1
|
Karger CP, Elter A, Dorsch S, Mann P, Pappas E, Oldham M. Validation of complex radiotherapy techniques using polymer gel dosimetry. Phys Med Biol 2024; 69:06TR01. [PMID: 38330494 DOI: 10.1088/1361-6560/ad278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Alina Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Philipp Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Evangelos Pappas
- Radiology & Radiotherapy Sector, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
2
|
Development and Application of MAGIC-f Gel in Cancer Research and Medical Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Much of the complex medical physics work requires radiation dose delivery, which requires dosimeters to accurately measure complex three-dimensional dose distribution with good spatial resolution. MAGIC-f polymer gel is one of the emerging new dosimeters widely used in medical physics research. The purpose of this study was to present an overview of polymer gel dosimetry, using MAGIC-f gel, including its composition, manufacture, imaging, calibration, and application to medical physics research. In this review, the history of polymer gel development is presented, along with the applications so far. Moreover, the most important experiments/applications of MAGIC-f polymer gel are discussed to illustrate the behavior of gel on different conditions of irradiation, imaging, and manufacturing techniques. Finally, various future works are suggested based on the past and present works on MAGIC-f gel and polymer gel in general, with the hope that these bits of knowledge can provide important clues for future research on MAGIC-f gel as a dosimeter.
Collapse
|
3
|
Natanasabapathi G, Warmington L, Watanabe Y. Evaluation of two calibration methods for MRI-based polymer gel dosimetry. Appl Radiat Isot 2021; 174:109754. [PMID: 34030113 DOI: 10.1016/j.apradiso.2021.109754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Polymer gel dosimetry (PGD) can provide three-dimensional (3D) dose data for evaluation of the dose calculation algorithms used by treatment planning systems (TPS). Although the PGD technique, particularly with MRI, is now ready for clinical applications, an accurate calibration method is vital for treatment validation in 3D. This study evaluated the single-phantom electron beam (SPE) method that used the depth-dose data of a 9 MeV electron beam. This technique was compared with the multi-vial x-ray (MVX) method that used nine small vials irradiated with various doses. We tested two regression equations, i.e., third-order polynomial and tangent functions, and two dose-normalization methods, i.e., one-point and two-point methods. These methods were evaluated using a dose distribution generated by a 3 cm × 3 cm open arc beam. We used MAGAT polymer gel manufactured in-house. We found that the SPE method required a smaller dose scaling for the dose comparison. The tangent function showed better data fitting than the polynomial function with smaller uncertainty of the estimated coefficients. We did not observe a distinct advantage of the SPE method over the MVX method for the 3D dose comparison with the test case. From this study, we infer that the SPE method with the tangent function as the regression equation and one-point dose normalization is a good calibration option for the MRI-based polymer gel dosimetry.
Collapse
Affiliation(s)
- Gopishankar Natanasabapathi
- Department of Radiation Oncology, Dr. B. R. A. IRCH, All India Institute of Medical Sciences, New Delhi, India.
