectively. The optimized luminescence system allowed for signal deconvolution using a multispectral approach, extracting the dose to each element while taking into account the Cerenkov stem effect. Differences between the mPSD measurements and TG-43U1 remain below 5% in the range of 0.5 to 6.5 cm from the source. The dosimetric system can properly differentiate the scintillation signal from the background for a wide range of dose rate conditions; the SNR was found to be above 5 for dose rates above 22 mGy/s while the minimum SBR measured was 1.8 at 6 mGy/s. CONCLUSION Based on the spectral response at different conditions, an mPSD was constructed and optimized for HDR brachytherapy dosimetry. It is sensitive enough to allow multiple simultaneous measurements over a clinically useful distance range, up to 6.5 cm from the source. This study constitutes a baseline for future applications enabling real-time dose measurements and source position reporting over a wide range of dose rate conditions.
Collapse
Affiliation(s)
- Haydee M Linares Rosales
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Patricia Duguay-Drouin
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Louis Archambault
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77003, USA
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Québec City, QC, Canada
| |
Collapse
|
21
|
Johansen J, Kertzscher G, Jørgensen E, Rylander S, Bentzen L, Hokland S, Søndergaard C, With A, Buus S, Tanderup K. Dwell time verification in brachytherapy based on time resolved in vivo dosimetry. Phys Med 2019; 60:156-161. [DOI: 10.1016/j.ejmp.2019.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022] Open
|
22
|
Jamalludin Z, Jong WL, Abdul Malik R, Rosenfeld A, Ung NM. Characterization of MOSkin detector for in vivo dose verification during Cobalt-60 high dose-rate intracavitary brachytherapy. Phys Med 2019; 58:1-7. [PMID: 30824140 DOI: 10.1016/j.ejmp.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022] Open
Abstract
In vivo dosimetry in high dose-rate (HDR) intracavitary brachytherapy (ICBT) is important for assessing the true dose received by surrounding organs at risk during treatment. It also serves as part of the treatment delivery quality assurance and verification program with the use of a suitable dosimeter. Such a dosimeter should be characterized under brachytherapy conditions before clinical application to ensure the accuracy of in vivo measurement. In this study, a MOSFET-based detector, MOSkin, was calibrated and characterized under HDR Cobalt-60 (Co-60) brachytherapy source. MOSkin possessed the major advantages of having small physical and dosimetric sizes of 4.8 × 10-6 mm3 with the ability to provide real-time measurements. Using solid water and polymethyl methacrylate (PMMA) phantom, the detectors' reproducibility, linearity, angular and distance dependency was tested for its suitability as an in vivo detector. Correction factors to account for differences in depth measurements were determined. The MOSkin detector showed a reliable response when tested under Co-60 brachytherapy range of doses with an excellent linearity of R2 = 0.9997 and acceptable reproducibility. A phantom verification study was also conducted to verify the differences between MOSkin responses and treatment planning (TPS) calculated doses. By taking into account several correction factors, deviations ranging between 0.01 and 0.4 Gy were found between MOSkin measured and TPS doses at measurement distance of 20-55 mm. The use of MOSkin as the dosimeter of choice for in vivo dosimetry under Co-60 brachytherapy condition is feasible.
