1
|
Li H, Jin H, He L, Yan X, Zhang H, Li D. Development and application of a novel scintillation gel-based 3D dosimetry system for radiotherapy. J Appl Clin Med Phys 2024:e14615. [PMID: 39704638 DOI: 10.1002/acm2.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
PURPOSE This study introduced a novel 3D dosimetry system for radiotherapy in order to address the limitations of traditional quality assurance methods in precision radiotherapy techniques. METHODS The research required the use of scintillation material, optical measurements, and a dose reconstruction algorithm. The scintillation material, which mimics human soft tissue characteristics, served as a both physical phantom and a radiation detector. The dose distribution inside the scintillator can be converted to light distributions, which were measured by optical cameras from different angles and manifested as pixel values. The proposed dose reconstruction algorithm, LASSO-TV, effectively reconstructed the dose distribution from pixel values, overcoming challenges such as limited projection directions and large-scale matrices. RESULTS Various clinical plans were tested and validated, including a modified segment from the SBRT plan and IMRT clinical plan. The dosimetry system can execute full 3D dose determinations as a function of time with a spatial resolution of 1-2 mm, enabling high-resolution measurements for dynamic dose distribution. Comparative analysis with mainstream device MapCHECK2 confirmed the accuracy of the system, with a relative measurement error of within 5%. CONCLUSIONS Testing and validation results demonstrated the dosimetry system's promising potential for dynamic treatment quality assurance.
Collapse
Affiliation(s)
- Hua Li
- Frontier Technology Center, China Institute for Radiation Protection, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi, China
| | - Haijing Jin
- Frontier Technology Center, China Institute for Radiation Protection, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi, China
| | - Liang He
- Frontier Technology Center, China Institute for Radiation Protection, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi, China
| | - Xuewen Yan
- Frontier Technology Center, China Institute for Radiation Protection, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi, China
| | - Hui Zhang
- Frontier Technology Center, China Institute for Radiation Protection, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi, China
| | - Deyuan Li
- Frontier Technology Center, China Institute for Radiation Protection, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Frelin A, Daviau G, Bui MHH, Fontbonne C, Fontbonne J, Lebhertz D, Mainguy E, Moignier C, Thariat J, Vela A. Development of a three-dimensional scintillation detector for pencil beam verification in proton therapy patient-specific quality assurance. Med Phys 2024; 51:9318-9329. [PMID: 39255360 PMCID: PMC11656293 DOI: 10.1002/mp.17388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Pencil Beam Scanning proton therapy has many advantages from a therapeutic point of view, but raises technical constraints in terms of treatment verification. The treatment relies on a large number of planned pencil beams (PB) (up to thousands), whose delivery is divided in several low-intensity pulses delivered a high frequency (1 kHz in this study). PURPOSE The purpose of this study was to develop a three-dimensional quality assurance system allowing to verify all the PBs' characteristics (position, energy, intensity in terms of delivered monitor unit-MU) of patient treatment plans on a pulse-by-pulse or a PB-by-PB basis. METHODS A system named SCICOPRO has been developed. It is based on a 10 × 10 × 10 cm3 scintillator cube and a fast camera, synchronized with beam delivery, recording two views (direct and using a mirror) of the scintillation distribution generated by the pulses. A specific calibration and analysis process allowed to extract the characteristics of all the pulses delivered during the treatment, and consequently of all the PBs. The system uncertainties, defined here as average value + standard deviation, were characterized with a customized irradiation plan at different PB intensities (0.02, 0.1, and 1 MU) and with two patient's treatment plans of three beams each. The system's ability to detect potential treatment delivery problems, such as positioning errors of the treatment table in this work (1° rotations and a 2 mm translation), was assessed by calculating the confidence intervals (CI) for the different characteristics and evaluating the proportion of PBs within these intervals. RESULTS The performances of SCICOPRO were evaluated on a pulse-by-pulse basis. They showed a very good signal-to-noise ratio for all the pulse intensities (between 2 × 10-3 MU and 150 × 10-3 MU) allowing uncertainties smaller than 580 µm for the position, 180 keV for the energy and 3% for the intensity on patients treatment plans. The position and energy uncertainties were found to be little dependent from the pulse intensities whereas the intensity uncertainty depends on the pulses number and intensity distribution. Finally, treatment plans evaluations showed that 98% of the PBs were within the CIs with a nominal positioning against 83% or less with the table positioning errors, thus proving the ability of SCICOPRO to detect this kind of errors. CONCLUSION The high acquisition rate and the very high sensitivity of the system developed in this work allowed to record pulses of intensities as low as 2 × 10-3 MU. SCICOPRO was thus able to measure all the characteristics of the spots of a treatment (position, energy, intensity) in a single measurement, making it possible to verify their compliance with the treatment plan. SCICOPRO thus proved to be a fast and accurate tool that would be useful for patient-specific quality assurance (PSQA) on a pulse-by-pulse or PB-by-PB verification basis.
Collapse
Affiliation(s)
- Anne‐Marie Frelin
- Grand accélérateur National dʼIons Lourds (GANIL), CEA/DRF‐CNRS/IN2P3CaenFrance
| | - Gautier Daviau
- Grand accélérateur National dʼIons Lourds (GANIL), CEA/DRF‐CNRS/IN2P3CaenFrance
- Normandie University, UNICAENCaenFrance
| | - My Hoang Hoa Bui
- Grand accélérateur National dʼIons Lourds (GANIL), CEA/DRF‐CNRS/IN2P3CaenFrance
| | | | | | - Dorothée Lebhertz
- Université de Caen NormandieENSICAENCNRS/IN2P3CaenFrance
- Medical Physics DepartmentCLCC François BaclesseCaenFrance
| | - Erwan Mainguy
- Grand accélérateur National dʼIons Lourds (GANIL), CEA/DRF‐CNRS/IN2P3CaenFrance
| | - Cyril Moignier
- Université de Caen NormandieENSICAENCNRS/IN2P3CaenFrance
- Medical Physics DepartmentCLCC François BaclesseCaenFrance
| | - Juliette Thariat
- Université de Caen NormandieENSICAENCNRS/IN2P3CaenFrance
- Medical Physics DepartmentCLCC François BaclesseCaenFrance
| | - Anthony Vela
- Université de Caen NormandieENSICAENCNRS/IN2P3CaenFrance
- Medical Physics DepartmentCLCC François BaclesseCaenFrance
| |
Collapse
|
3
|
Stolen E, Fullarton R, Hein R, Conner RL, Jacobsohn LG, Collins-Fekete CA, Beddar S, Akgun U, Robertson D. High-Density Glass Scintillators for Proton Radiography-Relative Luminosity, Proton Response, and Spatial Resolution. SENSORS (BASEL, SWITZERLAND) 2024; 24:2137. [PMID: 38610351 PMCID: PMC11014246 DOI: 10.3390/s24072137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Proton radiography is a promising development in proton therapy, and researchers are currently exploring optimal detector materials to construct proton radiography detector arrays. High-density glass scintillators may improve integrating-mode proton radiography detectors by increasing spatial resolution and decreasing detector thickness. We evaluated several new scintillators, activated with europium or terbium, with proton response measurements and Monte Carlo simulations, characterizing relative luminosity, ionization quenching, and proton radiograph spatial resolution. We applied a correction based on Birks's analytical model for ionization quenching. The data demonstrate increased relative luminosity with increased activation element concentration, and higher relative luminosity for samples activated with europium. An increased glass density enables more compact detector geometries and higher spatial resolution. These findings suggest that a tungsten and gadolinium oxide-based glass activated with 4% europium is an ideal scintillator for testing in a full-size proton radiography detector.
