1
|
Parodi K. Latest developments in in-vivo imaging for proton therapy. Br J Radiol 2020; 93:20190787. [PMID: 31794249 PMCID: PMC7066959 DOI: 10.1259/bjr.20190787] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Owing to the favorable physical and biological properties of swift ions in matter, their application to radiation therapy for highly selective cancer treatment is rapidly spreading worldwide. To date, over 90 ion therapy facilities are operational, predominantly with proton beams, and about the same amount is under construction or planning.Over the last decades, considerable developments have been achieved in accelerator technology, beam delivery and medical physics to enhance conformation of the dose delivery to complex shaped tumor volumes, with excellent sparing of surrounding normal tissue and critical organs. Nevertheless, full clinical exploitation of the ion beam advantages is still challenged, especially by uncertainties in the knowledge of the beam range in the actual patient anatomy during the fractionated course of treatment, thus calling for continued multidisciplinary research in this rapidly emerging field.This contribution will review latest developments aiming to image the patient with the same beam quality as for therapy prior to treatment, and to visualize in-vivo the treatment delivery by exploiting irradiation-induced physical emissions, with different level of maturity from proof-of-concept studies in phantoms and first in-silico studies up to clinical testing and initial clinical evaluation.
Collapse
Affiliation(s)
- Katia Parodi
- Department of Experimental Physics – Medical Physics, Ludwig-Maximilians-Universität München, Faculty of Physics, Munich, Germany
| |
Collapse
|
2
|
Bongrand A, Busato E, Force P, Martin F, Montarou G. Use of short-lived positron emitters for in-beam and real-time β + range monitoring in proton therapy. Phys Med 2020; 69:248-255. [PMID: 31918377 DOI: 10.1016/j.ejmp.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022] Open
Abstract
AIM The purpose of this work is to evaluate the precision with which the GEANT4 toolkit simulates the production of β+ emitters relevant for in-beam and real-time PET in proton therapy. BACKGROUND An important evolution in proton therapy is the implementation of in-beam and real-time verification of the range of protons by measuring the correlation between the activity of β+ and dose deposition. For that purpose, it is important that the simulation of the various β+ emitters be sufficiently realistic, in particular for the 12N short-lived emitter that is required for efficient in-beam and real-time monitoring. METHODS The GEANT4 toolkit was used to simulate positron emitter production for a proton beam of 55 MeV in a cubic PMMA target and results are compared to experimental data. RESULTS The three β+ emitters with the highest production rates in the experimental data (11C, 15O and 12N) are also those with the highest production rate in the simulation. Production rates differ by 8% to 174%. For the 12N isotope, the β+ spatial distribution in the simulation shows major deviations from the data. The effect of the long range (of the order of 20 mm) of the β+ originating from 12N is also shown and discussed. CONCLUSIONS At first order, the GEANT4 simulation of the β+ activity presents significant deviations from the data. The need for precise cross-section measurements versus energy below 30 MeV is of first priority in order to evaluate the feasibility of in-beam and real-time PET.
Collapse
Affiliation(s)
- A Bongrand
- Clermont Auvergne University, CNRS/IN2P3, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - E Busato
- Clermont Auvergne University, CNRS/IN2P3, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France.
| | - P Force
- Clermont Auvergne University, CNRS/IN2P3, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - F Martin
- Clermont Auvergne University, CNRS/IN2P3, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - G Montarou
- Clermont Auvergne University, CNRS/IN2P3, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Bauer J, Tessonnier T, Debus J, Parodi K. Offline imaging of positron emitters induced by therapeutic helium, carbon and oxygen ion beams with a full-ring PET/CT scanner: experiments in reference targets. Phys Med Biol 2019; 64:225016. [PMID: 31561234 DOI: 10.1088/1361-6560/ab48b4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vivo verification of light ion therapy based on positron-emission tomography (PET) imaging of irradiation induced patient activation relies on activity predictions from Monte-Carlo (MC) or analytical computational engines for comparison to the measurements. In order to achieve the necessary accuracy, experimental data are indispensable for the validation of the calculation models. For this we irradiated thick reference targets with mono-energetic helium, carbon and oxygen ion beams and measured the resulting material activation offline with a commercial full-ring PET/CT scanner located nearby the treatment room. Acquired PET data were analysed over time to separate the activity contribution of different radionuclides. Determined production yields were compared to published findings obtained from in-beam activation measurements with a limited-angle double-head PET camera. In addition, we investigated the time-dependence of the measured radionuclide-specific contributions and of the distal activity range, as well as the lateral spread of the activity signal as a function of beam penetration depth. We present radionuclide-specific depth-resolved activity distributions and production yields for the radionuclides [Formula: see text], [Formula: see text] and [Formula: see text], dominating irradiation-induced patient activation. We observe systematically lower production yields with a ratio between the dual-head and our full-ring PET measurements of, on average, 1.7 and 1.3 for the oxygen and carbon beam irradiations, and 1.7 (2.1) for the high (low) energy helium beam irradiations. Findings on the temporal development of the activity range confirm the expectation, with the oxygen beam induced signal being the most sensitive scenario. The experimental data reported in this work, acquired with a state-of-the-art full ring PET scanner, provide a comprehensive and consistent basis for the benchmarking of PET signal calculation engines. In particular, they can support a fine-tuning of the underlying physics models used by the respective implementation and therefore improve the accuracy of PET-based therapy verifications at current and future treatment facilities.