Collapse
Affiliation(s)
- Zulaikha Jamalludin
- Department of Clinical Oncology, University of Malaya Medical Centre, Kuala Lumpur, Malaysia; Medical Physics Unit, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Wei Loong Jong
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rozita Abdul Malik
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Ngie Min Ung
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Krause F, Risske F, Bohn S, Delaperriere M, Dunst J, Siebert FA. End-to-end test for computed tomography-based high-dose-rate brachytherapy. J Contemp Brachytherapy 2018; 10:551-558. [PMID: 30662478 PMCID: PMC6335556 DOI: 10.5114/jcb.2018.81026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022] Open
Abstract
PURPOSE One of the important developments in brachytherapy in recent years has been the clinical implementation of complex modern technical procedures. Today, 3D-imaging has become the standard procedure and it is used for contouring and precise position determination and reconstruction of used brachytherapy applicators. Treatment planning is performed on the basis of these imaging methods, followed by data transfer to the afterloading device. Therefore, checking the entire treatment chain is of high importance. In this work, we describe an end-to-end test for computed tomography (CT)-based brachytherapy with an high-dose-rate (HDR) afterloading device, which fulfills the recommendation of the German radiation-protection-commission. MATERIAL AND METHODS The treatment chain consists of a SOMATOM S64 CT scanner (Siemens Medical), the treatment planning system (TPS) BrachyVision v.13.7 (VMS), which utilizes the calculation formalism TG-43 and the Acuros algorithm v. 1.5.0 (VMS) as well as GammaMedplus HDR afterloader (VMS) using an Ir-192 source. Measurement setups for common brachytherapy applicators are defined in a water phantom, and the required PMMA applicator holders are developed. These setups are scanned with the CT and the data is imported into the TPS. Computed TPS reference dose values for significant points located on the side of the applicator are compared with dose measurements performed with a PinPoint 3D chamber 31016 (PTW Freiburg). RESULTS The deviations for the end-to-end test between computed and measured values are shown to be ≤ 5%, when using an implant needle or vaginal cylinder. Furthermore, it can be demonstrated that the test procedure provides reproducible results, while repositioning the applicators without carrying out a new CT-scan. CONCLUSIONS The end-to-end test presented allows a practice-oriented realization for checking the whole treatment chain for HDR afterloading technique and CT-imaging. The presented phantom seems feasible for performing periodic system checks as well as to verify newly introduced brachytherapy techniques with sufficient accuracy.
Collapse
Affiliation(s)
- Fabian Krause
- Clinic of Radiotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Risske
- Clinic of Radiotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Susann Bohn
- Clinic of Radiotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marc Delaperriere
- Clinic of Radiotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jürgen Dunst
- Clinic of Radiotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frank-André Siebert
- Clinic of Radiotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
24
|
Fonseca GP, Podesta M, Bellezzo M, Van den Bosch MR, Lutgens L, Vanneste BGL, Voncken R, Van Limbergen EJ, Reniers B, Verhaegen F. Online pretreatment verification of high-dose rate brachytherapy using an imaging panel. Phys Med Biol 2018; 62:5440-5461. [PMID: 28609297 DOI: 10.1088/1361-6560/aa7028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.
Collapse
Affiliation(s)
- Gabriel P Fonseca
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Dr. Tanslaan 12, Maastricht 6229 ET, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tanderup K, Kirisits C, Damato AL. Treatment delivery verification in brachytherapy: Prospects of technology innovation. Brachytherapy 2018; 17:1-6. [PMID: 29406123 DOI: 10.1016/j.brachy.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Christian Kirisits
- Department of Radiotherapy, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Antonio L Damato
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
26
|
In vivo dose verification method in catheter based high dose rate brachytherapy. Phys Med 2017; 44:1-10. [DOI: 10.1016/j.ejmp.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/19/2022] Open
|
27
|
Guiral P, Wang R, Galvan JM, Lu GN, Jalade P, Ribouton J, Pittet P. Gynecological applicator instrumented with GaN dosimetric probes for HDR brachytherapy. RADIAT MEAS 2017. [DOI: 10.1016/j.radmeas.2017.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Martínez N, Rucci A, Marcazzó J, Molina P, Santiago M, Cravero W. Characterization of YVO4:Eu3+ scintillator as detector for Fiber Optic Dosimetry. RADIAT MEAS 2017. [DOI: 10.1016/j.radmeas.2017.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Semiconductor real-time quality assurance dosimetry in brachytherapy. Brachytherapy 2017; 17:133-145. [PMID: 28964727 DOI: 10.1016/j.brachy.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 11/23/2022]
Abstract
With the increase in complexity of brachytherapy treatments, there has been a demand for the development of sophisticated devices for delivery verification. The Centre for Medical Radiation Physics (CMRP), University of Wollongong, has demonstrated the applicability of semiconductor devices to provide cost-effective real-time quality assurance for a wide range of brachytherapy treatment modalities. Semiconductor devices have shown great promise to the future of pretreatment and in vivo quality assurance in a wide range of brachytherapy treatments, from high-dose-rate (HDR) prostate procedures to eye plaque treatments. The aim of this article is to give an insight into several semiconductor-based dosimetry instruments developed by the CMRP. Applications of these instruments are provided for breast and rectal wall in vivo dosimetry in HDR brachytherapy, urethral in vivo dosimetry in prostate low-dose-rate (LDR) brachytherapy, quality assurance of HDR brachytherapy afterloaders, HDR pretreatment plan verification, and real-time verification of LDR and HDR source dwell positions.
