1
|
Quality and Safety Considerations in Image Guided Radiation Therapy: An ASTRO Safety White Paper Update. Pract Radiat Oncol 2023; 13:97-111. [PMID: 36585312 DOI: 10.1016/j.prro.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE This updated report on image guided radiation therapy (IGRT) is part of a series of consensus-based white papers previously published by the American Society for Radiation Oncology addressing patient safety. Since the first white papers were published, IGRT technology and procedures have progressed significantly such that these procedures are now more commonly used. The use of IGRT has now extended beyond high-precision treatments, such as stereotactic radiosurgery and stereotactic body radiation therapy, and into routine clinical practice for many treatment techniques and anatomic sites. Therefore, quality and patient safety considerations for these techniques remain an important area of focus. METHODS AND MATERIALS The American Society for Radiation Oncology convened an interdisciplinary task force to assess the original IGRT white paper and update content where appropriate. Recommendations were created using a consensus-building methodology, and task force members indicated their level of agreement based on a 5-point Likert scale from "strongly agree" to "strongly disagree." A prespecified threshold of ≥75% of raters who selected "strongly agree" or "agree" indicated consensus. SUMMARY This IGRT white paper builds on the previous version and uses other guidance documents to primarily focus on processes related to quality and safety. IGRT requires an interdisciplinary team-based approach, staffed by appropriately trained specialists, as well as significant personnel resources, specialized technology, and implementation time. A thorough feasibility analysis of resources is required to achieve the clinical and technical goals and should be discussed with all personnel before undertaking new imaging techniques. A comprehensive quality-assurance program must be developed, using established guidance, to ensure IGRT is performed in a safe and effective manner. As IGRT technologies continue to improve or emerge, existing practice guidelines should be reviewed or updated regularly according to the latest American Association of Physicists in Medicine Task Group reports or guidelines. Patient safety in the application of IGRT is everyone's responsibility, and professional organizations, regulators, vendors, and end-users must demonstrate a clear commitment to working together to ensure the highest levels of safety.
Collapse
|
2
|
Bednarz BP, Jupitz S, Lee W, Mills D, Chan H, Fiorillo T, Sabitini J, Shoudy D, Patel A, Mitra J, Sarcar S, Wang B, Shepard A, Matrosic C, Holmes J, Culberson W, Bassetti M, Hill P, McMillan A, Zagzebski J, Smith LS, Foo TK. First-in-human imaging using a MR-compatible e4D ultrasound probe for motion management of radiotherapy. Phys Med 2021; 88:104-110. [PMID: 34218199 DOI: 10.1016/j.ejmp.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Respiration-induced tumor or organ positional changes can impact the accuracy of external beam radiotherapy. Motion management strategies are used to account for these changes during treatment. The authors report on the development, testing, and first-in-human evaluation of an electronic 4D (e4D) MR-compatible ultrasound probe that was designed for hands-free operation in a MR and linear accelerator (LINAC) environment. METHODS Ultrasound components were evaluated for MR compatibility. Electromagnetic interference (EMI) shielding was used to enclose the entire probe and a factory-fabricated cable shielded with copper braids was integrated into the probe. A series of simultaneous ultrasound and MR scans were acquired and analyzed in five healthy volunteers. RESULTS The ultrasound probe led to minor susceptibility artifacts in the MR images immediately proximal to the ultrasound probe at a depth of <10 mm. Ultrasound and MR-based motion traces that were derived by tracking the salient motion of endogenous target structures in the superior-inferior (SI) direction demonstrated good concordance (Pearson correlation coefficients of 0.95-0.98) between the ultrasound and MRI datasets. CONCLUSION We have demonstrated that our hands-free, e4D probe can acquire ultrasound images during a MR acquisition at frame rates of approximately 4 frames per second (fps) without impacting either the MR or ultrasound image quality. This use of this technology for interventional procedures (e.g. biopsies and drug delivery) and motion compensation during imaging are also being explored.
Collapse
Affiliation(s)
- Bryan P Bednarz
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States.
| | - Sydney Jupitz
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Warren Lee
- GE Global Research, Niskayuna, NY 12309, United States
| | - David Mills
- GE Global Research, Niskayuna, NY 12309, United States
| | - Heather Chan
- GE Global Research, Niskayuna, NY 12309, United States
| | | | | | - David Shoudy
- GE Global Research, Niskayuna, NY 12309, United States
| | - Aqsa Patel
- GE Global Research, Niskayuna, NY 12309, United States
| | - Jhimli Mitra
- GE Global Research, Niskayuna, NY 12309, United States
| | | | - Bo Wang
- GE Global Research, Niskayuna, NY 12309, United States
| | - Andrew Shepard
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, United States
| | - Charles Matrosic
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States
| | - James Holmes
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Wesley Culberson
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Michael Bassetti
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Patrick Hill
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Alan McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - James Zagzebski
- Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - L Scott Smith
- GE Global Research, Niskayuna, NY 12309, United States
| | - Thomas K Foo
- GE Global Research, Niskayuna, NY 12309, United States
| |
Collapse
|
3
|
Grimwood A, Thomas K, Kember S, Aldis G, Lawes R, Brigden B, Francis J, Henegan E, Kerner M, Delacroix L, Gordon A, Tree A, Harris EJ, McNair HA. Factors affecting accuracy and precision in ultrasound guided radiotherapy. Phys Imaging Radiat Oncol 2021; 18:68-77. [PMID: 34258411 PMCID: PMC8254201 DOI: 10.1016/j.phro.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Transperineal ultrasound (TPUS) is used clinically for directly assessing prostate motion. Factors affecting accuracy and precision in TPUS motion estimation must be assessed to realise its full potential. METHODS AND MATERIALS Patients were imaged using volumetric TPUS during the Clarity-Pro trial (NCT02388308). Prostate motion was measured online at patient set-up and offline by experienced observers. Cone beam CT with markers was used as a comparator and observer performance was also quantified. The influence of different clinical factors was examined to establish specific recommendations towards efficacious ultrasound guided radiotherapy. RESULTS From 330 fractions in 22 patients, offline observer random errors were 1.5 mm, 1.3 mm, 1.9 mm (left-right, superior-inferior, anteroposterior respectively). Errors increased in fractions exhibiting poor image quality to 3.3 mm, 3.3 mm and 6.8 mm. Poor image quality was associated with inconsistent probe placement, large anatomical changes and unfavourable imaging conditions within the patient. Online matching exhibited increased observer errors of: 3.2 mm, 2.9 mm and 4.7 mm. Four patients exhibited large systematic residual errors, of which three had poor quality images. Patient habitus showed no correlation with observer error, residual error, or image quality. CONCLUSIONS TPUS offers the unique potential to directly assess inter- and intra-fraction motion on conventional linacs. Inconsistent image quality, inexperienced operators and the pressures of the clinical environment may degrade precision and accuracy. Experienced operators are essential and cross-centre standards for training and QA should be established that build upon current guidance. Greater use of automation technologies may further minimise uncertainties.
