1
|
Biological Optimization of Dose Distribution to Reduce the Patient Radiation Exposure during Hypofractionated Radiation Therapy. BIOMEDICAL ENGINEERING 2022. [DOI: 10.1007/s10527-022-10136-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Sood SS, Pokhrel D, Badkul R, TenNapel M, McClinton C, Kimler B, Wang F. Correlation of clinical outcome, radiobiological modeling of tumor control, normal tissue complication probability in lung cancer patients treated with SBRT using Monte Carlo calculation algorithm. J Appl Clin Med Phys 2020; 21:56-62. [PMID: 32794632 PMCID: PMC7592969 DOI: 10.1002/acm2.13004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
Purpose/Background We analyzed the predictive value of non‐x‐ray voxel Monte Carlo (XVMC)‐based modeling of tumor control probability (TCP) and normal tissue complication probability (NTCP) in patients treated with stereotactic body radiotherapy (SBRT) using the XVMC dose calculation algorithm. Materials/Methods We conducted an IRB‐approved retrospective analysis in patients with lung tumors treated with XVMC‐based lung SBRT. For TCP, we utilized tumor size‐adjusted biological effective dose (s‐BED) TCP modeling validated in non‐MC dose calculated SBRT to: (1) verify modeling as a function of s‐BED in patients treated with XVMC‐based SBRT; and (2) evaluate the predictive potential of different PTV dosimetric parameters (mean dose, minimum dose, max dose, prescription dose, D95, D98, and D99) for incorporation into the TCP model. Correlation between observed local control and TCPs was assessed by Pearson's correlation coefficient. For NTCP, Lyman NTCP Model was utilized to predict grade 2 pneumonitis and rib fracture. Results Eighty‐four patients with 109 lung tumors were treated with XVMC‐based SBRT to total doses of 40 to 60 Gy in 3 to 5 fractions. Median follow‐up was 17 months. The 2‐year local and local‐regional control rates were 91% and and 78%, respectievly. All estimated TCPs correlated significantly with 2‐year actuarial local control rates (P < 0.05). Significant corelations between TCPs and tumor control rate according to PTV dosimetric parameters were observed. D99 parameterization demonstrated the most robust correlation between observed and predicted tumor control. The incidences of grade 2 pneumonitis and rib fracture vs. predicted were 1% vs. 3% and 10% vs. 13%, respectively. Conclusion Our TCP results using a XVMC‐based dose calculation algorithm are encouraging and yield validation to previously described TCP models using non‐XVMC dose methods. Furthermore, D99 as potential predictive parameter in the TCP model demonstrated better correlation with clinical outcome.
Collapse
Affiliation(s)
- Sumit S Sood
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Damodar Pokhrel
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Rajeev Badkul
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Mindi TenNapel
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | | | - Bruce Kimler
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Fen Wang
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Guo C, Zhang P, Gui Z, Shu H, Zhai L, Xu J. Prescription Value-Based Automatic Optimization of Importance Factors in Inverse Planning. Technol Cancer Res Treat 2019; 18:1533033819892259. [PMID: 31782353 PMCID: PMC6886287 DOI: 10.1177/1533033819892259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: An automatic method for the optimization of importance factors was proposed to improve the efficiency of inverse planning. Methods: The automatic method consists of 3 steps: (1) First, the importance factors are automatically and iteratively adjusted based on our proposed penalty strategies. (2) Then, plan evaluation is performed to determine whether the obtained plan is acceptable. (3) If not, a higher penalty is assigned to the unsatisfied objective by multiplying it by a compensation coefficient. The optimization processes are performed alternately until an acceptable plan is obtained or the maximum iteration Nmax of step (3) is reached. Results: Tested on 2 kinds of clinical cases and compared with manual method, the results showed that the quality of the proposed automatic plan was comparable to, or even better than, the manual plan in terms of the dose–volume histogram and dose distributions. Conclusions: The proposed algorithm has potential to significantly improve the efficiency of the existing manual adjustment methods for importance factors and contributes to the development of fully automated planning. Especially, the more the subobjective functions, the more obvious the advantage of our algorithm.