Collapse
|
30
|
Time resolved dose rate distributions in brachytherapy. Phys Med 2017; 41:13-19. [DOI: 10.1016/j.ejmp.2017.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/18/2017] [Accepted: 04/09/2017] [Indexed: 11/22/2022] Open
|
31
|
Carrara M, Romanyukha A, Tenconi C, Mazzeo D, Cerrotta A, Borroni M, Cutajar D, Petasecca M, Lerch M, Bucci J, Richetti A, Presilla S, Fallai C, Gambarini G, Pignoli E, Rosenfeld A. Clinical application of MOSkin dosimeters to rectal wall in vivo dosimetry in gynecological HDR brachytherapy. Phys Med 2017; 41:5-12. [DOI: 10.1016/j.ejmp.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022] Open
|
32
|
Kertzscher G, Beddar S. Inorganic scintillator detectors for real-time verification during brachytherapy. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/847/1/012036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Kertzscher G, Beddar S. Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy. Phys Med Biol 2017; 62:5046-5075. [PMID: 28475494 DOI: 10.1088/1361-6560/aa716e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16-134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25 nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of this technology could lead to an improved understanding of error types and frequencies during BT and to improved patient safety during treatment.
Collapse
Affiliation(s)
- Gustavo Kertzscher
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | |
Collapse
|
34
|
Kertzscher G, Beddar S. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy. Phys Med Biol 2016; 61:7744-7764. [PMID: 27740947 DOI: 10.1088/0031-9155/61/21/7744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
Collapse
Affiliation(s)
- Gustavo Kertzscher
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
|
36
|
Guiral P, Ribouton J, Jalade P, Wang R, Galvan JM, Lu GN, Pittet P, Rivoire A, Gindraux L. Design and testing of a phantom and instrumented gynecological applicator based on GaN dosimeter for use in high dose rate brachytherapy quality assurance. Med Phys 2016; 43:5240. [DOI: 10.1118/1.4961393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
37
|
Flint DB, Granville DA, Sahoo N, McEwen M, Sawakuchi GO. Ionization density dependence of the curve shape and ratio of blue to UV emissions of Al 2 O 3 :C optically stimulated luminescence detectors exposed to 6-MV photon and therapeutic proton beams. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Santos AMC, Mohammadi M, Afshar V. S. Evaluation of a real‐time BeO ceramic fiber‐coupled luminescence dosimetry system for dose verification of high dose rate brachytherapy. Med Phys 2015; 42:6349-56. [DOI: 10.1118/1.4931968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Alexandre M. Caraça Santos
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide 5000, Australia and Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Mohammad Mohammadi
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide 5000, Australia and Department of Medical Physics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 65167‐3‐8736, Iran
| | - Shahraam Afshar V.