Collapse
Affiliation(s)
- Alexander Grimwood
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
- Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Karen Thomas
- Department of Statistics and Computing, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Sally Kember
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Georgina Aldis
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Rebekah Lawes
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Beverley Brigden
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Jane Francis
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Emer Henegan
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Melanie Kerner
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Louise Delacroix
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Alexandra Gordon
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Alison Tree
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Emma J. Harris
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
- Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| | - Helen A. McNair
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom
| |
Collapse
|
4
|
Szegedi M, Boehm C, Paxton A, Rassiah‐Szegedi P, Sarkar V, Zhao H, Su F, Kokeny KE, Lloyd S, Tward J, Salter BJ. Comparison of transperineal ultrasound image guidance technique to transabdominal technique for prostate radiation therapy. Med Phys 2020; 47:6113-6121. [DOI: 10.1002/mp.14522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Martin Szegedi
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Christine Boehm
- Universitätsklinikum Düsseldorf Klinik für Strahlentherapie und Radioonkologie Düsseldorf Germany
| | - Adam Paxton
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | | | - Vikren Sarkar
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Hui Zhao
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Frances Su
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Kristine E. Kokeny
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Shane Lloyd
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Jonathan Tward
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| | - Bill J. Salter
- Department of Radiation Oncology University of Utah Salt Lake City UT84112USA
| |
Collapse
|
5
|
Grimwood A, Rivaz H, Zhou H, McNair HA, Jakubowski K, Bamber JC, Tree AC, Harris EJ. Improving 3D ultrasound prostate localisation in radiotherapy through increased automation of interfraction matching. Radiother Oncol 2020; 149:134-141. [PMID: 32387546 PMCID: PMC7456791 DOI: 10.1016/j.radonc.2020.04.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND AND PURPOSE Daily image guidance is standard care for prostate radiotherapy. Innovations which improve the accuracy and efficiency of ultrasound guidance are needed, particularly with respect to reducing interobserver variation. This study explores automation tools for this purpose, demonstrated on the Elekta Clarity Autoscan®. The study was conducted as part of the Clarity-Pro trial (NCT02388308). MATERIALS AND METHODS Ultrasound scan volumes were collected from 32 patients. Prostate matches were performed using two proposed workflows and the results compared with Clarity's proprietary software. Gold standard matches derived from manually localised landmarks provided a reference. The two workflows incorporated a custom 3D image registration algorithm, which was benchmarked against a third-party application (Elastix). RESULTS Significant reductions in match errors were reported from both workflows compared to standard protocol. Median (IQR) absolute errors in the left-right, anteroposterior and craniocaudal axes were lowest for the Manually Initiated workflow: 0.7(1.0) mm, 0.7(0.9) mm, 0.6(0.9) mm compared to 1.0(1.7) mm, 0.9(1.4) mm, 0.9(1.2) mm for Clarity. Median interobserver variation was ≪0.01 mm in all axes for both workflows compared to 2.2 mm, 1.7 mm, 1.5 mm for Clarity in left-right, anteroposterior and craniocaudal axes. Mean matching times was also reduced to 43 s from 152 s for Clarity. Inexperienced users of the proposed workflows attained better match precision than experienced users on Clarity. CONCLUSION Automated image registration with effective input and verification steps should increase the efficacy of interfraction ultrasound guidance compared to the current commercially available tools.
Collapse
Affiliation(s)
- Alexander Grimwood
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Hassan Rivaz
- Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada
| | - Hang Zhou
- Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada
| | - Helen A McNair
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | | | - Jeffrey C Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Alison C Tree
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Emma J Harris
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK.
| |
Collapse
|
6
|
Abstract
Modern radiation therapy treatment planning and delivery is a complex process that relies on advanced imaging and computing technology as well as expertise from the medical team. The process begins with simulation imaging, in which three-dimensional computed tomography images (or magnetic resonance images in some cases) are used to characterize the patient anatomy. From there, the radiation oncologist delineates the relevant target/tumor volumes and normal tissue and communicates the goals for treatment planning. The planning process attempts to generate a radiation therapy treatment plan that will deliver a therapeutic dose of radiation to the tumor while sparing nearby normal tissue.