Collapse
Affiliation(s)
- Caiping Guo
- Department of Electronic Engineering, Taiyuan Institute of Technology, Taiyuan, China.,Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, China
| | - Pengcheng Zhang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, China
| | - Zhiguo Gui
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, China
| | - Huazhong Shu
- Laboratory of Image Science and Technology, Southeast University, Nanjing, China.,Centre de Recherche en Information Médicale Sino-français (CRIBs), Rennes, France
| | - Lihong Zhai
- Department of Electronic Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Jinrong Xu
- Department of Electronic Engineering, Taiyuan Institute of Technology, Taiyuan, China
| |
Collapse
|
4
|
Wang Y, Chen L, Zhu F, Guo W, Zhang D, Sun W. A study of minimum segment width parameter on VMAT plan quality, delivery accuracy, and efficiency for cervical cancer using Monaco TPS. J Appl Clin Med Phys 2018; 19:609-615. [PMID: 30058257 PMCID: PMC6123131 DOI: 10.1002/acm2.12422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 11/15/2022] Open
Abstract
Purpose The purpose of this study was to study the influence of the minimum segment width (MSW) on volumetric modulated arc therapy (VMAT) plan quality, delivery accuracy, and efficiency for cervical cancer treatment. Methods Nineteen patients with cervical cancer were randomly selected to design VMAT plans. Three VMAT plans were generated for each patient incorporating MSWs of 0.5, 1.0, and 1.5 cm while other planning parameters remained constant using the Monaco treatment planning system (TPS) with 6 MV X rays delivered from an Elekta Synergy linear accelerator. Plan quality and delivery efficiency were evaluated based on dose‐volume histograms (DVHs), control points, monitor units (MUs), dosimetric measurement verification results, and plan delivery time. Results Except for the small difference in target dose coverage and maximum dose, there were no statistically significant differences between the other dosimetric parameters in the planning target volumes. The 1.0 and 1.5 cm MSW plans showed lower maximum doses to the spinal cord than the 0.5 cm plan; doses to other organs at risks were similar regardless of MSWs. The mean reductions of total MUs when compared with the 0.5 cm plan were 14.5 ± 6.1% and 20.9 ± 7.9% for MSWs of 1.0 and 1.5 cm, respectively. The calculated gamma indices using the 3% and 3 mm criteria were 96.2 ± 0.6%, 97.0 ± 0.6%, and 97.6 ± 0.6% for the 0.5, 1.0 and 1.5 cm MSW plans, respectively. The plan delivery times decreased with increasing MSWs (p < 0.05). Conclusion Increasing the MSW allows for improved plan delivery accuracy and efficiency without significantly affecting the VMAT plan quality. MSWs of 1.0 and 1.5 cm improved the plan quality, delivery accuracy, and efficiency for cervical VMAT radiation therapy.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Radiation Oncology, Hefei Ion Medical Center, Hefei, China
| | - Li Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fengying Zhu
- Shunde Hospital of Southern Medical University, Shunde, China
| | | | - Dandan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhao Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
D'Andrea M, Strolin S, Ungania S, Cacciatore A, Bruzzaniti V, Marconi R, Benassi M, Strigari L. Radiobiological Optimization in Lung Stereotactic Body Radiation Therapy: Are We Ready to Apply Radiobiological Models? Front Oncol 2018; 7:321. [PMID: 29359121 PMCID: PMC5766682 DOI: 10.3389/fonc.2017.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Lung tumors are often associated with a poor prognosis although different schedules and treatment modalities have been extensively tested in the clinical practice. The complexity of this disease and the use of combined therapeutic approaches have been investigated and the use of high dose-rates is emerging as effective strategy. Technological improvements of clinical linear accelerators allow combining high dose-rate and a more conformal dose delivery with accurate imaging modalities pre- and during therapy. This paper aims at reporting the state of the art and future direction in the use of radiobiological models and radiobiological-based optimizations in the clinical practice for the treatment of lung cancer. To address this issue, a search was carried out on PubMed database to identify potential papers reporting tumor control probability and normal tissue complication probability for lung tumors. Full articles were retrieved when the abstract was considered relevant, and only papers published in English language were considered. The bibliographies of retrieved papers were also searched and relevant articles included. At the state of the art, dose–response relationships have been reported in literature for local tumor control and survival in stage III non-small cell lung cancer. Due to the lack of published radiobiological models for SBRT, several authors used dose constraints and models derived for conventional fractionation schemes. Recently, several radiobiological models and parameters for SBRT have been published and could be used in prospective