- Laser Physics and Photonic Devices Laboratories, School of Engineering, The University of South Australia, Adelaide 5095, Australia and Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
39
|
Yukihara EG, Doull BA, Ahmed M, Brons S, Tessonnier T, Jäkel O, Greilich S. Time-resolved optically stimulated luminescence of Al2O3:C for ion beam therapy dosimetry. Phys Med Biol 2015; 60:6613-38. [DOI: 10.1088/0031-9155/60/17/6613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Ploquin N, Kertzscher G, Vandervoort E, Cygler JE, Andersen CE, Francescon P. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields. Phys Med Biol 2014; 60:1-14. [DOI: 10.1088/0031-9155/60/1/1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Carrara M, Tenconi C, Rossi G, Guilizzoni R, Borroni M, Cerrotta A, Fallai C, Gambarini G, Vedda A, Pignoli E. Temperature dependence of a Ce3+ doped SiO2 radioluminescent dosimeter for in vivo dose measurements in HDR brachytherapy. RADIAT MEAS 2014. [DOI: 10.1016/j.radmeas.2014.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Santos AMC, Mohammadi M, Afshar V. S. Investigation of a fibre-coupled beryllium oxide (BeO) ceramic luminescence dosimetry system. RADIAT MEAS 2014. [DOI: 10.1016/j.radmeas.2014.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Ravkilde T, Keall PJ, Grau C, Høyer M, Poulsen PR. Time-resolved dose distributions to moving targets during volumetric modulated arc therapy with and without dynamic MLC tracking. Med Phys 2014; 40:111723. [PMID: 24320431 DOI: 10.1118/1.4826161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The highly conformal doses delivered by volumetric modulated arc therapy (VMAT) may be compromised by intrafraction target motion. Although dynamic multileaf collimator (DMLC) tracking can mitigate the dosimetric impact of motion on the accumulated dose, residual errors still exist. The purpose of this study was to investigate the temporal evolution of dose errors throughout VMAT treatments delivered with and without DMLC tracking. METHODS Tracking experiments were performed on a linear accelerator connected to prototype DMLC tracking software. A three-axis motion stage reproduced representative clinical trajectories of four lung tumors and four prostates. For each trajectory, two VMAT treatment plans (low and high modulation) were delivered with and without DMLC tracking as well as to a static phantom for reference. Dose distributions were measured continuously at 72 Hz using a dosimeter with biplanar diode arrays. During tracking, the MLC leaves were continuously refitted to the 3D target position measured by an electromagnetic transponder at 30 Hz. The dosimetric errors caused in the 32 motion experiments were quantified by a time-resolved 3%/3 mm γ-test. The erroneously exposed areas in treatment beam's eye view (BEV) caused by inadequate real-time MLC adaptation were calculated and compared with the time-resolved γ failure rates. RESULTS The transient γ failure rate was on average 16.8% without tracking and 5.3% with tracking. The γ failure rate correlated well with the erroneously exposed areas in BEV (mean of Pearson r = 0.83, p < 0.001). For the final accumulated doses, the mean γ failure rate was 17.9% without tracking and 1.0% with tracking. With tracking the transient dose errors tended to cancel out resulting in the low mean γ failure rate for the accumulated doses. CONCLUSIONS Time-resolved measurements allow pinpointing of transient errors in dose during VMAT delivery as well as monitoring of erroneous dose evolution in key target positions. The erroneously exposed area in BEV was shown to be a good indicator of errors in the dose distribution during treatment delivery.
Collapse
Affiliation(s)
- Thomas Ravkilde
- Department of Oncology, Aarhus University Hospital, 8000 Aarhus C, Denmark and Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | | | | | | |
Collapse
|
44
|
Kertzscher G, Rosenfeld A, Beddar S, Tanderup K, Cygler JE. In vivo dosimetry: trends and prospects for brachytherapy. Br J Radiol 2014; 87:20140206. [PMID: 25007037 DOI: 10.1259/bjr.20140206] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The error types during brachytherapy (BT) treatments and their occurrence rates are not well known. The limited knowledge is partly attributed to the lack of independent verification systems of the treatment progression in the clinical workflow routine. Within the field of in vivo dosimetry (IVD), it is established that real-time IVD can provide efficient error detection and treatment verification. However, it is also recognized that widespread implementations are hampered by the lack of available high-accuracy IVD systems that are straightforward for the clinical staff to use. This article highlights the capabilities of the state-of-the-art IVD technology in the context of error detection and quality assurance (QA) and discusses related prospects of the latest developments within the field. The article emphasizes the main challenges responsible for the limited practice of IVD and provides descriptions on how they can be overcome. Finally, the article suggests a framework for collaborations between BT clinics that implemented IVD on a routine basis and postulates that such collaborations could improve BT QA measures and the knowledge about BT error types and their occurrence rates.