| | - Leighton Warmington
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
BrahimiMoussa S, Benamar M, LounisMokrani Z. Characterization of the chemical and structural modifications induced by gamma rays on the MAGIC polymer gel. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Farhood B, Geraily G, Abtahi SMM. A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl Radiat Isot 2019; 143:47-59. [PMID: 30390500 DOI: 10.1016/j.apradiso.2018.08.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022]
Abstract
Radiotherapy has rapidly improved because of the use of new equipment and techniques. Hence, the appeal for a feasible and accurate three-dimensional (3D) dosimetry system has increased. In this regard, gel dosimetry systems are accurate 3D dosimeters with high resolution. This systematic review evaluates the clinical applications of polymer gel dosimeters in radiotherapy. To find the clinical applications of polymer gel dosimeters in radiotherapy, a full systematic literature search was performed on the basis of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in electronic databases up to January 31, 2017, with use of search-related terms in the titles and abstracts of articles. A total of 765 articles were screened in accordance with our inclusion and exclusion criteria. Eventually, 53 articles were included in the study. The findings show that most clinical applications of polymer gel dosimeters relate to external radiotherapy. Most of the gel dosimeters studied have acceptable dose accuracy as a 3D dosimeter with high resolution. It is difficult to judge which is the best polymer gel dosimeter to use in a clinical setting, because each gel dosimeter has advantages and limitations. For example, methacrylic acid-based gel dosimeters have high dose sensitivity and low toxicity, while their dose response is beam energy dependent; in contrast, N-isopropylacrylamide gel dosimeters have low dose resolution, but their sensitivity is lower and they are relatively toxic.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, 8115187159 Kashan, Iran
| | - Ghazale Geraily
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
6
|
Keshtkar M, Zahmatkesh M, Montazerabadi A. Uncertainty Analysis in MRI-based Polymer Gel Dosimetry. J Biomed Phys Eng 2017; 7:299-304. [PMID: 29082221 PMCID: PMC5654136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/07/2015] [Indexed: 10/27/2022]
Abstract
BACKGROUND Polymer gel dosimeters combined with magnetic resonance imaging (MRI) can be used for dose verification of advanced radiation therapy techniques. However, the uncertainty of dose map measured by gel dosimeter should be known. The purpose of this study is to investigate the uncertainty related to calibration curve and MRI protocol for MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) gel and finally ways of optimization MRI protocol is introduced. MATERIALS AND METHODS MAGIC gel was prepared by the Fong et al. instruction. The gels were poured into calibration vials and irradiated by 18 MV photons. 1.5 Tesla MRI was used for reading out information. Finally, uncertainty of measured dose was calculated. RESULTS Results show that for MAGIC polymer gel dosimeter, at low doses, the estimated uncertainty is high (≈ 18.96% for 1 Gy) but it reduces to approximately 4.17% for 10 Gy. Also, with increasing dose, the uncertainty for the measured dose decreases non-linearly. For low doses, the most significant uncertainties are σR0 (uncertainty of intercept) and σa (uncertainty of slope) for high doses. MRI protocol parameters influence signal-to-noise ratio (SNR). CONCLUSION The most important source of uncertainty is uncertainty of R2. Hence, MRI protocol and parameters therein should be optimized. At low doses, the estimated uncertainty is high and reduces by increasing dose. It is suggested that in relative dosimetry, gels are irradiated by high doses in linear range of given gel dosimeter and then scaled down to the desired dose range.
Collapse
Affiliation(s)
- M. Keshtkar
- Department of Medical Physics and Radiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - M.H. Zahmatkesh
- Novin Institute of Medical Radiation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A.R. Montazerabadi
- Department of Medical Physics and Radiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
7
|
Watanabe Y, Warmington L, Gopishankar N. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: From basics to clinical applications. World J Radiol 2017; 9:112-125. [PMID: 28396725 PMCID: PMC5368627 DOI: 10.4329/wjr.v9.i3.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development.