trials although external validations are recommended to improve the robustness of model predictive capability. Moreover, radiobiological-based functions have been used within treatment planning systems for plan optimization but the advantages of using this strategy in the clinical practice are still under discussion. Future research should be directed toward combined regimens, in order to potentially improve both local tumor control and survival. Indeed, accurate knowledge of the relevant parameters describing tumor biology and normal tissue response is mandatory to correctly address this issue. In this context, the role of medical physicists and the AAPM in the development of radiobiological models is crucial for the progress of developing specific tool for radiobiological-based optimization treatment planning.
Collapse
Affiliation(s)
- Marco D'Andrea
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Strolin
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Ungania
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Cacciatore
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Vicente Bruzzaniti
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Raffaella Marconi
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Benassi
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
6
|
Giglioli FR, Clemente S, Esposito M, Fiandra C, Marino C, Russo S, Strigari L, Villaggi E, Stasi M, Mancosu P. Frontiers in planning optimization for lung SBRT. Phys Med 2017; 44:163-170. [PMID: 28566240 DOI: 10.1016/j.ejmp.2017.05.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Emerging data are showing the safety and the efficacy of Stereotactic Body Radiation therapy (SBRT) in lung cancer management. In this context, the very high doses delivered to the Planning Target Volume, make the planning phase essential for achieving high dose levels conformed to the shape of the target in order to have a good prognosis for tumor control and to avoid an overdose in relevant healthy adjacent tissue. In this non-systematic review we analyzed the technological and the physics aspects of SBRT planning for lung cancer. In particular, the aims of the study were: (i) to evaluate prescription strategies (homogeneous or inhomogeneous), (ii) to outline possible geometrical solutions by comparing the dosimetric results (iii) to describe the technological possibilities for a safe and effective treatment, (iv) to present the issues concerning radiobiological planning and the automation of the planning process.
Collapse
Affiliation(s)
| | | | | | - Christian Fiandra
- Dep. of Oncology Radiation Oncology Unit, University of Torino, Italy
| | | | | | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer, Institute IFO, Rome, Italy
| | | | - Michele Stasi
- Medical Physics Dept., Azienda Ospedaliera Ordine Mauriziano di Torino, Torino, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiotherapy Dept., Humanitas Clinical and Research Hospital, Rozzano (MI), Italy
| |
Collapse
|
7
|
Garibaldi C, Jereczek-Fossa BA, Marvaso G, Dicuonzo S, Rojas DP, Cattani F, Starzyńska A, Ciardo D, Surgo A, Leonardi MC, Ricotti R. Recent advances in radiation oncology. Ecancermedicalscience 2017; 11:785. [PMID: 29225692 PMCID: PMC5718253 DOI: 10.3332/ecancer.2017.785] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy (RT) is very much a technology-driven treatment modality in the management of cancer. RT techniques have changed significantly over the past few decades, thanks to improvements in engineering and computing. We aim to highlight the recent developments in radiation oncology, focusing on the technological and biological advances. We will present state-of-the-art treatment techniques, employing photon beams, such as intensity-modulated RT, volumetric-modulated arc therapy, stereotactic body RT and adaptive RT, which make possible a highly tailored dose distribution with maximum normal tissue sparing. We will analyse all the steps involved in the treatment: imaging, delineation of the tumour and organs at risk, treatment planning and finally image-guidance for accurate tumour localisation before and during treatment delivery. Particular attention will be given to the crucial role that imaging plays throughout the entire process. In the case of adaptive RT, the precise identification of target volumes as well as the monitoring of tumour response/modification during the course of treatment is mainly based on multimodality imaging that integrates morphological, functional and metabolic information. Moreover, real-time imaging of the tumour is essential in breathing adaptive techniques to compensate for tumour motion due to respiration. Brief reference will be made to the recent spread of particle beam therapy, in particular to the use of protons, but also to the yet limited experience of using heavy particles such as carbon ions. Finally, we will analyse the latest biological advances in tumour targeting. Indeed, the effectiveness of RT has been improved not only by technological developments but also through the integration of radiobiological knowledge to produce more efficient and personalised treatment strategies.