Collapse
|
7
|
Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Nguyen DT, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol 2019; 64:15TR01. [PMID: 31226704 PMCID: PMC7655120 DOI: 10.1088/1361-6560/ab2ba8] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT.
Collapse
Affiliation(s)
- Jenny Bertholet
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
- Author to whom any correspondence should be
addressed
| | - Antje Knopf
- Department of Radiation Oncology,
University Medical Center
Groningen, University of Groningen, The
Netherlands
| | - Björn Eiben
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Jamie McClelland
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Alexander Grimwood
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Emma Harris
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Martin Menten
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus,
Denmark
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
- School of Biomedical Engineering,
University of Technology
Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| |
Collapse
|
8
|
Zhou S, Luo L, Li J, Lin M, Chen L, Shao J, Lu S, Ma Y, Zhang Y, Chen W, Liu M, Liu S, He L. Analyses of the factors influencing the accuracy of three-dimensional ultrasound in comparison with cone-beam CT in image-guided radiotherapy for prostate cancer with or without pelvic lymph node irradiation. Radiat Oncol 2019; 14:22. [PMID: 30696488 PMCID: PMC6352439 DOI: 10.1186/s13014-019-1217-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/08/2019] [Indexed: 11/16/2022] Open
Abstract
Background Three-dimensional ultrasound (3DUS) is an attractive option in image-guided radiotherapy (IGRT) for prostate cancer (PCa) patients. However, the potential factors influencing the accuracy of 3DUS in comparison with cone-beam CT (CBCT) in IGRT for PCa patients haven’t been clearly identified. Methods The differences between US/US and CBCT/CT registrations were analyzed over 586 and 580 sessions for 24 and 25 PCa patients treated with or without pelvic lymph node irradiation, respectively. The clinical factors that may influence registration differences were also evaluated. Results The average discrepancies between US/US and CBCT/CT registrations were − 0.28 ± 5.28 mm, − 0.16 ± 3.48 mm, and − 0.47 ± 4.31 mm in the superior-inferior (SI), left-right (LR), and anterior-posterior (AP) directions, respectively. The discrepancies were respectively less than 5 mm longitudinally, laterally, and vertically in 64.4 and 70.1%, 84.9 and 89.2%, and 75.9 and 79.1% of the patients treated with or without pelvic lymph node irradiation, respectively. The registration differences were significantly smaller at least in one direction in patients younger than 70 years, without pelvic lymph node irradiation, guided by transperineal ultrasonography and had a bladder volume smaller than 300 mL. Conclusions Age, irradiated regions, 3DUS modality, and bladder volume are important factors that may influence the differences between US/US and CBCT/CT registrations. 3DUS guidance is more feasible for younger PCa patients with a better control of bladder volume during the treatment and those who did not undergo pelvic lymph node irradiation. Electronic supplementary material The online version of this article (10.1186/s13014-019-1217-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sha Zhou
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Liling Luo
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Jibin Li
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Maosheng Lin
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Li Chen
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Jianhui Shao
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Shipei Lu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Yaru Ma
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Yingting Zhang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Wenfen Chen
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Mengzhong Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | - Shiliang Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China.
| | - Liru He
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Zou W, Dong L, Kevin Teo BK. Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy. Semin Radiat Oncol 2018; 28:238-247. [PMID: 29933883 DOI: 10.1016/j.semradonc.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Image guidance technology has evolved and seen widespread application in the past several decades. Advancements in the diagnostic imaging field have found new applications in radiation oncology and promoted the development of therapeutic devices with advanced imaging capabilities. A recent example is the development of linear accelerators that offer magnetic resonance imaging for real-time imaging and online adaptive planning. Volumetric imaging, in particular, offers more precise localization of soft tissue targets and critical organs which reduces setup uncertainty and permit the use of smaller setup margins. We present a review of the status of current imaging modalities available for radiation oncology and its impact on target margins and use for adaptive therapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
De Luca V, Banerjee J, Hallack A, Kondo S, Makhinya M, Nouri D, Royer L, Cifor A, Dardenne G, Goksel O, Gooding MJ, Klink C, Krupa A, Le Bras A, Marchal M, Moelker A, Niessen WJ, Papiez BW, Rothberg A, Schnabel J, van Walsum T, Harris E, Lediju Bell MA, Tanner C. Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins. Med Phys 2018; 45:4986-5003. [PMID: 30168159 DOI: 10.1002/mp.13152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Compensation for respiratory motion is important during abdominal cancer treatments. In this work we report the results of the 2015 MICCAI Challenge on Liver Ultrasound Tracking and extend the 2D results to relate them to clinical relevance in form of reducing treatment margins and hence sparing healthy tissues, while maintaining full duty cycle. METHODS We describe methodologies for estimating and temporally predicting respiratory liver motion from continuous ultrasound imaging, used during ultrasound-guided radiation therapy. Furthermore, we investigated the trade-off between tracking accuracy and runtime in combination with temporal prediction strategies and their impact on treatment margins. RESULTS Based on 2D ultrasound sequences from 39 volunteers, a mean tracking accuracy of 0.9 mm was achieved when combining the results from the 4 challenge submissions (1.2 to 3.3 mm). The two submissions for the 3D sequences from 14 volunteers provided mean accuracies of 1.7 and 1.8 mm. In combination with temporal prediction, using the faster (41 vs 228 ms) but less accurate (1.4 vs 0.9 mm) tracking method resulted in substantially reduced treatment margins (70% vs 39%) in contrast to mid-ventilation margins, as it avoided non-linear temporal prediction by keeping the treatment system latency low (150 vs 400 ms). Acceleration of the best tracking method would improve the margin reduction to 75%. CONCLUSIONS Liver motion estimation and prediction during free-breathing from 2D ultrasound images can substantially reduce the in-plane motion uncertainty and hence treatment margins. Employing an accurate tracking method while avoiding non-linear temporal prediction would be favorable. This approach has the potential to shorten treatment time compared to breath-hold and gated approaches, and increase treatment efficiency and safety.