Collapse
Affiliation(s)
- J Bauer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital, Heidelberg, Germany. National Centre for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | | | | | | |
Collapse
|
4
|
Hofmann T, Pinto M, Mohammadi A, Nitta M, Nishikido F, Iwao Y, Tashima H, Yoshida E, Chacon A, Safavi-Naeini M, Rosenfeld A, Yamaya T, Parodi K. Dose reconstruction from PET images in carbon ion therapy: a deconvolution approach. ACTA ACUST UNITED AC 2019; 64:025011. [DOI: 10.1088/1361-6560/aaf676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Parodi K, Polf JC. In vivo range verification in particle therapy. Med Phys 2018; 45:e1036-e1050. [PMID: 30421803 PMCID: PMC6262833 DOI: 10.1002/mp.12960] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022] Open
Abstract
Exploitation of the full potential offered by ion beams in clinical practice is still hampered by several sources of treatment uncertainties, particularly related to the limitations of our ability to locate the position of the Bragg peak in the tumor. To this end, several efforts are ongoing to improve the characterization of patient position, anatomy, and tissue stopping power properties prior to treatment as well as to enable in vivo verification of the actual dose delivery, or at least beam range, during or shortly after treatment. This contribution critically reviews methods under development or clinical testing for verification of ion therapy, based on pretreatment range and tissue probing as well as the detection of secondary emissions or physiological changes during and after treatment, trying to disentangle approaches of general applicability from those more specific to certain anatomical locations. Moreover, it discusses future directions, which could benefit from an integration of multiple modalities or address novel exploitation of the measurable signals for biologically adapted therapy.
Collapse
Affiliation(s)
- Katia Parodi
- Department of Medical PhysicsLudwig‐Maximilians‐Universität MünchenAm Coulombwall 1Garching b. Munich85748Germany
| | - Jerimy C. Polf
- Deparment of Radiation OncologyMaryland Proton Treatment CenterUniversity of Maryland School of Medicine22 South Greene St.BaltimoreMD21201USA
| |
Collapse
|
6
|
Schumann A, Priegnitz M, Schoene S, Enghardt W, Rohling H, Fiedler F. From prompt gamma distribution to dose: a novel approach combining an evolutionary algorithm and filtering based on Gaussian-powerlaw convolutions. Phys Med Biol 2016; 61:6919-6934. [DOI: 10.1088/0031-9155/61/19/6919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Parodi K. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring. Med Phys 2015; 42:7153-68. [DOI: 10.1118/1.4935869] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Miyatake A, Nishio T. Application of activity pencil beam algorithm using measured distribution data of positron emitter nuclei for therapeutic SOBP proton beam. Med Phys 2014; 40:091709. [PMID: 24007142 DOI: 10.1118/1.4818057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Recently, much research on imaging the clinical proton-irradiated volume using positron emitter nuclei based on target nuclear fragment reaction has been carried out. The purpose of this study is to develop an activity pencil beam (APB) algorithm for a simulation system for proton-activated positron-emitting imaging in clinical proton therapy using spread-out Bragg peak (SOBP) beams. METHODS The target nuclei of activity distribution calculations are (12)C nuclei, (16)O nuclei, and (40)Ca nuclei, which are the main elements in a human body. Depth activity distributions with SOBP beam irradiations were obtained from the material information of ridge filter (RF) and depth activity distributions of compounds of the three target nuclei measured by BOLPs-RGp (beam ON-LINE PET system mounted on a rotating gantry port) with mono-energetic Bragg peak (MONO) beam irradiations. The calculated data of depth activity distributions with SOBP beam irradiations were sorted in terms of kind of nucleus, energy of proton beam, SOBP width, and thickness of fine degrader (FD), which were verified. The calculated depth activity distributions with SOBP beam irradiations were compared with the measured ones. APB kernels were made from the calculated depth activity distributions with SOBP beam irradiations to construct a simulation system using the APB algorithm for SOBP beams. RESULTS The depth activity distributions were prepared using the material information of RF and the measured depth activity distributions with MONO beam irradiations for clinical therapy using SOBP