Collapse
Affiliation(s)
- Cristina Garibaldi
- Unit of Medical Physics, European Institute of Oncology, 20141 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giulia Marvaso
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - Samantha Dicuonzo
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Damaris Patricia Rojas
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology, 20141 Milan, Italy
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 80–211 Gdańsk, Poland
| | - Delia Ciardo
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | - Rosalinda Ricotti
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| |
Collapse
|
8
|
Liang X, Penagaricano J, Zheng D, Morrill S, Zhang X, Corry P, Griffin RJ, Han EY, Hardee M, Ratanatharathom V. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans. Radiat Oncol 2016; 11:10. [PMID: 26800883 PMCID: PMC4724090 DOI: 10.1186/s13014-015-0578-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022] Open
Abstract
Background The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Methods Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. Results PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D95%) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower TCP is associated with the lower PTV coverage in AXB-recalculated plans. No obvious trend was observed between the calculation-resulted TCP differences and tumor size or location. AAA and AXB yield very similar NTCP on lung pneumonitis according to the LKB model estimation in the present study. Conclusion AAA apparently overestimates the PTV dose; the magnitude of resulting difference in calculated TCP was up to 5.8 % in our study. AAA and AXB yield very similar NTCP on lung pneumonitis based on the LKB model parameter sets we used in the present study.
Collapse
Affiliation(s)
- X Liang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - J Penagaricano
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - D Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile, Omaha, NE, USA.
| | - S Morrill
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - X Zhang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - P Corry
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - R J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - E Y Han
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - M Hardee
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - V Ratanatharathom
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| |
Collapse
|
9
|
Quan K, Xu KM, Lalonde R, Horne ZD, Bernard ME, McCoy C, Clump DA, Burton SA, Heron DE. Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery. Front Oncol 2015; 5:213. [PMID: 26500888 PMCID: PMC4594030 DOI: 10.3389/fonc.2015.00213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/18/2015] [Indexed: 01/24/2023] Open
Abstract
The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI, GD, V5, V10, and V20 (lung, heart, trachea, esophagus, and spinal cord) between single-isocenter and multi-isocenter plans. This multi-lesion, single-isocenter lung SABR planning technique demonstrated excellent plan quality and clinical efficiency and is recommended for radiosurgical treatment of two or more lung targets for well-suited patients.