Collapse
Affiliation(s)
- Ethan Stolen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Ryan Fullarton
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK; (R.F.); (C.-A.C.-F.)
| | - Rain Hein
- Department of Physics, Coe College, Cedar Rapids, IA 52402, USA; (R.H.); (U.A.)
| | - Robin L. Conner
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA; (R.L.C.); (L.G.J.)
| | - Luiz G. Jacobsohn
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA; (R.L.C.); (L.G.J.)
| | - Charles-Antoine Collins-Fekete
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK; (R.F.); (C.-A.C.-F.)
| | - Sam Beddar
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ugur Akgun
- Department of Physics, Coe College, Cedar Rapids, IA 52402, USA; (R.H.); (U.A.)
| | - Daniel Robertson
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA;
| |
Collapse
|
4
|
Lee E, Cho B, Kwak J, Jeong C, Park MJ, Kim SW, Song SY, Goh Y. Deep learning proton beam range estimation model for quality assurance based on two-dimensional scintillated light distributions in simulations. Med Phys 2023; 50:7203-7213. [PMID: 37517077 DOI: 10.1002/mp.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Many studies have utilized optical camera systems with volumetric scintillators for quality assurances (QA) to estimate the proton beam range. However, previous analytically driven range estimation methods have the difficulty to derive the dose distributions from the scintillation images with quenching and optical effects. PURPOSE In this study, a deep learning method utilized to QA was used to predict the beam range and spread-out Bragg peak (SOBP) for two-dimensional (2D) map conversion from the scintillation light distribution (LD) into the dose distribution in a water phantom. METHODS The 2D residual U-net modeling for deep learning was used to predict the 2D water dose map from a 2D scintillation LD map. Monte Carlo simulations for dataset preparation were performed with varying monoenergetic proton beam energies, field sizes, and beam axis shifts. The LD was reconstructed using photons backpropagated from the aperture as a virtual lens. The SOBP samples were constructed based on monoenergetic dose distributions. The training set, including the validation set, consisted of 8659 image pairs of LD and water dose maps. After training, dose map prediction was performed using a 300 image pair test set generated under random conditions. The pairs of simulated and predicted dose maps were analyzed by Bragg peak fitting and gamma index maps to evaluate the model prediction. RESULT The estimated beam range and SOBP width resolutions were 0.02 and 0.19 mm respectively for varying beam conditions, and the beam range and SOBP width deviations from the reference simulation result were less than 0.1 and 0.8 mm respectively. The simulated and predicted distributions showed good agreement in the gamma analysis, except for rare cases with failed gamma indices in the proximal and field-marginal regions. CONCLUSION The deep learning conversion method using scintillation LDs in an optical camera system with a scintillator is feasible for estimating proton beam range and SOBP width with high accuracy.
Collapse
Affiliation(s)
- Eunho Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Seoul, Republic of Korea
| | - Byungchul Cho
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jungwon Kwak
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Chiyoung Jeong
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Min-Jae Park
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Sung-Woo Kim
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Si Yeol Song
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Youngmoon Goh
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
5
|
Darne CD, Robertson DG, Alsanea F, Collins-Fekete CA, Beddar S. A novel proton-integrating radiography system design using a monolithic scintillator detector: experimental studies. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2022; 1027:166077. [PMID: 35221402 PMCID: PMC8872121 DOI: 10.1016/j.nima.2021.166077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research on proton-based imaging systems aims to improve treatment planning, internal anatomy visualization, and patient alignment for proton radiotherapy. The purpose of this study was to demonstrate a new proton radiography system design consisting of a monolithic plastic scintillator volume and two optical cameras for use with scanning proton pencil beams. Unlike the thin scintillating plates currently used for proton radiography, the plastic scintillator volume (20 × 20 × 20 cm3) captures a wider distribution of proton beam energy depositions and avoids proton-beam modulation. The proton imaging system's characteristics were tested using image uniformity (2.6% over a 5 × 5 cm2 area), stability (0.37%), and linearity (R2 = 1) studies. We used the light distribution produced within the plastic scintillator to generate proton radiographs via two different approaches: (a) integrating light by using a camera placed along the beam axis, and (b) capturing changes to the proton Bragg peak positions with a camera placed perpendicularly to the beam axis. The latter method was used to plot and evaluate relative shifts in percentage depth light (PDL) profiles of proton beams with and without a phantom in the beam path. A curvelet minimization algorithm used differences in PDL profiles to reconstruct and refine the phantom water-equivalent thickness (WET) map. Gammex phantoms were used to compare the proton radiographs generated by these two methods. The relative accuracies in calculating WET of the phantoms using the calibration-based beam-integration (and the PDL) methods were -0.18 ± 0.35% (-0.29 ± 3.11%), -0.11 ± 0.51% (-0.15 ± 2.64%), -2.94 ± 1.20% (-0.75 ± 6.11%), and -1.65 ± 0.35% (0.36 ± 3.93%) for solid water, adipose, cortical bone, and PMMA, respectively. Further exploration of this unique multicamera-based imaging system is warranted and could lead to clinical applications that improve treatment planning and patient alignment for proton radiotherapy.
Collapse
Affiliation(s)
- Chinmay D Darne
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel G Robertson
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Fahed Alsanea
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Finneman GM, Eichhorn OH, Meskell NR, Caplice TW, Benson AD, Abu-Halawa AS, Ademoski GL, Clark AC, Gayer DS, Hendrickson KN, Debbins PA, Onel Y, Ayan AS, Akgun U. Development of a dosimeter prototype with machine learning based 3-D dose reconstruction capabilities. Biomed Phys Eng Express 2021; 8. [PMID: 34768242 DOI: 10.1088/2057-1976/ac396c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/12/2021] [Indexed: 11/12/2022]
Abstract
A 3-D dosimeter fills the need for treatment plan and delivery verification required by every modern radiation-therapy method used today. This report summarizes a proof-of-concept study to develop a water-equivalent solid 3-D dosimeter that is based on novel radiation-hard scintillating material. The active material of the prototype dosimeter is a blend of radiation-hard peroxide-cured polysiloxane plastic doped with scintillating agent P-Terphenyl and wavelength-shifter BisMSB. The prototype detector was tested with 6 MV and 10 MV x-ray beams at Ohio State University's Comprehensive Cancer Center. A 3-D dose distribution was successfully reconstructed by a neural network specifically trained for this prototype. This report summarizes the material production procedure, the material's water equivalency investigation, the design of the prototype dosimeter and its beam tests, as well as the details of the utilized machine learning approach and the reconstructed 3-D dose distributions.