Collapse
Affiliation(s)
- Valeria De Luca
- Computer Vision Laboratory, ETH Zurich, Zürich, Switzerland
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Andre Hallack
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | | | - Maxim Makhinya
- Computer Vision Laboratory, ETH Zurich, Zürich, Switzerland
| | | | - Lucas Royer
- Institut de Recherche Technologique b-com, Rennes, France
| | | | | | - Orcun Goksel
- Computer Vision Laboratory, ETH Zurich, Zürich, Switzerland
| | | | - Camiel Klink
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Maud Marchal
- Institut de Recherche Technologique b-com, Rennes, France
| | - Adriaan Moelker
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Wiro J Niessen
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Julia Schnabel
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Theo van Walsum
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Muyinatu A Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
11
|
Kim H, Chang AR, Cho S, Ye SJ. A patient-specific three-dimensional couplant pad for ultrasound image-guided radiation therapy: a feasibility study. Radiat Oncol 2018; 13:164. [PMID: 30176924 PMCID: PMC6122664 DOI: 10.1186/s13014-018-1098-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 08/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A wide application of ultrasound for radiation therapy has been hindered by a few issues such as skin and target deformations due to probe pressure, optical tracking disabilities caused by irregular surfaces and inter-user variations. The purpose of this study was to overcome these barriers by using a patient-specific three-dimensional (3D) couplant pad (CP). METHODS A patient skin mold was designed using a skin contour of simulation CT images and fabricated by a 3D printer. A CP was then casted by pouring gelatin solution into a container accommodating the mold. To validate the use of the CP in positioning accuracy and imaging quality, phantom tests were carried out in our ultrasound-based localization system and then daily ultrasound images of four patients were acquired with and without the CP before treatment. RESULTS In the phantom study, the use of CP increased a contrast-to-noise ratio from 2.4 to 4.0. The positioning accuracies in the US scans with and without the CP were less than 1 mm in all directions. In the patient study, the use of CP decreased the centroid offset of the target volume after target position alignment from 4.4 mm to 2.9 mm. One patient with a small volume of target showed a substantial increase in the inter-fractional target contour agreement (from 0.07 (poor agreement) to 0.31 (fair agreement) in Kappa values) by using the CP. CONCLUSIONS Our patient-specific 3D CP based on a 3D mold printing technique not only maintained the tracking accuracy but also reduced the inter-user variation, as well as that could potentially improve detectability of optical markers and target visibility for ultrasound image-guided radiotherapy.
Collapse
Affiliation(s)
- Heejung Kim
- Department of Biomedical Engineering, Seoul National University, Seoul, Korea.,Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul, Korea
| | - Ah Ram Chang
- Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul, Korea
| | - Sungwoo Cho
- Department of Surgery, Soonchunhyang University Hospital, Seoul, Korea
| | - Sung-Joon Ye
- Department of Transdisciplinary Studies, Seoul National University, Seoul, Korea. .,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
12
|
The Use of Ultrasound Imaging in the External Beam Radiotherapy Workflow of Prostate Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7569590. [PMID: 29619375 PMCID: PMC5829356 DOI: 10.1155/2018/7569590] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/16/2022]
Abstract
External beam radiotherapy (EBRT) is one of the curative treatment options for prostate cancer patients. The aim of this treatment option is to irradiate tumor tissue, while sparing normal tissue as much as possible. Frequent imaging during the course of the treatment (image guided radiotherapy) allows for determination of the location and shape of the prostate (target) and of the organs at risk. This information is used to increase accuracy in radiation dose delivery resulting in better tumor control and lower toxicity. Ultrasound imaging is harmless for the patient, it is cost-effective, and it allows for real-time volumetric organ tracking. For these reasons, it is an ideal technique for image guidance during EBRT workflows. Review papers have been published in which the use of ultrasound imaging in EBRT workflows for different cancer sites (prostate, breast, etc.) was extensively covered. This new review paper aims at providing the readers with an update on the current status for prostate cancer ultrasound guided EBRT treatments.
Collapse
|
13
|
Zaorsky NG, Showalter TN, Ezzell GA, Nguyen PL, Assimos DG, D'Amico AV, Gottschalk AR, Gustafson GS, Keole SR, Liauw SL, Lloyd S, McLaughlin PW, Movsas B, Prestidge BR, Taira AV, Vapiwala N, Davis BJ. ACR Appropriateness Criteria for external beam radiation therapy treatment planning for clinically localized prostate cancer, part II of II. Adv Radiat Oncol 2017; 2:437-454. [PMID: 29114613 PMCID: PMC5605284 DOI: 10.1016/j.adro.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To present the most updated American College of Radiology (ACR) Appropriateness Criteria formed by an expert panel on the appropriate delivery of external beam radiation to manage stage T1 and T2 prostate cancer (in the definitive setting and post-prostatectomy) and to provide clinical variants with expert recommendations based on accompanying Appropriateness Criteria for target volumes and treatment planning. METHODS AND MATERIALS The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a panel of multidisciplinary experts. The guideline development and revision process includes an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In instances in which evidence is lacking or equivocal, expert opinion may supplement available evidence to recommend imaging or treatment. RESULTS The panel summarizes the most recent and relevant literature on the topic, including organ motion and localization methods, image guidance, and delivery techniques (eg, 3-dimensional conformal intensity modulation). The panel presents 7 clinical variants, including (1) a standard case and cases with (2) a distended rectum, (3) a large-volume prostate, (4) bilateral hip implants, (5) inflammatory bowel disease, (6) prior prostatectomy, and (7) a pannus extending into the radiation field. Each case outlines the appropriate techniques for simulation, treatment planning, image guidance, dose, and fractionation. Numerical rating and commentary is given for each treatment approach in each variant. CONCLUSIONS External beam radiation is a key component of the curative management of T1 and T2 prostate cancer. By combining the most recent medical literature, these Appropriateness Criteria can aid clinicians in determining the appropriate treatment delivery and personalized approaches for individual patients.