Collapse
Affiliation(s)
- G Kertzscher
- 1 Centre for Nuclear Technologies, Technical University of Denmark, Roskilde, Denmark
| | | | | | | | | |
Collapse
|
45
|
Kertzscher G, Andersen CE, Tanderup K. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo
point dosimetry. Med Phys 2014; 41:052102. [DOI: 10.1118/1.4870438] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
46
|
Santos AMC, Mohammadi M, Afshar SV. Optimal light collection from diffuse sources: application to optical fibre-coupled luminescence dosimetry. OPTICS EXPRESS 2014; 22:4559-4574. [PMID: 24663776 DOI: 10.1364/oe.22.004559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A model is developed to evaluate the light collection of a diffuse light source located at the tip of an optical fibre. The model is confirmed experimentally and used to evaluate and compare the light collection efficiency of different fibre-coupled luminescence dosimeter probe designs. The model includes contributions from both meridional and skew rays, and considers the light collection from an optically attenuating scintillator. Hence the model enables the optimisation of different, but useful and new probe materials such as BeO ceramic. Four different dosimeter architectures are considered, including previously investigated probe designs; the butt-coupled and reflective wall, along with two novel designs. The novel designs utilise a combination of the scintillating material and transparent media to increase the light collection. Simulations indicate that the novel probes are more efficient in light collection for applications in which it is necessary to minimise the volume of the scintillating material.
Collapse
|
47
|
Therriault-Proulx F, Beddar S, Beaulieu L. On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy. Med Phys 2014; 40:062101. [PMID: 23718599 DOI: 10.1118/1.4803510] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The goal of this study was to prove the feasibility of using a single-fiber multipoint plastic scintillation detector (mPSD) as an in vivo verification tool during (192)Ir high-dose-rate brachytherapy treatments. METHODS A three-point detector was built and inserted inside a catheter-positioning template placed in a water phantom. A hyperspectral approach was implemented to discriminate the different optical signals composing the light output at the exit of the single collection optical fiber. The mPSD was tested with different source-to-detector positions, ranging from 1 to 5 cm radially and over 10.5 cm along the longitudinal axis of the detector, and with various integration times. Several strategies for improving the accuracy of the detector were investigated. The device's accuracy in detecting source position was also tested. RESULTS Good agreement with the expected doses was obtained for all of the scintillating elements, with average relative differences from the expected values of 3.4 ± 2.1%, 3.0 ± 0.7%, and 4.5 ± 1.0% for scintillating elements from the distal to the proximal. A dose threshold of 3 cGy improved the general accuracy of the detector. An integration time of 3 s offered a good trade-off between precision and temporal resolution. Finally, the mPSD measured the radioactive source positioning uncertainty to be no more than 0.32 ± 0.06 mm. The accuracy and precision of the detector were improved by a dose-weighted function combining the three measurement points and known details about the geometry of the detector construction. CONCLUSIONS The use of a mPSD for high-dose-rate brachytherapy dosimetry is feasible. This detector shows great promise for development of in vivo applications for real-time verification of treatment delivery.
Collapse
Affiliation(s)
- François Therriault-Proulx
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
48
|
Sharma R, Jursinic PA. In vivomeasurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters. Med Phys 2013; 40:071730. [DOI: 10.1118/1.4811143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Beaulieu L, Goulet M, Archambault L, Beddar S. Current status of scintillation dosimetry for megavoltage beams. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/444/1/012013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Tanderup K, Beddar S, Andersen CE, Kertzscher G, Cygler JE. In vivo
dosimetry in brachytherapy. Med Phys 2013; 40:070902. [DOI: 10.1118/1.4810943] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|