Collapse
Affiliation(s)
- G M Finneman
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - O H Eichhorn
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - N R Meskell
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - T W Caplice
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - A D Benson
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - A S Abu-Halawa
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - G L Ademoski
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - A C Clark
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - D S Gayer
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - K N Hendrickson
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - P A Debbins
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States of America
| | - Y Onel
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States of America
| | - A S Ayan
- Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States of America
| | - U Akgun
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| |
Collapse
|
7
|
Tsuneda M, Nishio T, Ezura T, Karasawa K. Plastic scintillation dosimeter with a conical mirror for measuring 3D dose distribution. Med Phys 2021; 48:5639-5650. [PMID: 34389992 DOI: 10.1002/mp.15164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/22/2021] [Accepted: 08/01/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To test the measurement technique of the three-dimensional (3D) dose distribution measured image by capturing the scintillation light generated using a plastic scintillator and a scintillating screen. METHODS Our imaging system constituted a column shaped plastic scintillator covered by a Gd2 O2 S:Tb scintillating screen, a conical mirror and a cooled CCD camera. The scintillator was irradiated with 6 MV photon beams. Meanwhile, the irradiated plan was prepared for the static field plans, two-field plan (2F plan) and the conformal arc plan (CA plan). The 2F plan contained 16 mm2 and 10 mm2 fields irradiated from gantry angles of 0° and 25°, respectively. The gantry was rotated counterclockwise from 45° to 315° for the CA plan. The field size was then obtained as 10 mm2 . A Monte Carlo simulation was performed in the experimental geometry to obtain the calculated 3D dose distribution as the reference data. Dose response was acquired by comparing between the reference and the measurement. The dose rate dependence was verified by irradiating the same MU value at different dose rates ranging from 100 to 600 MU/min. Deconvolution processing was applied to the measured images for the correction of light blurring. The measured 3D dose distribution was reconstructed from each measured image. Gamma analysis was performed to these 3D dose distributions. The gamma criteria were 3% for the dose difference, 2 mm for the distance-to-agreement and 10% for the threshold. RESULTS Dose response for the scintillation light was linear. The variation in the light intensity for the dose rate ranging from 100 to 600 MU/min was less than 0.5%, while our system presents dose rate independence. For the 3D dose measurement, blurring of light through deconvolution processing worked well. The 3D gamma passing rate (3D GPR) for the 10 × 10 mm2 , 16 × 16 mm2 , and 20 × 20 mm2 fields were observed to be 99.3%, 98.8%, and 97.8%, respectively. Reproducibility of measurement was verified. The 3D GPR results for the 2F plan and the CA plan were 99.7% and 100%, respectively. CONCLUSIONS We developed a plastic scintillation dosimeter and demonstrated that our system concept can act as a suitable technique for measuring the 3D dose distribution from the gamma results. In the future, we will attempt to measure the 4D dose distribution for clinical volumetric modulated arc radiation therapy (VMAT)-SBRTplans.
Collapse
Affiliation(s)
- Masato Tsuneda
- Department of Radiation Oncology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Teiji Nishio
- Department of Medical Physics, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takatomo Ezura
- Division of Radiation Medical Physics, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kumiko Karasawa
- Department of Radiation Oncology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Tendler I, Robertson D, Darne C, Panthi R, Alsanea F, Collins-Fekete CA, Beddar S. Image quality evaluation of projection- and depth dose-based approaches to integrating proton radiography using a monolithic scintillator detector. Phys Med Biol 2021; 66. [PMID: 34144537 DOI: 10.1088/1361-6560/ac0cc3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/18/2021] [Indexed: 12/19/2022]
Abstract
The purpose of this study is to compare the image quality of an integrating proton radiography (PR) system, composed of a monolithic scintillator and two digital cameras, using integral lateral-dose and integral depth-dose image reconstruction techniques. Monte Carlo simulations were used to obtain the energy deposition in a 3D monolithic scintillator detector (30 × 30 × 30 cm3poly vinyl toluene organic scintillator) to create radiographs of various phantoms-a slanted aluminum cube for spatial resolution analysis and a Las Vegas phantom for contrast analysis. The light emission of the scintillator was corrected using Birks scintillation model. We compared two integrating PR methods and the expected results from an idealized proton tracking radiography system. Four different image reconstruction methods were utilized in this study: integral scintillation light projected from the beams-eye view, depth-dose based reconstruction methods both with and without optimization, and single particle tracking PR was used for reference data. Results showed that heterogeneity artifact due to medium-interface mismatch was identified from the Las Vegas phantom simulated in air. Spatial resolution was found to be highest for single-event reconstruction. Contrast levels, ranked from best to worst, were found to correspond to particle tracking, optimized depth-dose, depth-dose, and projection-based image reconstructions. The image quality of a monolithic scintillator integrating PR system was sufficient to warrant further exploration. These results show promise for potential clinical use as radiographic techniques for visualizing internal patient anatomy during proton radiotherapy.
Collapse
Affiliation(s)
- Irwin Tendler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Daniel Robertson
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic Arizona, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States of America
| | - Chinmay Darne
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Rajesh Panthi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Fahed Alsanea
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | | | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| |
Collapse
|
9
|
Rana S, Rosenfeld AB. Impact of errors in spot size and spot position in robustly optimized pencil beam scanning proton-based stereotactic body radiation therapy (SBRT) lung plans. J Appl Clin Med Phys 2021; 22:147-154. [PMID: 34101334 PMCID: PMC8292703 DOI: 10.1002/acm2.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose The purpose of the current study was threefold: (a) investigate the impact of the variations (errors) in spot sizes in robustly optimized pencil beam scanning (PBS) proton‐based stereotactic body radiation therapy (SBRT) lung plans, (b) evaluate the impact of spot sizes and position errors simultaneously, and (c) assess the overall effect of spot size and position errors occurring simultaneously in conjunction with either setup or range errors. Methods In this retrospective study, computed tomography (CT) data set of five lung patients was selected. Treatment plans were regenerated for a total dose of 5000 cGy(RBE) in 5 fractions using a single‐field optimization (SFO) technique. Monte Carlo was used for the plan optimization and final dose calculations. Nominal plans were normalized such that 99% of the clinical target volume (CTV) received the prescription dose. The analysis was divided into three groups. Group 1: The increasing and decreasing spot sizes were evaluated for ±10%, ±15%, and ±20% errors. Group 2: Errors in spot size and spot positions were evaluated simultaneously (spot size: ±10%; spot position: ±1 and ±2 mm). Group 3: Simulated plans from Group 2 were evaluated for the setup (±5 mm) and range (±3.5%) errors. Results Group 1: For the spot size errors of ±10%, the average reduction in D99% for −10% and +10% errors was 0.7% and 1.1%, respectively. For −15% and +15% spot size errors, the average reduction in D99% was 1.4% and 1.9%, respectively. The average reduction in D99% was 2.1% for −20% error and 2.8% for +20% error. The hot spot evaluation showed that, for the same magnitude of error, the decreasing spot sizes resulted in a positive difference (hotter plan) when compared with the increasing spot sizes. Group 2: For a 10% increase in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the average reduction in D99% was 1.5% (1.8%). For a 10% decrease in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the reduction in D99% was 0.8% (0.9%). For the spot size errors of ±10% and spot position errors of ±2 mm, the average reduction in D99% was 2.4%. Group 3: Based on the results from 160 plans (4 plans for spot size [±10%] and position [±1 mm] errors × 8 scenarios × 5 patients), the average D99% was 4748 cGy(RBE) with the average reduction of 5.0%. The isocentric shift in the superior–inferior direction yielded the least homogenous dose distributions inside the target volume. Conclusion The increasing spot sizes resulted in decreased target coverage and dose homogeneity. Similarly, the decreasing spot sizes led to a loss of target coverage, overdosage, and degradation of dose homogeneity. The addition of spot size and position errors to plan robustness parameters (setup and range uncertainties) increased the target coverage loss and decreased the dose homogeneity.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, Oklahoma, USA.,Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