Collapse
Affiliation(s)
- Kimmen Quan
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| | - Karen M Xu
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| | - Ron Lalonde
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| | - Zachary D Horne
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| | - Mark E Bernard
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| | - Chuck McCoy
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| | - David A Clump
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| | - Steven A Burton
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| | - Dwight E Heron
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| |
Collapse
|
10
|
Nithiyanantham K, Mani GK, Subramani V, Mueller L, Palaniappan KK, Kataria T. Analysis of direct clinical consequences of MLC positional errors in volumetric-modulated arc therapy using 3D dosimetry system. J Appl Clin Med Phys 2015; 16:296–305. [PMID: 26699311 PMCID: PMC5690184 DOI: 10.1120/jacmp.v16i5.5515] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/06/2015] [Accepted: 04/28/2015] [Indexed: 01/04/2023] Open
Abstract
In advanced, intensity-modulated external radiotherapy facility, the multileaf collimator has a decisive role in the beam modulation by creating multiple segments or dynamically varying field shapes to deliver a uniform dose distribution to the target with maximum sparing of normal tissues. The position of each MLC leaf has become more critical for intensity-modulated delivery (step-and-shoot IMRT, dynamic IMRT, and VMAT) compared to 3D CRT, where it defines only field boundaries. We analyzed the impact of the MLC positional errors on the dose distribution for volumetric-modulated arc therapy, using a 3D dosimetry system. A total of 15 VMAT cases, five each for brain, head and neck, and prostate cases, were retrospectively selected for the study. All the plans were generated in Monaco 3.0.0v TPS (Elekta Corporation, Atlanta, GA) and delivered using Elekta Synergy linear accelerator. Systematic errors of +1, +0.5, +0.3, 0, -1, -0.5, -0.3 mm were introduced in the MLC bank of the linear accelerator and the impact on the dose distribution of VMAT delivery was measured using the COMPASS 3D dosim-etry system. All the plans were created using single modulated arcs and the dose calculation was performed using a Monte Carlo algorithm in a grid size of 3 mm. The clinical endpoints D95%, D50%, D2%, and Dmax,D20%, D50% were taken for the evaluation of the target and critical organs doses, respectively. A significant dosimetric effect was found for many cases even with 0.5 mm of MLC positional errors. The average change of dose D 95% to PTV for ± 1 mm, ± 0.5 mm, and ±0.3mm was 5.15%, 2.58%, and 0.96% for brain cases; 7.19%, 3.67%, and 1.56% for head and neck cases; and 8.39%, 4.5%, and 1.86% for prostate cases, respectively. The average deviation of dose Dmax was 5.4%, 2.8%, and 0.83% for brainstem in brain cases; 8.2%, 4.4%, and 1.9% for spinal cord in H&N; and 10.8%, 6.2%, and 2.1% for rectum in prostate cases, respectively. The average changes in dose followed a linear relationship with the amount of MLC positional error, as can be expected. MLC positional errors beyond ± 0.3 mm showed a significant influence on the intensity-modulated dose distributions. It is, therefore, recommended to have a cautious MLC calibration procedure to sufficiently meet the accuracy in dose delivery.
Collapse
|
11
|
Chen H, Winey BA, Daartz J, Oh KS, Shin JH, Gierga DP. Efficiency gains for spinal radiosurgery using multicriteria optimization intensity modulated radiation therapy guided volumetric modulated arc therapy planning. Pract Radiat Oncol 2014; 5:49-55. [PMID: 25413420 DOI: 10.1016/j.prro.