Collapse
|
8
|
Warmington LL, Gopishankar N, Broadhurst JH, Watanabe Y. Polymer gel dosimetry for measuring the dose near thin high-Z materials irradiated with high energy photon beams. Med Phys 2017; 43:6525. [PMID: 27908188 DOI: 10.1118/1.4967483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the feasibility of three-dimensional (3D) dose measurements near thin high-Z materials placed in a water-like medium by using a polymer gel dosimeter (PGD) when the medium was irradiated with high energy photon beams. METHODS PGD is potentially a useful tool for this application because it can record the dose around a small object made of a high-Z material in a continuous 3D medium. In this study, the authors manufactured a methacrylic acid-based normoxic PGD, nMAG. Two 0.5 mm thick lead foils (1 × 1 cm) were placed in foil supports with 0.7 cm separation in a 1000 ml polystyrene container filled with nMAG. The authors used two foil configurations, i.e., orthogonal and parallel. In the orthogonal configuration, two foils were placed in the direction orthogonal to the beam axis. The parallel configuration had two foils arranged in parallel to the beam axis. The phantom was irradiated with an 18 MV photon beam of 5 × 5 cm field size. It was imaged with a three-Tesla (3 T) magnetic resonance imaging (MRI) scanned using the Car-Purcell-Meiboom-Gill pulse sequence. The spin-spin relaxation time (R2) to-dose calibration data were obtained by using small vials filled with nMAG and exposing to known doses. The DOSXYZnrc Monte Carlo (MC) code was used to get the expected dose distributions. More than 35 × 106 of histories were simulated so that the average error was less than 1%. An in-house matlab-based software was used to obtain the dose distributions from the measured R2 data as well as to compare the measurements and the MC predictions. The dose change due to the presence of the foils was studied by comparing the dose distributions with and without foils (or the reference). RESULTS For the orthogonal configuration, the measured dose along the beam axis showed an increase in the upstream side of the first foil, between the foils, and on the downstream side of the second foil. The range of increased dose area was 1.1 cm in the upstream of the first foil. However, in the downstream of the second foil, it was 0.2 cm, beyond which the dose fell below the reference dose by 10%. The dose profile between the foils showed a well-like shape with the minimum dose still larger than the reference dose by 1.8%. The minimum dose point was closer to the first foil than to the second foil. For the parallel configuration, the dose between foils was the largest at the center. The increased dose area opposite to the gap between foils extended outward to 1 cm. The spatial dose distributions of PGD and MC showed the same geometrical patterns except for the points inside the foils for both orthogonal and parallel foil arrangements. CONCLUSIONS The authors demonstrated that the nMAG PGD with MRI could be used to measure the 3D dosimetric structures at the mm-scale in the vicinity of the foil. The current study provided more accurate 3D spatial dose distribution than the previous studies. Furthermore, the measurements were validated by the MC simulation.
Collapse
Affiliation(s)
- Leighton L Warmington
- Department of Radiation Oncology, University of Minnesota, 420 Delaware Street SE, MMC-494, Minneapolis, Minnesota 55455
| | - N Gopishankar
- Gamma Knife Unit, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - John H Broadhurst
- Department of Physics and Astronomy, University of Minnesota, 116 Church Street SE, 324 Phys, Minneapolis, Minnesota 55455
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, 420 Delaware Street SE, MMC-494, Minneapolis, Minnesota 55455
| |
Collapse
|
9
|
Hayashi N, Malmin RL, Watanabe Y. Dosimetric verification for intensity-modulated arc therapy plans by use of 2D diode array, radiochromic film and radiosensitive polymer gel. JOURNAL OF RADIATION RESEARCH 2014; 55:541-552. [PMID: 24449714 PMCID: PMC4014162 DOI: 10.1093/jrr/rrt139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/30/2013] [Accepted: 11/01/2013] [Indexed: 06/03/2023]
Abstract
Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were -0.29 ± 7.1% and 0.97 ± 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements.
Collapse
Affiliation(s)
- Naoki Hayashi
- Faculty of Radiological Technology, School of Health Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ryan L. Malmin
- Ridgeview Regional Radiation Oncology, 560 South Maple Street, Suite 10, Waconia, MN 55387, USA
| | - Yoichi Watanabe