10
|
Arjunan M, Krishnan G, Sharma DS, M P N, Patro KC, Thiyagarajan R, Srinivas C, Jalali R. Dosimetric impact of random spot positioning errors in intensity modulated proton therapy plans of small and large volume tumors. Br J Radiol 2021; 94:20201031. [PMID: 33529057 DOI: 10.1259/bjr.20201031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To study dosimetric impact of random spot positioning errors on the clinical pencil beam scanning proton therapy plans. METHODS AND MATERIALS IMPT plans of 10 patients who underwent proton therapy for tumors in brain or pelvic regions representing small and large volumes, respectively, were included in the study. Spot positioning errors of 1 mm, -1 mm or ±1 mm were introduced in these clinical plans by modifying the geometrical co-ordinates of proton spots using a script in the MATLAB programming environment. Positioning errors were simulated to certain numbers of (20%, 40%, 60%, 80%) randomly chosen spots in each layer of these treatment plans. Treatment plans with simulated errors were then imported back to the Raystation (Version 7) treatment planning system and the resultant dose distribution was calculated using Monte-Carlo dose calculation algorithm.Dosimetric plan evaluation parameters for target and critical organs of nominal treatment plans delivered for clinical treatments were compared with that of positioning error simulated treatment plans. For targets, D95% and D2% were used for the analysis. Dose received by optic nerve, chiasm, brainstem, rectum, sigmoid, and bowel were analyzed using relevant plan evaluation parameters depending on the critical structure. In case of intracranial lesions, the dose received by 0.03 cm3 volume (D0.03 cm3) was analyzed for optic nerve, chiasm and brainstem. In rectum, the volume of it receiving a dose of 65 Gy(RBE) (V65) and 40 Gy(RBE) (V40) were compared between the nominal and error introduced plans. Similarly, V65 and V63 were analyzed for Sigmoid and V50 and V15 were analyzed for bowel. RESULTS The maximum dose variation in PTV D95% (1.88 %) was observed in a brain plan in which the target volume was the smallest (2.7 cm3) among all 10 plans included in the study. This variation in D95% drops down to 0.3% for a sacral chordoma plan in which the PTV volume is significantly higher at 672 cm3. The maximum difference in OARs in terms of absolute dose (D0.03 cm3) was found in left optic nerve (9.81%) and the minimum difference was observed in brainstem (2.48%). Overall, the magnitude of dose errors in chordoma plans were less significant in comparison to brain plans. CONCLUSION The dosimetric impact of different error scenarios in spot positioning becomes more prominent for treatment plans involving smaller target volume compared to plans involving larger target volumes. ADVANCES IN KNOWLEDGE Provides information on the dosimetric impact of various possible spot positioning errors and its dependence on the tumor volume in intensity modulated proton therapy.
Collapse
Affiliation(s)
- Manikandan Arjunan
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | | | | | - Noufal M P
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Kartikeshwar C Patro
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Rajesh Thiyagarajan
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Chilukuri Srinivas
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, Tamil Nadu, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Jeong S, Yoon M, Chung K, Ahn SH, Lee B, Seo J. Clinical application of a gantry-attachable plastic scintillating plate dosimetry system in pencil beam scanning proton therapy beam monitoring. Phys Med 2020; 77:181-186. [DOI: 10.1016/j.ejmp.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
|
12
|
Rahman M, Brůža P, Langen KM, Gladstone DJ, Cao X, Pogue BW, Zhang R. Characterization of a new scintillation imaging system for proton pencil beam dose rate measurements. Phys Med Biol 2020; 65:165014. [PMID: 32428888 DOI: 10.1088/1361-6560/ab9452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goal of this work was to create a technique that could measure all possible spatial and temporal delivery rates used in pencil-beam scanning (PBS) proton therapy. The proposed system used a fast scintillation screen for full-field imaging to resolve temporal and spatial patterns as it was delivered. A fast intensified CMOS camera used continuous mode with 10 ms temporal frame rate and 1 × 1 mm2 spatial resolution, imaging a scintillation screen during clinical proton PBS delivery. PBS plans with varying dose, dose rate, energy, field size, and spot-spacing were generated, delivered and imaged. The captured images were post processed to provide dose and dose rate values after background subtraction, perspective transformation, uniformity correction for the camera and the scintillation screen, and calibration into dose. The linearity in scintillation response with respect to varying dose rate, dose, and field size was within 2%. The quenching corrected response with varying energy was also within 2%. Large spatio-temporal variations in dose rate were observed, even for plans delivered with similar dose distributions. Dose and dose rate histograms and maximum dose rate maps were generated for quantitative evaluations. With the fastest PBS delivery on a clinical system, dose rates up to 26.0 Gy s-1 were resolved. The scintillation imaging technique was able to quantify proton PBS dose rate profiles with spot weight as low as 2 MU, with spot-spacing of 2.5 mm, having a 1 × 1 mm2 spatial resolution. These dose rate temporal profiles, spatial maps, and cumulative dose rate histograms provide useful metrics for the potential evaluation and optimization of dose rate in treatment plans.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | | | | | | | | | | | | |
Collapse
|
13
|
Kelleter L, Radogna R, Volz L, Attree D, Basharina-Freshville A, Seco J, Saakyan R, Jolly S. A scintillator-based range telescope for particle therapy. Phys Med Biol 2020; 65:165001. [PMID: 32422621 DOI: 10.1088/1361-6560/ab9415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The commissioning and operation of a particle therapy centre requires an extensive set of detectors for measuring various parameters of the treatment beam. Among the key devices are detectors for beam range quality assurance. In this work, a novel range telescope based on a plastic scintillator and read out by a large-scale CMOS sensor is presented. The detector is made of a stack of 49 plastic scintillator sheets with a thickness of 2-3 mm and an active area of 100 × 100 mm2, resulting in a total physical stack thickness of 124.2 mm. This compact design avoids optical artefacts that are common in other scintillation detectors. The range of a proton beam is reconstructed using a novel Bragg curve model that incorporates scintillator quenching effects. Measurements to characterise the performance of the detector were carried out at the Heidelberger Ionenstrahl-Therapiezentrum (HIT, Heidelberg, GER) and the Clatterbridge Cancer Centre (CCC, Bebington, UK). The maximum difference between the measured range and the reference range was found to be 0.41 mm at a proton beam range of 310 mm and was dominated by detector alignment uncertainties. With the new detector prototype, the water-equivalent thickness of PMMA degrader blocks has been reconstructed within ± 0.1 mm. An evaluation of the radiation hardness proves that the range reconstruction algorithm is robust following the deposition of 6,300 Gy peak dose into the detector. Furthermore, small variations in the beam spot size and transverse beam position are shown to have a negligible effect on the range reconstruction accuracy. The potential for range measurements of ion beams is also investigated.