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate plan quality and delivery efficiency gains of volumetric modulated arc therapy (VMAT) versus a multicriteria optimization-based intensity modulated radiation therapy (MCO-IMRT) for stereotactic radiosurgery of spinal metastases. METHODS AND MATERIALS MCO-IMRT plans (RayStation V2.5; RaySearch Laboratories, Stockholm, Sweden) of 10 spinal radiosurgery cases using 7-9 beams were developed for clinical delivery, and patients were replanned using VMAT with partial arcs. The prescribed dose was 18 Gy, and target coverage was maximized such that the maximum dose to the planning organ-at-risk volume (PRV) of the spinal cord was 10 or 12 Gy. Dose-volume histogram (DVH) constraints from the clinically acceptable MCO-IMRT plans were utilized for VMAT optimization. Plan quality and delivery efficiency with and without collimator rotation for MCO-IMRT and VMAT were compared and analyzed based upon DVH, planning target volume coverage, homogeneity index, conformity number, cord PRV sparing, total monitor units (MU), and delivery time. RESULTS The VMAT plans were capable of matching most DVH constraints from the MCO-IMRT plans. The ranges of MU were 4808-7193 for MCO-IMRT without collimator rotation, 3509-5907 for MCO-IMRT with collimator rotation, 4444-7309 for VMAT without collimator rotation, and 3277-5643 for VMAT with collimator of 90 degrees. The MU for the VMAT plans were similar to their corresponding MCO-IMRT plans, depending upon the complexity of the target and PRV geometries, but had a larger range. The delivery times of the MCO-IMRT and VMAT plans, both with collimator rotation, were 18.3 ± 2.5 minutes and 14.2 ± 2.0 minutes, respectively (P < .05). CONCLUSIONS The MCO-IMRT and VMAT can create clinically acceptable plans for spinal radiosurgery. The MU for MCO-IMRT and VMAT can be reduced significantly by utilizing a collimator rotation following the orientation of the spinal cord. Plan quality for VMAT is similar to MCO-IMRT, with similar MU for both modalities. Delivery times can be reduced by nominally 25% with VMAT.
Collapse
Affiliation(s)
- Huixiao Chen
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian A Winey
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin S Oh
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - John H Shin
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David P Gierga
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Bergman AM, Gete E, Duzenli C, Teke T. Monte Carlo modeling of HD120 multileaf collimator on Varian TrueBeam linear accelerator for verification of 6X and 6X FFF VMAT SABR treatment plans. J Appl Clin Med Phys 2014; 15:4686. [PMID: 24892341 PMCID: PMC5711057 DOI: 10.1120/jacmp.v15i3.4686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/07/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022] Open
Abstract
A Monte Carlo (MC) validation of the vendor-supplied Varian TrueBeam 6 MV flattened (6X) phase-space file and the first implementation of the Siebers-Keall MC MLC model as applied to the HD120 MLC (for 6X flat and 6X flattening filter-free (6X FFF) beams) are described. The MC model is validated in the context of VMAT patient-specific quality assurance. The Monte Carlo commissioning process involves: 1) validating the calculated open-field percentage depth doses (PDDs), profiles, and output factors (OF), 2) adapting the Siebers-Keall MLC model to match the new HD120-MLC geometry and material composition, 3) determining the absolute dose conversion factor for the MC calculation, and 4) validating this entire linac/MLC in the context of dose calculation verification for clinical VMAT plans. MC PDDs for the 6X beams agree with the measured data to within 2.0% for field sizes ranging from 2 × 2 to 40 × 40 cm2. Measured and MC profiles show agreement in the 50% field width and the 80%-20% penumbra region to within 1.3 mm for all square field sizes. MC OFs for the 2 to 40 cm2 square fields agree with measurement to within 1.6%. Verification of VMAT SABR lung, liver, and vertebra plans demonstrate that measured and MC ion chamber doses agree within 0.6% for the 6X beam and within 2.0% for the 6X FFF beam. A 3D gamma factor analysis demonstrates that for the 6X beam, > 99% of voxels meet the pass criteria (3%/3 mm). For the 6X FFF beam, > 94% of voxels meet this criteria. The TrueBeam accelerator delivering 6X and 6X FFF beams with the HD120 MLC can be modeled in Monte Carlo to provide an independent 3D dose calculation for clinical VMAT plans. This quality assurance tool has been used clinically to verify over 140 6X and 16 6X FFF TrueBeam treatment plans.
