1
|
Haqshenas SR, Gélat P, van 't Wout E, Betcke T, Saffari N. A fast full-wave solver for calculating ultrasound propagation in the body. ULTRASONICS 2021; 110:106240. [PMID: 32950757 DOI: 10.1016/j.ultras.2020.106240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 05/23/2023]
Abstract
Therapeutic ultrasound is a promising non-invasive method for inducing various beneficial biological effects in the human body. In cancer treatment applications, high-power ultrasound is focused at a target tissue volume to ablate the malignant tumour. The success of the procedure depends on the ability to accurately focus ultrasound and destroy the target tissue volume through coagulative necrosis whilst preserving the surrounding healthy tissue. Patient-specific treatment planning strategies are therefore being developed to increase the efficacy of such therapies, while reducing any damage to healthy tissue. These strategies require to use high-performance computing methods to solve ultrasound wave propagation in the body quickly and accurately. For realistic clinical scenarios, all numerical methods which employ volumetric meshes require several hours or days to solve the full-wave propagation on a computer cluster. The boundary element method (BEM) is an efficient approach for modelling the wave field because only the boundaries of the hard and soft tissue regions require discretisation. This paper presents a multiple-domain BEM formulation with a novel preconditioner for solving the Helmholtz transmission problem (HTP). This new formulation is efficient at high-frequencies and where high-contrast materials are present. Numerical experiments are performed to solve the HTP in multiple domains comprising: (i) human ribs, an idealised abdominal fat layer and liver tissue, (ii) a human kidney with a perinephric fat layer, exposed to the acoustic field generated by a high-intensity focused ultrasound (HIFU) array transducer. The time required to solve the equations associated with these problems on a single workstation is of the order of minutes. These results demonstrate the great potential of this new BEM formulation for accurately and quickly solving ultrasound wave propagation problems in large anatomical domains which is essential for developing treatment planning strategies.
Collapse
Affiliation(s)
- S R Haqshenas
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Department of Mathematics, University College London, London WC1H 0AY, UK.
| | - P Gélat
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - E van 't Wout
- Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Betcke
- Department of Mathematics, University College London, London WC1H 0AY, UK
| | - N Saffari
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| |
Collapse
|
2
|
Cao R, Huang Z, Nabi G, Melzer A. Patient-Specific 3-Dimensional Model for High-Intensity Focused Ultrasound Treatment Through the Rib Cage: A Preliminary Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:883-899. [PMID: 31721248 DOI: 10.1002/jum.15170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The purpose of this study was to develop a patient-specific 3-dimensional model for high-intensity focused ultrasound (HIFU) treatment through the rib cage using patient data. METHODS Experimental testing to derive parameters used in defining the amount of energy and alteration needed in treatment protocols for upper abdominal disorders under the rib cage was performed. Reconstructed rib cage models based on patient data, tissue-mimicking material phantoms, and magnetic resonance imaging-guided HIFU using a multielement phased array transducer were used in the experiments. Changes in the focal temperature, acoustic power, and acoustic pressure distribution were investigated with and without the presence of the rib cage model. An ExAblate system (InSightec Ltd, Tirat Carmel, Israel) was used to sonicate phantoms by varying the target phantom or rib cage model location. RESULTS The effect of the rib cage on the acoustic pressure distribution and acoustic power was closely related to the anatomic structures of the ribs. Thermometry revealed that heating at the focus could be controlled by changing either the power or duration of HIFU application to improve the focal temperature change. The focal temperature change was found to be related to the distance between the rib cage model and focus and the shadow area on the transducer elements covered by the rib cage model in the beam path. CONCLUSIONS Experimental results suggest that the rib cage model is a valuable and useful tool that can provide realistic human anatomic structures and properties for evaluating the effects of the rib cage on ultrasound propagation.
Collapse
Affiliation(s)
- Rui Cao
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ghulam Nabi
- School of Medicine, Ninewells Hospital, Dundee, UK
| | - Andreas Melzer
- Institute for Medical Science and Technology, Dundee, UK
| |
Collapse
|
3
|
Scherrer A, Jakobsson S, Küfer KH. On the advancement and software support of decision-making in focused ultrasound therapy. JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS 2016. [DOI: 10.1002/mcda.1596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Scherrer
- Fraunhofer Institute for Industrial Mathematics (ITWM); Kaiserslautern Germany
| | | | - Karl-Heinz Küfer
- Fraunhofer Institute for Industrial Mathematics (ITWM); Kaiserslautern Germany
| |
Collapse
|
4
|
Liu HL, Jan CK, Chu PC, Hong JC, Lee PY, Hsu JD, Lin CC, Huang CY, Chen PY, Wei KC. Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood-brain barrier opening and brain drug delivery. IEEE Trans Biomed Eng 2014; 61:1350-60. [PMID: 24658258 DOI: 10.1109/tbme.2014.2305723] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Focused ultrasound (FUS) in the presence of microbubbles can bring about transcranial and local opening of the blood-brain barrier (BBB) for potential noninvasive delivery of drugs to the brain. A phased-array ultrasound system is essential for FUS-BBB opening to enable electronic steering and correction of the focal beam which is distorted by cranial bone. Here, we demonstrate our prototype design of a 256-channel ultrasound phased-array system for large-region transcranial BBB opening in the brains of large animals. One of the unique features of this system is the capability of generating concurrent dual-frequency ultrasound signals from the driving system for potential enhancement of BBB opening. A wide range of signal frequencies can be generated (frequency = 0.2-1.2 MHz) with controllable driving burst patterns. Precise output power can be controlled for individual channels via 8-bit duty-cycle control of transistor-transistor logic signals and the 8-bit microcontroller-controlled buck converter power supply output voltage. The prototype system was found to be in compliance with the electromagnetic compatibility standard. Moreover, large animal experiments confirmed the phase switching effectiveness of this system, and induction of either a precise spot or large region of BBB opening through fast focal-beam switching. We also demonstrated the capability of dual-frequency exposure to potentially enhance the BBB-opening effect. This study contributes to the design of ultrasound phased arrays for future clinical applications, and provides a new direction toward optimizing FUS brain drug delivery.