- Department of Radiation Oncology, 420 Delaware St. SE, MMC494, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Watanabe Y, Nakaguchi Y. 3D evaluation of 3DVH program using BANG3 polymer gel dosimeter. Med Phys 2014; 40:082101. [PMID: 23927338 DOI: 10.1118/1.4813301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE With the recent introduction of intensity modulated arc therapy techniques, there is an increasing need for validation of treatment delivery in three-dimensional (3D) space. A commercial dosimetry device ArcCHECK™ (Sun Nuclear Corporation, Melbourne, FL, USA) can be used in conjunction with 3DVH program. With this system, one can reconstruct the 3D dose distribution produced in the actual patient. In this work the authors evaluate the relative accuracy of the ArcCHECK™-3DVH system using BANG3 (MGS Research, Guilford, CT, USA) polymer gel dosimeter. METHODS About 15-cm diameter and 20-cm long cylindrical phantoms filled with BANG3 was used to simulate a patient, to which a volumetrically modulated arc therapy plan was created with Pinnacle3 treatment planning software (Philips Healthcare, Andover, MA, USA). The plan (76 Gy total in 38 fractions) was designed for prostate radiotherapy using a 6 MV photon beam from an Elekta Synergy linear accelerator (Elekta AB, Stockholm, Sweden). The treatment was delivered to the simulated patient. The same plan was used to irradiate an ArcCHECK™ device with an insert plug. The point dose at the isocenter was measured using a Farmer-type ionization chamber. The measured dose data were imported into the 3DVH program, which generated the 3D dose distributions projected onto the simulated patient. The dose data recorded in the polymer gel were read out using a MRI scanner and the 3D dose distribution delivered to the simulated patient was analyzed and compared with those from the 3DVH program and the Pinnacle3 software. The comparison was accomplished by using the gamma index, overlaying the isodose lines for a set of data on selected planes, and computing dose-volume histogram of structures. RESULTS The dose at the center of the ArcCHECK™ device measured with an ionization chamber was 1.82% lower than the dose predicted by Pinnacle3. The 3D dose distribution generated by Pinnacle3 was compared with those obtained by the ArcCHECK™-3DVH system and BANG3. The gamma passing rates for criteria of 3% dose difference, 3 mm distance-to-agreement, and 25% lower dose threshold were 99.1% for the former and 95.7% for the latter. The mean and maximum PTV doses estimated by the 3DVH were 74.0 and 79.3 Gy in comparison to 74.4 and 76.5 Gy with Pinnacle3. Those values for BANG3 measurements were 74.7 and 79.5 Gy. The mean doses to rectum were 40.2, 39.8, and 38.8 Gy for Pinnacle3, 3DVH, and BANG3, whereas the mean doses to the bladder were 26.7, 25.7, and 21.7 Gy, respectively. CONCLUSIONS The ArcCHECK™-3DVH system provides an accurate estimation of 3D dose distribution in an actual patient within a clinically meaningful tolerance level. However, both 3DVH and BANG3 showed two noticeable differences from Pinnacle3. First, the measured dose throughout the PTV region was less uniform than Pinnacle3. Second, the dose gradient at the interface between PTV and rectum was steeper than Pinnacle3 prediction. Further investigation may be able to identify the cause for these findings.
Collapse
Affiliation(s)
- Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, 420 Delaware Street Southeast, MMC-494, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
11
|
Abtahi SM, Aghamiri SMR, Khalafi H. Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-2983-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Kawamura H, Shinoda K, Miyamoto K, Sakae T, Monma M, Matsumura A. [Investigation of polymer gel dosimetry for small circular irradiated fields]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2013; 69:933-943. [PMID: 24064697 DOI: 10.6009/jjrt.2013_jsrt_69.9.933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polymer gels can be used as tissue equivalent dosimeters, and polymer gel dosimetry can be employed without perturbation of the radiation field. In this study, polymer gel dosimetry was used for small circular irradiation fields 10-30 mm in diameter using a radiation planning system. The irradiated gels were compared with planned data for a 50% dose width of 6 Gy dose maximum, and for the dose difference between gels and planned data over an 80% dose maximum area. The present study investigated magnetic resonance imaging (MRI) conditions based on an optimal dose-R2 calibration curve. The average difference between the full width half maximum of the 50% dose width between gels and planned data was 11%. The average dose difference over 80% of the dose was 5.6%. Optimal dose-R2 calibration curves were acquired using images with echo times of 30 and 60 ms. For cases of larger thicknesses and an increasing number of averages, the coefficients of variance of the curves were smaller than under other conditions. Compared to other traditional dosimetric tools, polymer gels have the advantage of providing three-dimensional dosimetric data. An arbitrary profile from the gel's data can be compared with the profile of the planned data. In the future, new gel dosimeters will be needed that demonstrate improved dose evaluation under 1 Gy and stability in high dose areas.
Collapse
Affiliation(s)
- Hiraku Kawamura
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences
| | | | | | | | | | | |
Collapse
|