Collapse
Affiliation(s)
- Laurent Kelleter
- Dept. Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Setianegara J, Mazur TR, Maraghechi B, Darafsheh A, Yang D, Zhao T, Li HH. Quantitative proton radiation therapy dosimetry using the storage phosphor europium‐doped potassium chloride. Med Phys 2020; 47:5287-5300. [DOI: 10.1002/mp.14423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jufri Setianegara
- Department of Radiation Oncology Washington University in St. Louis St. Louis MO63110 USA
- Department of Physics Washington University in St. Louis St. Louis MO63110 USA
| | - Thomas R. Mazur
- Department of Radiation Oncology Washington University in St. Louis St. Louis MO63110 USA
| | - Borna Maraghechi
- Department of Radiation Oncology Washington University in St. Louis St. Louis MO63110 USA
| | - Arash Darafsheh
- Department of Radiation Oncology Washington University in St. Louis St. Louis MO63110 USA
| | - Deshan Yang
- Department of Radiation Oncology Washington University in St. Louis St. Louis MO63110 USA
| | - Tianyu Zhao
- Department of Radiation Oncology Washington University in St. Louis St. Louis MO63110 USA
| | - H. Harold Li
- Department of Radiation Oncology Washington University in St. Louis St. Louis MO63110 USA
- Biomedical Engineering Washington University in St. Louis St. Louis MO63110 USA
| |
Collapse
|
15
|
Alsanea F, Darne C, Robertson D, Beddar S. Ionization quenching correction for a 3D scintillator detector exposed to scanning proton beams. Phys Med Biol 2020; 65:075005. [PMID: 32079001 DOI: 10.1088/1361-6560/ab7876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ionization quenching phenomenon in scintillators must be corrected to obtain accurate dosimetry in particle therapy. The purpose of this study was to develop a methodology for correcting camera projection measurements of a 3D scintillator detector exposed to proton pencil beams. Birks' ionization quenching model and the energy deposition by secondary electrons (EDSE) model were used to correct the light captured by a prototype 3D scintillator detector. The detector was made of a 20 cm × 20 cm × 20 cm tank filled with liquid scintillator, and three cameras. The detector was exposed to four proton-beam energies (84.6, 100.9, 144.9, and 161.6 MeV) at The University of Texas MD Anderson Cancer Center's Proton Therapy Center. The dose and track averaged linear energy transfer (LET) were obtained using validated Monte Carlo (MC) simulations. The corrected light output was compared to the dose calculated by the MC simulation. Optical artefact corrections were used to correct for refraction at the air-scintillator interface, and image perspective. These corrections did not account for the non-orthogonal integration of data off the central axis of the image. Therefore, we compared the light output to an integrated MC dose and LET along the non-orthogonal path. After accounting for the non-orthogonal integration of the data, the corrected light output reduced the dose error at the Bragg peak region from 15% to 3% for low proton-beam energies. Overall, the doses at the Bragg peak region using the Birks' model and EDSE model were less than ±3% and ±7% of the MC dose, respectively. We have improved the application of Birks' model quenching corrections in 3D scintillators by numerically projecting the dose and LET 3D grid to camera projections. This study shows that scintillator projections can be corrected using average LET values at the central axes.
Collapse
Affiliation(s)
- Fahed Alsanea
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America. The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | | | | | | |
Collapse
|
16
|
Jeong S, Chung K, Ahn SH, Lee B, Seo J, Yoon M. Feasibility study of a plastic scintillating plate-based treatment beam fluence monitoring system for use in pencil beam scanning proton therapy. Med Phys 2019; 47:703-712. [PMID: 31732965 DOI: 10.1002/mp.13922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The purpose of this study was to describe a plastic scintillating plate-based gantry-attachable dosimetry system for pencil beam scanning proton therapy to monitor entrance proton beam fluence, and to evaluate the dosimetric characteristics of this system and its feasibility for clinical use. METHODS The dosimetry system, consisting of a plastic scintillating plate and a CMOS camera, was attached to a dedicated scanning nozzle and scintillation during proton beam irradiation was recorded. Dose distribution was calculated from the accumulated recorded frames. The dosimetric characteristics (energy dependency, dose linearity, dose rate dependency, and reproducibility) of the gantry-attachable dosimetry system for use with therapeutic proton beams were measured, and the feasibility of this system during clinical use was evaluated by determining selected quality assurance items at our institution. RESULTS The scintillating plate shortened the range of the proton beam by the water-equivalent thickness of the plate and broadened the spatial profile of the single proton spot by 11% at 70 MeV. The developed system functioned independently of the beam energy (<1.3%) and showed dose linearity, and also functioned independently of the dose rate. The feasibility of the system for clinical use was evaluated by comparing the measured quality assurance dose distribution to that of the treatment planning system. The gamma passing rate with a criterion of 3%/3 mm was 97.58%. CONCLUSIONS This study evaluated the dosimetric characteristics of a plastic scintillating plate-based dosimetry system for use with scanning proton beams. The ability to account for the interference of the dosimetry system on the therapeutic beam enabled offline monitoring of the entrance beam fluence of the pencil beam scanning proton therapy independent of the treatment system with high resolution and in a cost-effective manner.
