Wolff T, Lasso A, Eblenkamp M, Wintermantel E, Fichtinger G. C-arm angle measurement with accelerometer for brachytherapy: an accuracy study.
Int J Comput Assist Radiol Surg 2013;
9:137-44. [PMID:
23820762 DOI:
10.1007/s11548-013-0918-3]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE
X-ray fluoroscopy guidance is frequently used in medical interventions. Image-guided interventional procedures that employ localization for registration require accurate information about the C-arm's rotation angle that provides the data externally in real time. Optical, electromagnetic, and image-based pose tracking systems have limited convenience and accuracy. An alternative method to recover C-arm orientation was developed using an accelerometer as tilt sensor.
METHODS
The fluoroscopic C-arm's orientation was estimated using a tri-axial acceleration sensor mounted on the X-ray detector as a tilt sensor. When the C-arm is stationary, the measured acceleration direction corresponds to the gravitational force direction. The accelerometer was calibrated with respect to the C-arm's rotation along its two axes, using a high-accuracy optical tracker as a reference. The scaling and offset error of the sensor was compensated using polynomial fitting. The system was evaluated on a GE OEC 9800 C-arm. Results obtained by accelerometer, built-in sensor, and image-based tracking were compared, using optical tracking as ground truth data.
RESULTS
The accelerometer-based orientation measurement error for primary angle rotation was -0.1 ± 0.0° and for secondary angle rotation it was 0.1 ± 0.0°. The built-in sensor orientation measurement error for primary angle rotation was -0.1 ± 0.2°, and for secondary angle rotation it was 0.1 ± 0.2°. The image-based orientation measurement error for primary angle rotation was -0.1 ± 1.3°, and for secondary angle rotation it was -1.3 ± 0.3°.
CONCLUSION
The accelerometer provided better results than the built-in sensor and image-based tracking. The accelerometer sensor is small, inexpensive, covers the full rotation range of the C-arm, does not require line of sight, and can be easily installed to any mobile X-ray machine. Therefore, accelerometer tilt sensing is a very promising applicant for orientation angle tracking of C-arm fluoroscopes.
Collapse