Collapse
|
13
|
Nithiyanantham K, Kadirampatti Mani G, Subramani V, Karukkupalayam Palaniappan K, Uthiran M, Vellengiri S, Raju S, Supe SS, Kataria T. Influence of segment width on plan quality for volumetric modulated arc based stereotactic body radiotherapy. Rep Pract Oncol Radiother 2014; 19:287-95. [PMID: 25184052 DOI: 10.1016/j.rpor.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/09/2013] [Accepted: 03/11/2014] [Indexed: 10/25/2022] Open
Abstract
AIM To study the influence of segment width on plan quality for volumetric modulated arc based stereotactic body radiotherapy. BACKGROUND The redundancy of modulation for regularly shaped small volume tumors results in creation of many small segments and an increase of monitor units, with a consequent prolongation of treatment and uncertainty in treatment delivery. MATERIALS AND METHODS Six cases each in lung, abdomen and liver were taken for the study. For each case, three VMAT SBRT plans were generated with different penalties on minimum segment width of 0.5, 1.0 and 1.5 cm. A comparison was made on the metrics of dose volume histogram, dosimetric indices, monitor units (MUs) and delivery accuracy. RESULTS The mean reduction of total MUs when compared with 0.5 cm plan was observed as 12.7 ± 6.0% and 17.5 ± 7.2% for 1.0 cm and 1.5 cm of minimum segment width, respectively. The p value showed a significant degradation in dosimetric indices for 1.5 cm plans when compared with 0.5 cm and 1.0 cm plans. The average deviation of measured dose with TPS calculated was 3.0 ± 1.1%, 2.1 ± 0.84% and 1.8 ± 0.9% for 0.5, 1.0 and 1.5 cm, respectively. The calculated gamma index with pass criteria of 2% dose difference and 2 mm distance to agreement was 95.9 ± 2.8%, 96.5 ± 2.6% and 97.8 ± 1.6% as calculated for 0.5, 1.0 and 1.5 cm of penalties, respectively. In view of the trade off between delivery efficiency and plan quality, 1 cm minimum segment width plans showed an improvement. CONCLUSIONS VMAT SBRT plans with increased optimal value of minimum segment width showed better plan quality and delivery efficiency for stereotactic body radiotherapy.
Collapse
Affiliation(s)
- Karthikeyan Nithiyanantham
- Division of Radiation Oncology, Medanta - The Medicity, Gurgaon, Haryana, India ; Research and Development, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Ganesh Kadirampatti Mani
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India ; Research and Development, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Vikraman Subramani
- Division of Radiation Oncology, Medanta - The Medicity, Gurgaon, Haryana, India ; Research and Development, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Karrthick Karukkupalayam Palaniappan
- Division of Radiation Oncology, Medanta - The Medicity, Gurgaon, Haryana, India ; Research and Development, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Mohanraj Uthiran
- Division of Radiation Oncology, Medanta - The Medicity, Gurgaon, Haryana, India
| | | | - Sambasivaselli Raju
- Division of Radiation Oncology, Medanta - The Medicity, Gurgaon, Haryana, India
| | - Sanjay S Supe
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Tejinder Kataria
- Division of Radiation Oncology, Medanta - The Medicity, Gurgaon, Haryana, India
| |
Collapse
|
14
|
Gorayski P, Fitzgerald R, Barry T, Burmeister E, Foote M. Volumetric modulated arc therapy versus step-and-shoot intensity modulated radiation therapy in the treatment of large nerve perineural spread to the skull base: a comparative dosimetric planning study. J Med Radiat Sci 2014; 61:85-90. [PMID: 26229642 PMCID: PMC4175843 DOI: 10.1002/jmrs.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/19/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Methods Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneity included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. Results IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Conclusion Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.