Collapse
Affiliation(s)
- Seonghoon Jeong
- Department of Bio-Convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Kwangzoo Chung
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Hwan Ahn
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Boram Lee
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jaehyeon Seo
- Department of Bio-Convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Myonggeun Yoon
- Department of Bio-Convergence Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
17
|
|
18
|
Mazzucconi D, Agosteo S, Ferrarini M, Fontana L, Lante V, Pullia M, Savazzi S. Mixed particle beam for simultaneous treatment and online range verification in carbon ion therapy: Proof‐of‐concept study. Med Phys 2018; 45:5234-5243. [DOI: 10.1002/mp.13219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- Davide Mazzucconi
- Energy Department Politecnico di Milano via Lambruschini 4 Milano 20156 Italy
- Fondazione CNAO Strada Privata Campeggi Pavia 27100 Italy
| | - Stefano Agosteo
- Energy Department Politecnico di Milano via Lambruschini 4 Milano 20156 Italy
| | | | | | - Valeria Lante
- Fondazione CNAO Strada Privata Campeggi Pavia 27100 Italy
| | - Marco Pullia
- Fondazione CNAO Strada Privata Campeggi Pavia 27100 Italy
| | - Simone Savazzi
- Fondazione CNAO Strada Privata Campeggi Pavia 27100 Italy
| |
Collapse
|
19
|
Hillbrand M, Landry G, Ebert S, Dedes G, Pappas E, Kalaitzakis G, Kurz C, Würl M, Englbrecht F, Dietrich O, Makris D, Pappas E, Parodi K. Gel dosimetry for three dimensional proton range measurements in anthropomorphic geometries. Z Med Phys 2018; 29:162-172. [PMID: 30249351 DOI: 10.1016/j.zemedi.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/14/2018] [Accepted: 08/26/2018] [Indexed: 11/27/2022]
Abstract
Proton beams used for radiotherapy have potential for superior sparing of normal tissue, although range uncertainties are among the main limiting factors in the accuracy of dose delivery. The aim of this study was to benchmark an N-vinylpyrrolidone based polymer gel to perform three-dimensional measurement of geometric proton beam characteristics and especially to test its suitability as a range probe in combination with an anthropomorphic phantom. For single proton pencil beams as well as for 3×3cm2 mono-energy layers depth dose profiles, lateral dose distribution at different depths and proton range were evaluated in simple cubic gel phantoms at different energies from 75 to 115MeV and different dose levels. In addition, a 90MeV mono-energetic beam was delivered to an anthropomorphic 3D printed head phantom, which was filled with gel. Subsequently, all phantoms underwent magnetic resonance imaging using an axial pixel size of 0.68-0.98mm and with slice thicknesses of 2 or 3mm to derive a 3-dimensional distribution of the T2 relaxation time, which correlates with radiation dose. Indices describing lateral dose distribution and proton range were compared against predictions from a treatment planning system (TPS, for cubic and head phantoms) and Monte Carlo simulations (MC, for the head phantom) after manual rigid co-registration with the T2 relaxation time datasets. For all pencil beams, the FWHM agreement with TPS was better than 1mm or 7%. For the mono-energetic layer, the agreement with TPS in this respect was even better than 0.3mm in each case. With respect to range, results from gel measurements differed no more than 0.9mm (1.6%) from values predicted by TPS. In case of the anthropomorphic phantom, deviations with respect to a nominal range of about 61mm as well as in FWHM were slightly higher, namely within 1.0mm and 1.1mm respectively. Average deviations between gel and TPS/MC were similar (-0.3mm±0.4mm/-0.2±0.5mm). In conclusion, polymer gel dosimetry was found to be a valuable tool to determine geometric proton beam properties three-dimensionally and with high spatial resolution in simple cubic as well as in a more complex anthropomorphic phantom. Post registration range errors of the order of 1mm could be achieved. The additional registration uncertainty (95%) was 1mm.
Collapse
Affiliation(s)
| | - Guillaume Landry
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Sandy Ebert
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - George Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Eleftherios Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Christopher Kurz
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Matthias Würl
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Franz Englbrecht
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Dimitris Makris
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - Evangelos Pappas
- Radiology & Radiotherapy Sector, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany.
| |
Collapse
|
20
|
Komori M, Sekihara E, Yabe T, Horita R, Toshito T, Yamamoto S. Luminescence imaging of water during uniform-field irradiation by spot scanning proton beams. Phys Med Biol 2018; 63:11NT01. [PMID: 29722295 DOI: 10.1088/1361-6560/aac223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Luminescence was found during pencil-beam proton irradiation to water phantom and range could be estimated from the luminescence images. However, it is not yet clear whether the luminescence imaging is applied to the uniform fields made of spot-scanning proton-beam irradiations. For this purpose, imaging was conducted for the uniform fields having spread out Bragg peak (SOBP) made by spot scanning proton beams. We designed six types of the uniform fields with different ranges, SOBP widths and irradiation fields. One of the designed fields was irradiated to water phantom and a cooled charge coupled device camera was used to measure the luminescence image during irradiations. We estimated the ranges, field widths, and luminescence intensities from the luminescence images and compared those with the dose distribution calculated by a treatment planning system. For all types of uniform fields, we could obtain clear images of the luminescence showing the SOBPs. The ranges and field widths evaluated from the luminescence were consistent with those of the dose distribution calculated by a treatment planning system within the differences of -4 mm and -11 mm, respectively. Luminescence intensities were almost proportional to the SOBP widths perpendicular to the beam direction. The luminescence imaging could be applied to uniform fields made of spot scanning proton beam irradiations. Ranges and widths of the uniform fields with SOBP could be estimated from the images. The luminescence imaging is promising for the range and field width estimations in proton therapy.
Collapse
Affiliation(s)
- Masataka Komori
- Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Shen J, Allred BC, Robertson DG, Liu W, Sio TT, Remmes NB, Keole SR, Bues M. A novel and fast method for proton range verification using a step wedge and 2D scintillator. Med Phys 2017; 44:4409-4414. [PMID: 28665529 DOI: 10.1002/mp.12439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/11/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To implement and evaluate a novel and fast method for proton range verification by using a planar scintillator and step wedge. METHODS A homogenous proton pencil beam plan with 35 energies was designed and delivered to a 2D flat scintillator with a step wedge. The measurement was repeated 15 times (3 different days, 5 times per day). The scintillator image was smoothed, the Bragg peak and distal fall off regions were fitted by an analytical equation, and the proton range was calculated using simple trigonometry. The accuracy of this method was verified by comparing the measured ranges to those obtained using an ionization chamber and a scanning water tank, the gold standard. The reproducibility was evaluated by comparing the ranges over 15 repeated measurements. The sensitivity was evaluated by delivering to same beam to the system with a film inserted under the wedge. RESULTS The range accuracy of all 35 proton energies measured over 3 days was within 0.2 mm. The reproducibility in 15 repeated measurements for all 35 proton ranges was ±0.045 mm. The sensitivity to range variation is 0.1 mm for the worst case. This efficient procedure permits measurement of 35 proton ranges in less than 3 min. The automated data processing produces results immediately. The setup of this system took less than 5 min. The time saving by this new method is about two orders of magnitude when compared with the time for water tank range measurements. CONCLUSIONS A novel method using a scintillator with a step wedge to measure the proton range was implemented and evaluated. This novel method is fast and sensitive, and the proton range measured by this method was accurate and highly reproducible.
Collapse
Affiliation(s)
- Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| | - Bryce C Allred
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| | - Daniel G Robertson
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| | - Nicholas B Remmes
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, 55905, USA
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| |
Collapse
|
22
|
Almurayshid M, Helo Y, Kacperek A, Griffiths J, Hebden J, Gibson A. Quality assurance in proton beam therapy using a plastic scintillator and a commercially available digital camera. J Appl Clin Med Phys 2017; 18:210-219. [PMID: 28755419 PMCID: PMC5874858 DOI: 10.1002/acm2.12143] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/14/2017] [Accepted: 06/14/2017] [Indexed: 11/21/2022] Open
Abstract
Purpose In this article, we evaluate a plastic scintillation detector system for quality assurance in proton therapy using a BC‐408 plastic scintillator, a commercial camera, and a computer. Methods The basic characteristics of the system were assessed in a series of proton irradiations. The reproducibility and response to changes of dose, dose‐rate, and proton energy were determined. Photographs of the scintillation light distributions were acquired, and compared with Geant4 Monte Carlo simulations and with depth‐dose curves measured with an ionization chamber. A quenching effect was observed at the Bragg peak of the 60 MeV proton beam where less light was produced than expected. We developed an approach using Birks equation to correct for this quenching. We simulated the linear energy transfer (LET) as a function of depth in Geant4 and found Birks constant by comparing the calculated LET and measured scintillation light distribution. We then used the derived value of Birks constant to correct the measured scintillation light distribution for quenching using Geant4. Results The corrected light output from the scintillator increased linearly with dose. The system is stable and offers short‐term reproducibility to within 0.80%. No dose rate dependency was observed in this work. Conclusions This approach offers an effective way to correct for quenching, and could provide a method for rapid, convenient, routine quality assurance for clinical proton beams. Furthermore, the system has the advantage of providing 2D visualization of individual radiation fields, with potential application for quality assurance of complex, time‐varying fields.