Collapse
Affiliation(s)
| | | | - Gary A. Ezzell
- Mayo Clinic, Phoenix, Arizona (research author [contributing])
| | - Paul L. Nguyen
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts (panel vice-chair)
| | - Dean G. Assimos
- University of Alabama School of Medicine, Birmingham, Alabama (American Urological Association)
| | - Anthony V. D'Amico
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts (American Society of Clinical Oncology)
| | | | | | | | | | - Shane Lloyd
- Huntsman Cancer Hospital, Salt Lake City, Utah
| | | | | | | | - Al V. Taira
- Mills Peninsula Hospital, San Mateo, California
| | - Neha Vapiwala
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
14
|
Comparison of 2 transabdominal ultrasound image guidance techniques for prostate and prostatic fossa radiation therapy. Pract Radiat Oncol 2017; 7:e99-e107. [PMID: 28274407 DOI: 10.1016/j.prro.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/09/2016] [Accepted: 07/05/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Our clinic is a long-term user of a first-generation transabdominal (TA) biplanar (2.5-dimensional [2.5D]) ultrasound image guidance (USIG) system for prostate cancer treatments. We are also an early adopter and development partner for a new, second-generation, fully 3D USIG system that allows for volumetric TA localization of the prostate. This new system has been evaluated at our institution by direct comparison with the previously established first-generation TA method for prostate alignment. METHODS AND MATERIALS We compared the 2 TA-USIG methods on the same subjects and same treatment sessions. A total of 1428 fractions delivered to 41 treated patients (16 intact prostate, 25 fossa) were analyzed regarding the agreement of alignments between the 2 US positioning systems. Patients were first aligned to tattoos using treatment room lasers. TA-USIG using the 3D system was then performed to align contours derived during the computed tomography simulation process to their corresponding daily US-visualized structures. The US-3D system image guidance shifts were performed and recorded as the "initial" shifts. A 2.5D system alignment was then immediately performed using the same computed tomography derived reference contours and the indicated shifts, relative to the 3D system, were recorded as the difference between the 2 alignment methods. RESULTS The average difference between the 2 TA-USIG alignments for all patients was 0.4 ± 0.7 mm, 0.7 ± 0.9 mm, and 0.5 ± 0.9 mm in the left-right, anteroposterior, and superoinferior directions, respectively. No significant difference in system agreement between intact prostate versus fossa patients was observed. CONCLUSION Our comparison of an established 2.5D USIG method with a newer, fully 3D approach for prostate alignment of 41 different patients (1428 fractions) shows excellent agreement with each other, despite the nontrivial difference in imaging approaches. This shows that the 2 specific USIG approaches yield results that are consistent with each other, and that the USIG modality yields consistent results within the modality.
Collapse
|
15
|
Schlosser J, Hristov D. Radiolucent 4D Ultrasound Imaging: System Design and Application to Radiotherapy Guidance. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:2292-2300. [PMID: 27164579 DOI: 10.1109/tmi.2016.2559499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four-dimensional (4D) ultrasound (US) is an attractive modality for image guidance due to its real-time, non-ionizing, volumetric imaging capability with high soft tissue contrast. However, existing 4D US imaging systems contain large volumes of metal which interfere with diagnostic and therapeutic ionizing radiation in procedures such as CT imaging and radiation therapy. This study aimed to design and characterize a novel 4D Radiolucent Remotely-Actuated UltraSound Scanning (RRUSS) device that overcomes this limitation. In a phantom, we evaluated the imaging performance of the RRUSS device including frame rate, resolution, spatial integrity, and motion tracking accuracy. To evaluate compatibility with radiation therapy workflow, we evaluated device-induced CT imaging artifacts, US tracking performance during beam delivery, and device compatibility with commercial radiotherapy planning software. The RRUSS device produced 4D volumes at 0.1-3.0 Hz with 60° lateral field of view (FOV), 50° maximum elevational FOV, and 200 mm maximum depth. Imaging resolution (-3 dB point spread width) was 1.2-7.9 mm at depths up to 100 mm and motion tracking accuracy was ≤ 0.3±0.5 mm. No significant effect of the RRUSS device on CT image integrity was found, and RRUSS device performance was not affected by radiotherapy beam exposure. Agreement within ±3.0% / 2.0 mm was achieved between computed and measured radiotherapy dose delivered directly through the RRUSS device at 6 MV and 15 MV. In vivo liver, kidney, and prostate images were successfully acquired. Our investigations suggest that a RRUSS device can offer non-interfering 4D guidance for radiation therapy and other diagnostic and therapeutic procedures.