beams. With the SOBP width widening, the distal fall-offs of depth activity distributions and the difference from the depth dose distributions were large. The shapes of the calculated depth activity distributions nearly agreed with those of the measured ones upon comparison between the two. The APB kernels of SOBP beams were prepared by making use of the data on depth activity distributions with SOBP beam irradiations that were made from the depth activity distributions with MONO beam irradiations and sorted in terms of energy, SOBP width, and thickness of FD. The data on APB kernels of SOBP beams were determined as installment data for the simulation system using the APB algorithm for SOBP beam irradiations. CONCLUSIONS A method of obtaining the depth activity distributions and the APB algorithm for clinical use of SOBP beams have been developed. It is suggested that the simulation system for imaging the clinical irradiated volume with the APB algorithm can be used in clinical proton therapy using SOBP beams by preparing and investigating the data on APB kernels of SOBP beams.
Collapse
Affiliation(s)
- Aya Miyatake
- Keen Medical Physics Co. Ltd., 901-4-4-4 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan.
| | | |
Collapse
|
9
|
Frey K, Bauer J, Unholtz D, Kurz C, Krämer M, Bortfeld T, Parodi K. TPSPET—A TPS-based approach forin vivodose verification with PET in proton therapy. Phys Med Biol 2013; 59:1-21. [DOI: 10.1088/0031-9155/59/1/1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Nishio T. [Study of dose-volume delivery guided proton therapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2013; 69:1297-1305. [PMID: 24256655 DOI: 10.6009/jjrt.2013_jsrt_69.11.1297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
11
|
Zhu X, Fakhri GE. Proton therapy verification with PET imaging. Theranostics 2013; 3:731-40. [PMID: 24312147 PMCID: PMC3840408 DOI: 10.7150/thno.5162] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
Proton therapy is very sensitive to uncertainties introduced during treatment planning and dose delivery. PET imaging of proton induced positron emitter distributions is the only practical approach for in vivo, in situ verification of proton therapy. This article reviews the current status of proton therapy verification with PET imaging. The different data detecting systems (in-beam, in-room and off-line PET), calculation methods for the prediction of proton induced PET activity distributions, and approaches for data evaluation are discussed.
Collapse
|
12
|
Cho J, Ibbott G, Gillin M, Gonzalez-Lepera C, Min CH, Zhu X, El Fakhri G, Paganetti H, Mawlawi O. Determination of elemental tissue composition following proton treatment using positron emission tomography. Phys Med Biol 2013; 58:3815-35. [PMID: 23681070 DOI: 10.1088/0031-9155/58/11/3815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of (1)H, (12)C, (14)N, and (16)O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm; the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated (12)C and (16)O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of (12)C + (16)O and calculate the relative elemental composition of (12)C and (16)O. A Monte Carlo simulation was also used to determine the elemental composition of the (12)C + (16)O section. The calculated compositions of the (12)C + (16)O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition ((12)C and (16)O) maps that corresponded to the proton-activated regions. We compared the (12)C and (16)O compositions of seven ROIs that corresponded to the vitreous humor, adipose/face mask, adipose tissue, and brain tissue with ICRU 46 elemental composition data. The (12)C and (16)O compositions of the (12)C + (16)O phantom section were estimated to within a maximum difference of 3.6% for the near monoenergetic and SOBP beams over an 8 cm depth range. On the other hand, the Monte Carlo simulation estimated the corresponding (12)C and (16)O compositions in the (12)C + (16)O section to within a maximum difference of 3.4%. For the patients, the (12)C and (16)O compositions in the seven ROIs agreed with the ICRU elemental composition data, with a mean (maximum) difference of 9.4% (15.2%). The (12)C and (16)O compositions of the phantom and patients were estimated with relatively small differences. PET imaging may be useful for determining the tissue elemental composition and thereby improving proton treatment planning and verification.
Collapse
Affiliation(s)
- Jongmin Cho
- The University of Texas Graduate School of Biomedical Sciences at Houston; The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|