Collapse
|
5
|
Kim Y, Vlaisavljevich E, Owens GE, Allen SP, Cain CA, Xu Z. In vivotranscostal histotripsy therapy without aberration correction. Phys Med Biol 2014; 59:2553-68. [DOI: 10.1088/0031-9155/59/11/2553] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys 2014; 40:080901. [PMID: 23927296 DOI: 10.1118/1.4811136] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20∕20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.
Collapse
Affiliation(s)
- David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Qiao S, Shen G, Bai J, Chen Y. Transcostal high-intensity focused ultrasound treatment using phased array with geometric correction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1503-1514. [PMID: 23927190 DOI: 10.1121/1.4812869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the high-intensity focused ultrasound treatment of liver tumors, ultrasound propagation is affected by the rib cage. Because of the diffraction and absorption of the bone, the sound distribution at the focal plane is altered, and more importantly, overheating on the rib surface might occur. To overcome these problems, a geometric correction method is applied to turn off the elements blocked by the ribs. The potential of steering the focus of the phased-array along the propagation direction to improve the transcostal treatment was investigated by simulations and experiments using different rib models and transducers. The ultrasound propagation through the ribs was computed by a hybrid method including the Rayleigh-Sommerfeld integral, k-space method, and angular spectrum method. A modified correction method was proposed to adjust the output of elements based on their relative area in the projected "shadow" of the ribs. The simulation results showed that an increase in the specific absorption rate gain up to 300% was obtained by varying the focal length although the optimal value varied in each situation. Therefore, acoustic simulation is required for each clinical case to determine a satisfactory treatment plan.
Collapse
Affiliation(s)
- Shan Qiao
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Kim Y, Wang TY, Xu Z, Cain CA. Lesion generation through ribs using histotripsy therapy without aberration correction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:2334-43. [PMID: 22083767 PMCID: PMC3360544 DOI: 10.1109/tuffc.2011.2091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction.
Collapse
Affiliation(s)
- Yohan Kim
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
9
|
Wang S, Raju BI, Leyvi E, Weinstein DA, Seip R. Acoustic accessibility investigation for ultrasound mediated treatment of glycogen storage disease type Ia patients. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1469-1477. [PMID: 21767906 DOI: 10.1016/j.ultrasmedbio.2011.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/26/2011] [Accepted: 06/01/2011] [Indexed: 05/31/2023]
Abstract
Glycogen storage disease type Ia (GSDIa) is caused by an inherited defect in the glucose-6-phosphatase gene. The recent advent of targeted ultrasound-mediated delivery (USMD) of plasmid DNA (pDNA) to the liver in conjunction with microbubbles may provide an alternative treatment option. This study focuses on determining the acoustically accessible liver volume in GSDIa patients using transducer models of various geometries with an image-based geometry-driven approach. Results show that transducers with longer focal lengths and smaller apertures (up to an f/number of 2) are able to access larger liver volumes in GSDIa patients while still being capable of delivering the required ultrasound dose in situ (2.5 MPa peak negative pressure at the focus). With sufficiently large acoustic windows and the ability to use glucose to easily assess efficacy, GSD appears to be a good model for testing USMD as proof of principle as a potential therapy for liver applications in general.
Collapse
Affiliation(s)
- Shutao Wang
- Philips Research North America, Briarcliff Manor, NY, USA.
| | | | | | | | | |
Collapse
|
10
|
Li D, Shen G, Bai J, Chen Y. Focus shift and phase correction in soft tissues during focused ultrasound surgery. IEEE Trans Biomed Eng 2011; 58:1621-8. [PMID: 21245005 DOI: 10.1109/tbme.2011.2106210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During the treatment of soft tissue tumors using focused ultrasound surgery (FUS), the focus can shift away from the desired point due to tissue inhomogeneity. In this paper, a numerical method to calculate the focus shift in multiple-layered tissues and a faster phase-correction method to restore the focus were developed. Data from the simulations showed that the focus shifted about 2 mm along the transducer axis in multiple-layered soft tissues. After phase correction, the focus was restored at the desired point. The ex vivo experiments were conducted to verify the simulations, and the results agreed well with those of the simulations. An empirical formula was obtained to estimate the focus shift in a two-layered water-tissue model and was verified by numerical calculations. Moreover, the focus shift in multiple-layered tissues can be summed by the shifts in the component of each layer of tissues. The factors affecting the focus shift were studied. The focus shift varied linearly with the tissue acoustic speed and tissue thickness, whereas it slightly changed with transducer F number (radius of curvature/diameter). Overall, the findings of this study can help in the development of a better treatment plan for FUS in soft tissues.
Collapse
Affiliation(s)
- Dehui Li
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | |
Collapse
|
11
|
Singh V, Zharnikov M, Gulino A, Gupta T. DNA immobilization, delivery and cleavage on solid supports. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04359a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|