Collapse
|
16
|
Baker M, Cooper DT, Behrens CF. Evaluation of uterine ultrasound imaging in cervical radiotherapy; a comparison of autoscan and conventional probe. Br J Radiol 2016; 89:20160510. [PMID: 27452268 DOI: 10.1259/bjr.20160510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE In cervical radiotherapy, it is essential that the uterine position is correctly determined prior to treatment delivery. The aim of this study was to evaluate an autoscan ultrasound (A-US) probe, a motorized transducer creating three-dimensional (3D) images by sweeping, by comparing it with a conventional ultrasound (C-US) probe, where manual scanning is required to acquire 3D images. METHODS Nine healthy volunteers were scanned by seven operators, using the Clarity(®) system (Elekta, Stockholm, Sweden). In total, 72 scans, 36 scans from the C-US and 36 scans from the A-US probes, were acquired. Two observers delineated the uterine structure, using the software-assisted segmentation in the Clarity workstation. The data of uterine volume, uterine centre of mass (COM) and maximum uterine lengths, in three orthogonal directions, were analyzed. RESULTS In 53% of the C-US scans, the whole uterus was captured, compared with 89% using the A-US. F-test on 36 scans demonstrated statistically significant differences in interobserver COM standard deviation (SD) when comparing the C-US with the A-US probe for the inferior-superior (p < 0.006), left-right (p < 0.012) and anteroposterior directions (p < 0.001). The median of the interobserver COM distance (Euclidean distance for 36 scans) was reduced from 8.5 (C-US) to 6.0 mm (A-US). An F-test on the 36 scans showed strong significant differences (p < 0.001) in the SD of the Euclidean interobserver distance when comparing the C-US with the A-US scans. The average Dice coefficient when comparing the two observers was 0.67 (C-US) and 0.75 (A-US). The predictive interval demonstrated better interobserver delineation concordance using the A-US probe. CONCLUSION The A-US probe imaging might be a better choice of image-guided radiotherapy system for correcting for daily uterine positional changes in cervical radiotherapy. ADVANCES IN KNOWLEDGE Using a novel A-US probe might reduce the uncertainty in interoperator variability during ultrasound scanning.
Collapse
Affiliation(s)
- Mariwan Baker
- 1 Department of Oncology, Radiotherapy Research Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,2 Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark.,3 Center for Nuclear Technologies, Technical University of Denmark, Roskilde, Denmark
| | | | - Claus F Behrens
- 1 Department of Oncology, Radiotherapy Research Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
van der Meer S, Seravalli E, Fontanarosa D, Bloemen-van Gurp EJ, Verhaegen F. Consequences of Intermodality Registration Errors for Intramodality 3D Ultrasound IGRT. Technol Cancer Res Treat 2016; 15:632-8. [DOI: 10.1177/1533034615588198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/30/2015] [Indexed: 12/26/2022] Open
Abstract
Intramodality ultrasound image-guided radiotherapy systems compare daily ultrasound to reference ultrasound images. Nevertheless, because the actual treatment planning is based on a reference computed tomography image, and not on a reference ultrasound image, their accuracy depends partially on the correct intermodality registration of the reference ultrasound and computed tomography images for treatment planning. The error propagation in daily patient positioning due to potential registration errors at the planning stage was assessed in this work. Five different scenarios were simulated involving shifts or rotations of ultrasound or computed tomography images. The consequences of several workflow procedures were tested with a phantom setup. As long as the reference ultrasound and computed tomography images are made to match, the patient will be in the correct treatment position. In an example with a phantom measurement, the accuracy of the performed manual fusion was found to be ≤2 mm. In clinical practice, manual registration of patient images is expected to be more difficult. Uncorrected mismatches will lead to a systematically incorrect final patient position because there will be no indication that there was a misregistration between the computed tomography and reference ultrasound images. In the treatment room, the fusion with the computed tomography image will not be visible and based on the ultrasound images the patient position seems correct.
Collapse
Affiliation(s)
- Skadi van der Meer
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Enrica Seravalli
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Davide Fontanarosa
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther J. Bloemen-van Gurp
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Oncology, Medical Physics Unit, McGill University, Montréal, Québec, Canada
| |
Collapse
|
18
|
Evaluation of a new transperineal ultrasound probe for inter-fraction image-guidance for definitive and post-operative prostate cancer radiotherapy. Phys Med 2016; 32:499-505. [PMID: 26851164 DOI: 10.1016/j.ejmp.2016.01.481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate a new system based on transperineal ultrasound (TP-US) acquisitions for prostate and post-prostatectomy pre-treatment positioning by comparing this device to cone-beam computed tomography (CBCT). METHODS The differences between CBCT/CT and TP-US/TP-US registrations were analyzed on 427 and 453 sessions for 13 prostate and 14 post-prostatectomy patients, respectively. The inter-operator variability (IOV) of the registration process, and the impact and variability of the probe pressure were also evaluated. RESULTS CBCT and TP-US shift agreements at ± 5 mm were 76.6%, 95.1%, 96.3% and 90.3%, 85.0%, 97.6% in anterior-posterior, superior-inferior and left-right directions, for prostate and post-prostatectomy patients, respectively. IOV values were similar between the 2 modalities. Displacements above 5 mm due to strong pressures were observed on both localizations, but such pressures were rarely reproduced during treatment courses. CONCLUSIONS High concordance between CBCT/CT and TP-US/TP-US localization of prostates or prostatic beds was found in this study. TP-US based prepositioning is a feasible method to ensure accurate treatment delivery, and represents an attractive alternative to invasive and/or irradiating imaging modalities.