Collapse
Affiliation(s)
- Mansour Almurayshid
- University College London, Medical Physics and Biomedical Engineering, London, UK
| | - Yusuf Helo
- University College London, Medical Physics and Biomedical Engineering, London, UK
| | - Andrzej Kacperek
- Clatterbridge Cancer Centre, Medical Physics and Biomedical Engineering, London, UK
| | - Jennifer Griffiths
- University College London, Medical Physics and Biomedical Engineering, London, UK
| | - Jem Hebden
- University College London, Medical Physics and Biomedical Engineering, London, UK
| | - Adam Gibson
- University College London, Medical Physics and Biomedical Engineering, London, UK
| |
Collapse
|
23
|
Henry T, Robertson D, Therriault-Proulx F, Beddar S. Determination of the Range and Spread-Out Bragg Peak Width of Proton Beams Using a Large-Volume Liquid Scintillator. Int J Part Ther 2017; 4:1-6. [PMID: 31773000 DOI: 10.14338/ijpt-17-00001.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/16/2017] [Indexed: 11/21/2022] Open
Abstract
Purpose To determine the range, spread-out Bragg peak (SOBP) width, and output of a passive-scattering proton beam with a liquid scintillator detector, without the need for quenching correction. Materials and Methods The depth-light profiles of 3 beam energies (140, 160, and 180 MeV) with 6 SOBP widths at each energy, produced in a 20 × 20 × 20-cm3 liquid scintillator tank, were collected by a charge-coupled device camera. By defining landmarks on the light signals, measured ranges and SOBP widths were acquired. A linear dependence was found between nominal and measured properties, and calibration factors were obtained by comparing those properties. The daily output stability and reproducibility of the liquid scintillator detector were studied by conducting 8 repeated measurements over 2 weeks in a 60Co beam. Results The beam ranges were determined with submillimeter accuracy without the need for any correction. The maximum difference between the measured and nominal range was 1.0 mm. The mean difference between the measured and nominal SOBP widths after correction was 0.1 mm (σ = 1.8 mm), with a maximum difference of 3.5 mm. The light output was reproducible with an SD of 0.14%. Conclusions The method described here makes it possible to quickly and accurately determine the range and SOBP width of a passive-scattering proton beam in a liquid scintillator, without the need for quenching correction. In addition, the detector proved to be reliable over time, showing good output consistency with a high degree of precision.
Collapse
Affiliation(s)
- Thomas Henry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Robertson
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Darne CD, Alsanea F, Robertson DG, Sahoo N, Beddar S. Performance characterization of a 3D liquid scintillation detector for discrete spot scanning proton beam systems. Phys Med Biol 2017; 62:5652-5667. [PMID: 28593931 DOI: 10.1088/1361-6560/aa780b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Existing systems for proton beam dosimetry are limited in their ability to provide a complete, accurate, and detailed account of volumetric dose distribution. In this work, we describe the design and development of a portable, fast, and reusable liquid scintillator-based three-dimensional (3D) optical detection system for use in proton therapy. Our long-term goal is to use this system clinically for beam characterization, dosimetry, and quality assurance studies of discrete spot scanning proton beam systems. The system used a 20 × 20 × 20 cm3 liquid scintillator volume. Three mutually orthogonal cameras surrounding this volume captured scintillation photons emitted in response to the proton beams. The cameras exhibited a mean spatial resolution of 0.21 mm over the complete detection volume and a temporal resolution of 11 ms. The system is shown to be capable of capturing all 94 beam energies delivered by a synchrotron and performing rapid beam range measurements with a mean accuracy of 0.073 ± 0.030 mm over all energies. The range measurement uncertainty for doses less than 1 cGy was found to be ±0.355 mm, indicating high precision for low dose detection. Finally, we demonstrated that using multiple cameras allowed for the precise locations of the delivered beams to be tracked in 3D. We conclude that this detector is capable of real-time and accurate tracking of dynamic spot beam deliveries in 3D. The high-resolution light profiles it generates will be useful for future 3D construction of dose maps.
Collapse
Affiliation(s)
- Chinmay D Darne
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | | | | | | | |
Collapse
|
25
|
Beaulieu L, Beddar S. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy. Phys Med Biol 2016; 61:R305-R343. [DOI: 10.1088/0031-9155/61/20/r305] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Hui C, Robertson D, Alsanea F, Beddar S. Fast range measurement of spot scanning proton beams using a volumetric liquid scintillator detector. Biomed Phys Eng Express 2016; 1. [PMID: 27274863 DOI: 10.1088/2057-1976/1/2/025204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accurate confirmation and verification of the range of spot scanning proton beams is crucial for correct dose delivery. Current methods to measure proton beam range using ionization chambers are either time-consuming or result in measurements with poor spatial resolution. The large-volume liquid scintillator detector allows real-time measurements of the entire dose profile of a spot scanning proton beam. Thus, liquid scintillator detectors are an ideal tool for measuring the proton beam range for commissioning and quality assurance. However, optical artefacts may decrease the accuracy of measuring the proton beam range within the scintillator tank. The purpose of the current study was to 1) develop a geometric calibration system to accurately calculate physical distances within the liquid scintillator detector, taking into account optical artefacts; and 2) assess the accuracy, consistency, and robustness of proton beam range measurement using the liquid scintillator detector with our geometric calibration system. The range of the proton beam was measured with the calibrated liquid scintillator system and was compared to the nominal range. Measurements were made on three different days to evaluate the setup robustness from day to day, and three sets of measurements were made for each day to evaluate the consistency from delivery to delivery. All proton beam ranges measured using the liquid scintillator system were within half a millimeter of the nominal range. The delivery-to-delivery standard deviation of the range measurement was 0.04 mm, and the day-to-day standard deviation was 0.10 mm. In addition to the accuracy and robustness demonstrated by these results when our geometric calibration system was used, the liquid scintillator system allowed the range of all 94 proton beams to be measured in just two deliveries, making the liquid scintillator detector a perfect tool for range measurement of spot scanning proton beams.
Collapse
Affiliation(s)
- CheukKai Hui
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel Robertson
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fahed Alsanea
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
27
|
Saotome N, Furukawa T, Hara Y, Mizushima K, Tansho R, Saraya Y, Shirai T, Noda K. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system. Med Phys 2016; 43:1754. [DOI: 10.1118/1.4943955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Son J, Kim M, Shin D, Hwang U, Lee S, Lim Y, Park J, Park SY, Cho K, Kim D, Jang KW, Yoon M. Development of a novel proton dosimetry system using an array of fiber-optic Cerenkov radiation sensors. Radiother Oncol 2015; 117:501-4. [DOI: 10.1016/j.radonc.2015.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
|
29
|
Yu J, Beltran CJ, Herman MG. Implication of spot position error on plan quality and patient safety in pencil-beam-scanning proton therapy. Med Phys 2015; 41:081706. [PMID: 25086516 DOI: 10.1118/1.4885956] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. METHODS Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 to 20 cm with various field sizes from 2(2) to 15(2) cm(2). Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2-6 mm for the small spot size and 3.3-9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. RESULTS A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. CONCLUSIONS Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.