Collapse
Affiliation(s)
- Peter Gorayski
- Department of Radiation Oncology, Princess Alexandra Hospital Woolloongabba, Queensland, Australia
| | - Rhys Fitzgerald
- Department of Radiation Oncology, Princess Alexandra Hospital Woolloongabba, Queensland, Australia
| | - Tamara Barry
- Department of Radiation Oncology, Princess Alexandra Hospital Woolloongabba, Queensland, Australia
| | - Elizabeth Burmeister
- Nursing Practice Development Unit, Princess Alexandra Hospital & Research Centre for Clinical and Community Practice Innovation, Griffith University Brisbane, Queensland, Australia
| | - Matthew Foote
- Department of Radiation Oncology, Princess Alexandra Hospital Woolloongabba, Queensland, Australia ; Diamantina Institute, University of Queensland Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Vikraman S, Manigandan D, Karrthick KP, Sambasivaselli R, Senniandavar V, Ramu M, Rajesh T, Lutz M, Muthukumaran M, Karthikeyan N, Tejinder K. Quantitative evaluation of 3D dosimetry for stereotactic volumetric-modulated arc delivery using COMPASS. J Appl Clin Med Phys 2014; 16:5128. [PMID: 25679152 PMCID: PMC5689974 DOI: 10.1120/jacmp.v16i1.5128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/14/2014] [Accepted: 10/06/2014] [Indexed: 11/28/2022] Open
Abstract
The purpose of this study was to evaluate quantitatively the patient‐specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric‐modulated arc delivery. Twenty‐five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric‐modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5–20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)‐calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS‐calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose‐volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9%±1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient‐specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high‐dose modulated stereotactic delivery with very high precision on patient CT images. PACS numbers: 87.55.Qr, 87.56.Fc
Collapse
|
16
|
Chen H, Craft DL, Gierga DP. Multicriteria optimization informed VMAT planning. Med Dosim 2013; 39:64-73. [PMID: 24360919 DOI: 10.1016/j.meddos.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022]
Abstract
We developed a patient-specific volumetric-modulated arc therapy (VMAT) optimization procedure using dose-volume histogram (DVH) information from multicriteria optimization (MCO) of intensity-modulated radiotherapy (IMRT) plans. The study included 10 patients with prostate cancer undergoing standard fractionation treatment, 10 patients with prostate cancer undergoing hypofractionation treatment, and 5 patients with head/neck cancer. MCO-IMRT plans using 20 and 7 treatment fields were generated for each patient on the RayStation treatment planning system (clinical version 2.5, RaySearch Laboratories, Stockholm, Sweden). The resulting DVH of the 20-field MCO-IMRT plan for each patient was used as the reference DVH, and the extracted point values of the resulting DVH of the MCO-IMRT plan were used as objectives and constraints for VMAT optimization. Weights of objectives or constraints of VMAT optimization or both were further tuned to generate the best match with the reference DVH of the MCO-IMRT plan. The final optimal VMAT plan quality was evaluated by comparison with MCO-IMRT plans based on homogeneity index, conformity number of planning target volume, and organ at risk sparing. The influence of gantry spacing, arc number, and delivery time on VMAT plan quality for different tumor sites was also evaluated. The resulting VMAT plan quality essentially matched the 20-field MCO-IMRT plan but with a shorter delivery time and less monitor units. VMAT plan quality of head/neck cancer cases improved using dual arcs whereas prostate cases did not. VMAT plan quality was improved by fine gantry spacing of 2 for the head/neck cancer cases and the hypofractionation-treated prostate cancer cases but not for the standard fractionation-treated prostate cancer cases. MCO-informed VMAT optimization is a useful and valuable way to generate patient-specific optimal VMAT plans, though modification of the weights of objectives or constraints extracted from resulting DVH of MCO-IMRT or both is necessary.
Collapse
Affiliation(s)
- Huixiao Chen
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David L Craft
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David P Gierga
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
17
|
El Naqa I, Pater P, Seuntjens J. Monte Carlo role in radiobiological modelling of radiotherapy outcomes. Phys Med Biol 2012; 57:R75-97. [PMID: 22571871 DOI: 10.1088/0031-9155/57/11/r75] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.
Collapse
Affiliation(s)
- Issam El Naqa
- Department of Oncology, Medical Physics Unit, Montreal, QC, Canada.
| | | | | |
Collapse
|