Collapse
|
19
|
Baker M, Behrens CF. Prostate displacement during transabdominal ultrasound image-guided radiotherapy assessed by real-time four-dimensional transperineal monitoring. Acta Oncol 2015. [PMID: 26203927 DOI: 10.3109/0284186x.2015.1061208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Transabdominal ultrasound (TAUS) imaging is currently available for localizing the prostate in daily image-guided radiotherapy (IGRT). The aim of this study was to determine the induced prostate displacement during such TAUS imaging. The prostate displacement was monitored using a novel transperineal four-dimensional (4D) US (TPUS) system. MATERIAL AND METHODS Ten prostate cancer patients, with a mean age of 68 years (58/76), were US scanned in the computed tomography (CT) room utilizing the Clarity 4D TPUS monitoring system. The patients were asked to comply with a moderate bladder filling protocol. After US-CT fusion, the prostate volume was delineated and used as a reference for weekly US imaging in the treatment room. Immediately after treatment delivery the TPUS monitoring system was set up. During real-time monitoring of the prostate, a conventional 2D probe was applied to simulate a TAUS scan. The time dependent prostate displacements induced by the 2D probe pressure were recorded for the three orthogonal directions. In total 42 monitoring curves with applied 2D probe were recorded. RESULTS Data analysis of 42 US scans resulted in pressure induced prostate displacements with mean values (± 1 SD) (mm); inferior (+)-superior (I/S): (-0.1 ± 0.8); left (+)-right (L/R): (0.2 ± 0.7); and anterior (+)-posterior (A/P): (-0.1 ± 1.0). The majority of the displacements were within 1-2 mm. Only two scans (5%) (A/P direction) and 16% of Euclidean distances were larger than 2.0 mm. The largest displacement was 2.6 mm in the anterior direction. CONCLUSION The novel 4D TPUS system was capable of tracking and recording the prostate positional displacements. The study demonstrated that the prostate induced displacements due to applied TAUS IGRT are small, and in most cases clinically irrelevant to prostate radiotherapy.
Collapse
Affiliation(s)
- Mariwan Baker
- a Department of Oncology , Radiotherapy Research Unit, Herlev Hospital, University of Copenhagen , Herlev , Denmark
- b Center for Nuclear Technologies, Technical University of Denmark, DTU Risø Campus , Roskilde , Denmark
| | - Claus F Behrens
- a Department of Oncology , Radiotherapy Research Unit, Herlev Hospital, University of Copenhagen , Herlev , Denmark
| |
Collapse
|
20
|
Western C, Hristov D, Schlosser J. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance. Cureus 2015; 7:e280. [PMID: 26180704 PMCID: PMC4494460 DOI: 10.7759/cureus.280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2015] [Indexed: 11/05/2022] Open
Abstract
External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included.
Collapse
Affiliation(s)
- Craig Western
- Department of Mechanical Engineering, Stanford University
| | | | | |
Collapse
|
21
|
Fontanarosa D, van der Meer S, Bamber J, Harris E, O'Shea T, Verhaegen F. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Phys Med Biol 2015; 60:R77-114. [PMID: 25592664 DOI: 10.1088/0031-9155/60/3/r77] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In modern radiotherapy, verification of the treatment to ensure the target receives the prescribed dose and normal tissues are optimally spared has become essential. Several forms of image guidance are available for this purpose. The most commonly used forms of image guidance are based on kilovolt or megavolt x-ray imaging. Image guidance can also be performed with non-harmful ultrasound (US) waves. This increasingly used technique has the potential to offer both anatomical and functional information.This review presents an overview of the historical and current use of two-dimensional and three-dimensional US imaging for treatment verification in radiotherapy. The US technology and the implementation in the radiotherapy workflow are described. The use of US guidance in the treatment planning process is discussed. The role of US technology in inter-fraction motion monitoring and management is explained, and clinical studies of applications in areas such as the pelvis, abdomen and breast are reviewed. A companion review paper (O'Shea et al 2015 Phys. Med. Biol. submitted) will extensively discuss the use of US imaging for intra-fraction motion quantification and novel applications of US technology to RT.
Collapse
Affiliation(s)
- Davide Fontanarosa
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht 6201 BN, the Netherlands. Oncology Solutions Department, Philips Research, High Tech Campus 34, Eindhoven 5656 AE, the Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
O'Shea TP, Garcia LJ, Rosser KE, Harris EJ, Evans PM, Bamber JC. 4D ultrasound speckle tracking of intra-fraction prostate motion: a phantom-based comparison with x-ray fiducial tracking using CyberKnife. Phys Med Biol 2014; 59:1701-20. [PMID: 24619097 DOI: 10.1088/0031-9155/59/7/1701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigates the use of a mechanically-swept 3D ultrasound (3D-US) probe for soft-tissue displacement monitoring during prostate irradiation, with emphasis on quantifying the accuracy relative to CyberKnife® x-ray fiducial tracking. An US phantom, implanted with x-ray fiducial markers was placed on a motion platform and translated in 3D using five real prostate motion traces acquired using the Calypso system. Motion traces were representative of all types of motion as classified by studying Calypso data for 22 patients. The phantom was imaged using a 3D swept linear-array probe (to mimic trans-perineal imaging) and, subsequently, the kV x-ray imaging system on CyberKnife. A 3D cross-correlation block-matching algorithm was used to track speckle in the ultrasound data. Fiducial and US data were each compared with known phantom displacement. Trans-perineal 3D-US imaging could track superior-inferior (SI) and anterior-posterior (AP) motion to ≤0.81 mm root-mean-square error (RMSE) at a 1.7 Hz volume rate. The maximum kV x-ray tracking RMSE was 0.74 mm, however the prostate motion was sampled at a significantly lower imaging rate (mean: 0.04 Hz). Initial elevational (right-left; RL) US displacement estimates showed reduced accuracy but could be improved (RMSE <2.0 mm) using a correlation threshold in the ultrasound tracking code to remove erroneous inter-volume displacement estimates. Mechanically-swept 3D-US can track the major components of intra-fraction prostate motion accurately but exhibits some limitations. The largest US RMSE was for elevational (RL) motion. For the AP and SI axes, accuracy was sub-millimetre. It may be feasible to track prostate motion in 2D only. 3D-US also has the potential to improve high tracking accuracy for all motion types. It would be advisable to use US in conjunction with a small (∼2.0 mm) centre-of-mass displacement threshold in which case it would be possible to take full advantage of the accuracy and high imaging rate capability.