Collapse
Affiliation(s)
- Juan Yu
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - Chris J Beltran
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - Michael G Herman
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
30
|
Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy. Cancers (Basel) 2015; 7:631-47. [PMID: 25867000 PMCID: PMC4491675 DOI: 10.3390/cancers7020631] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 01/11/2023] Open
Abstract
An intensity-modulated proton therapy (IMPT) patient-specific quality assurance (PSQA) program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D) measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR) system in the QA mode and the accelerator control system (ACS) in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS). The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer) is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic.
Collapse
|
31
|
Ingram WS, Robertson D, Beddar S. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2015; 776:15-20. [PMID: 25705066 PMCID: PMC4332394 DOI: 10.1016/j.nima.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator's stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent.
Collapse
Affiliation(s)
- W. Scott Ingram
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Daniel Robertson
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
32
|
|
33
|
Hui C, Robertson D, Beddar S. 3D reconstruction of scintillation light emission from proton pencil beams using limited viewing angles-a simulation study. Phys Med Biol 2014; 59:4477-92. [PMID: 25054735 DOI: 10.1088/0031-9155/59/16/4477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An accurate and high-resolution quality assurance (QA) method for proton radiotherapy beams is necessary to ensure correct dose delivery to the target. Detectors based on a large volume of liquid scintillator have shown great promise in providing fast and high-resolution measurements of proton treatment fields. However, previous work with these detectors has been limited to two-dimensional measurements, and the quantitative measurement of dose distributions was lacking. The purpose of the current study is to assess the feasibility of reconstructing three-dimensional (3D) scintillation light distributions of spot scanning proton beams using a scintillation system. The proposed system consists of a tank of liquid scintillator imaged by charge-coupled device cameras at three orthogonal viewing angles. Because of the limited number of viewing angles, we developed a profile-based technique to obtain an initial estimate that can improve the quality of the 3D reconstruction. We found that our proposed scintillator system and profile-based technique can reconstruct a single energy proton beam in 3D with a gamma passing rate (3%/3 mm local) of 100.0%. For a single energy layer of an intensity modulated proton therapy prostate treatment plan, the proposed method can reconstruct the 3D light distribution with a gamma pass rate (3%/3 mm local) of 99.7%. In addition, we also found that the proposed method is effective in detecting errors in the treatment plan, indicating that it can be a very useful tool for 3D proton beam QA.
Collapse
Affiliation(s)
- CheukKai Hui
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
Robertson D, Hui C, Archambault L, Mohan R, Beddar S. Optical artefact characterization and correction in volumetric scintillation dosimetry. Phys Med Biol 2013; 59:23-42. [PMID: 24321820 DOI: 10.1088/0031-9155/59/1/23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillator detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts.
Collapse
Affiliation(s)
- Daniel Robertson
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
35
|
Kroll F, Pawelke J, Karsch L. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography. Med Phys 2013; 40:082104. [DOI: 10.1118/1.4813898] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
Goulet M, Gingras L, Beaulieu L, Archambault L. 3D tomodosimetry using scintillating fibers: proof-of-concept. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/444/1/012023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
|
38
|
Martišíková M, Brons S, Hesse BM, Jäkel O. High-resolution fluence verification for treatment plan specific QA in ion beam radiotherapy. Phys Med Biol 2013; 58:1725-38. [DOI: 10.1088/0031-9155/58/6/1725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Robertson D, Mirkovic D, Sahoo N, Beddar S. Quenching correction for volumetric scintillation dosimetry of proton beams. Phys Med Biol 2013; 58:261-73. [PMID: 23257200 PMCID: PMC3849813 DOI: 10.1088/0031-9155/58/2/261] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Volumetric scintillation dosimetry has the potential to provide fast, high-resolution, three-dimensional radiation dosimetry. However, scintillators exhibit a nonlinear response at the high linear energy transfer (LET) values characteristic of proton Bragg peaks. The purpose of this study was to develop a quenching correction method for volumetric scintillation dosimetry of proton beams. Scintillation light from a miniature liquid scintillator detector was measured along the central axis of a 161.6 MeV proton pencil beam. Three-dimensional dose and LET distributions were calculated for 85.6, 100.9, 144.9 and 161.6 MeV beams using a validated Monte Carlo model. LET values were also calculated using an analytical formula. A least-squares fit to the data established the empirical parameters of a quenching correction model. The light distribution in a tank of liquid scintillator was measured with a CCD camera at all four beam energies. The quenching model and LET data were used to correct the measured light distribution. The calculated and measured Bragg peak heights agreed within ±3% for all energies except 85.6 MeV, where the agreement was within ±10%. The quality of the quenching correction was poorer for sharp low-energy Bragg peaks because of blurring and detector size effects. The corrections performed using analytical LET values resulted in doses within 1% of those obtained using Monte Carlo LET values. The proposed method can correct for quenching with sufficient accuracy for dosimetric purposes. The required LET values may be computed effectively using Monte Carlo or analytical methods. Future detectors should improve blurring correction methods and optimize the pixel size to improve accuracy for low-energy Bragg peaks.
Collapse
Affiliation(s)
- Daniel Robertson
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
40
|
Glaser AK, Davis SC, Voigt WHA, Zhang R, Pogue BW, Gladstone DJ. Projection imaging of photon beams using Čerenkov-excited fluorescence. Phys Med Biol 2013; 58:601-19. [PMID: 23318469 DOI: 10.1088/0031-9155/58/3/601] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Full 3D beam profiling and quality assurance (QA) of therapeutic megavoltage linear accelerator (LINAC) x-ray photon beams is not routinely performed due to the slow point-by-point measurement nature of conventional scanning ionization chamber systems. In this study we explore a novel optical-based dose imaging approach using a standard commercial camera, water tank, and fluorescent dye, which when excited by the Čerenkov emission induced by the radiation beam, allows 2D projection imaging in a fast timeframe, potentially leading toward 3D tomographic beam profiling. Detailed analysis was carried out to optimize the imaging parameters in the experimental setup. The results demonstrate that the captured images are linear with delivered dose, independent of dose rate, and comparison of experimentally captured images to a reference dose distribution for a 4 × 4 cm(2) 6 MV x-ray photon beam yielded results with improved accuracy over a previous study which used direct imaging and Monte Carlo calibration of the Čerenkov emission itself. The agreement with the reference dose distribution was within 1-2% in the lateral direction, and ±3% in the depth direction. The study was restricted to single 2D image projection, with the eventual goal of creating full 3D profiles after tomographic reconstruction from multiple projections. Given the increasingly complex advances in radiation therapy, and the increased emphasis on patient-specific treatment plans, further refinement of the technique could prove to be an important tool for fast and robust QA of x-ray photon LINAC beams.
Collapse
Affiliation(s)
- Adam K Glaser
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | | | | | |
Collapse
|