Collapse
Affiliation(s)
- Tuathan P O'Shea
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS foundation Trust, Sutton and London, UK
| | | | | | | | | | | |
Collapse
|
23
|
Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, Häring P, Debus J, Sterzing F. MR-guidance--a clinical study to evaluate a shuttle- based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 2014; 9:12. [PMID: 24401489 PMCID: PMC3904210 DOI: 10.1186/1748-717x-9-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this clinical study is to investigate the clinical feasibility and safety of a shuttle-based MR-linac connection to provide MR-guided radiotherapy. Methods/Design A total of 40 patients with an indication for a neoadjuvant, adjuvant or definitive radiation treatment will be recruited including tumors of the head and neck region, thorax, upper gastrointestinal tract and pelvic region. All study patients will receive standard therapy, i.e. highly conformal radiation techniques like CT-guided intensity-modulated radiotherapy (IMRT) with or without concomitant chemotherapy or other antitumor medication, and additionally daily short MR scans in treatment position with the same immobilisation equipment used for irradiation for position verification and imaging of the anatomical and functional changes during the course of radiotherapy. For daily position control, skin marks and a stereotactic frame will be used for both imaging modalities. Patient transfer between the MR device and the linear accelerator will be performed with a shuttle system which uses an air-bearing patient platform for both procedures. The daily acquired MR and CT data sets will be digitally registrated, correlated with the planning CT and compared with each other regarding translational and rotational errors. Aim of this clinical study is to establish a shuttle-based approach for realising MR-guided radiotherapy for certain clinical situations. Second objectives are to compare MR-guided radiotherapy with the gold standard of CT image guidance for quality assurance of radiotherapy, to establish an appropiate MR protocol therefore, and to assess the possibility of using MR-based image guidance not only for position verification but also for adaptive strategies in radiotherapy. Discussion Compared to CT, MRI might offer the advantage of providing IGRT without delivering an additional radiation dose to the patients and the possibility of optimisation of adaptive therapy strategies due to its superior soft tissue contrast. However, up to now, hybrid MR-linac devices are still under construction and not clinically applicable. For the near future, a shuttle-based approach would be a promising alternative for providing MR-guided radiotherapy, so that the present study was initiated to determine feasibility and safety of such an approach. Besides positioning information, daily MR data under treatment offer the possibility to assess tumor regression and functional parameters, with a potential impact not only on adaptive therapy strategies but also on early assessment of treatment response.
Collapse
Affiliation(s)
- Tilman Bostel
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
van der Meer S, Bloemen-van Gurp E, Hermans J, Voncken R, Heuvelmans D, Gubbels C, Fontanarosa D, Visser P, Lutgens L, van Gils F, Verhaegen F. Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers. Med Phys 2013; 40:071707. [DOI: 10.1118/1.4808359] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
De Los Santos J, Popple R, Agazaryan N, Bayouth JE, Bissonnette JP, Bucci MK, Dieterich S, Dong L, Forster KM, Indelicato D, Langen K, Lehmann J, Mayr N, Parsai I, Salter W, Tomblyn M, Yuh WTC, Chetty IJ. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int J Radiat Oncol Biol Phys 2013; 87:33-45. [PMID: 23664076 DOI: 10.1016/j.ijrobp.2013.02.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Jennifer De Los Santos
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 2012; 9:688-99. [DOI: 10.1038/nrclinonc.2012.194] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Willoughby T, Lehmann J, Bencomo JA, Jani SK, Santanam L, Sethi A, Solberg TD, Tome WA, Waldron TJ. Quality assurance for nonradiographic radiotherapy localization and positioning systems: report of Task Group 147. Med Phys 2012; 39:1728-47. [PMID: 22482598 DOI: 10.1118/1.3681967] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New technologies continue to be developed to improve the practice of radiation therapy. As several of these technologies have been implemented clinically, the Therapy Committee and the Quality Assurance and Outcomes Improvement Subcommittee of the American Association of Physicists in Medicine commissioned Task Group 147 to review the current nonradiographic technologies used for localization and tracking in radiotherapy. The specific charge of this task group was to make recommendations about the use of nonradiographic methods of localization, specifically; radiofrequency, infrared, laser, and video based patient localization and monitoring systems. The charge of this task group was to review the current use of these technologies and to write quality assurance guidelines for the use of these technologies in the clinical setting. Recommendations include testing of equipment for initial installation as well as ongoing quality assurance. As the equipment included in this task group continues to evolve, both in the type and sophistication of technology and in level of integration with treatment devices, some of the details of how one would conduct such testing will also continue to evolve. This task group, therefore, is focused on providing recommendations on the use of this equipment rather than on the equipment itself, and should be adaptable to each user's situation in helping develop a comprehensive quality assurance program.
Collapse
Affiliation(s)
- Twyla Willoughby
- Task Group 147, Department of Radiation Physics, Orlando, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Richardson S. A 2-year review of recent Nuclear Regulatory Commission events: What errors occur in the modern brachytherapy era? Pract Radiat Oncol 2012; 2:157-163. [DOI: 10.1016/j.prro.2011.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/10/2011] [Accepted: 08/23/2011] [Indexed: 11/29/2022]
|